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Abstract— In avoiding fatal consequences in accidents behind
steering wheel caused by low level vigilance, EEG has shown
bright prospects. In this paper, we propose a novel method for
discriminating two different vigilance states of the subjects,
namely wake state and sleep state, during driving a car
in a simulation environment. After filtering the EEG data
into a specific frequency band, we use probabilistic principle
component analysis (PPCA) to reduce the data dimension. Then
we model each vigilance state as a lower dimension Gaussian
random variable by applying PPCA again. The feature related
to class posterior probability is calculated for classification. The
experimental results show satisfying time resolution (≤ 5s) and
high accuracy (≥ 96%) across five subjects on both common
frequency bands β (19–26Hz) and γ (38–42Hz), and a broad
band (8–30Hz).

I. INTRODUCTION

Retaining vigilance above a constant level is of vital

importance to car, airplane or plant operators, but it is

difficult to achieve this goal, especially while performing

repetitive, monotonous and long-term tasks. Previous studies

have shown that low vigilance due to drowsiness is a major

factor to automobile crashes [1]. Thus to develop accurate

and non-intrusive real-time techniques to estimate vigilance

is highly desirable in a variety of human-machine interaction

systems.

During the past few decades, many studies have shown

that information related to vigilance can be found in EEG

[2]. Comparing to other physical and physiological signals

such as facial expression and skin potential [3], EEG can

directly represent human brain electronic activity and has

higher time resolution. Some changes in EEG spectrum have

been observed while the vigilance state varies [4][5]. These

include decreased β activity and increased α activity with

decreased vigilance. However, previous results have also

shown that there are a variability of key parameters denoting

vigilance across different subjects [6].

Most previous studies have focused on applying super-

vised learning methods to estimate vigilance states [7]. But

this requires a standard criterion for vigilance scale labeling,

while the existing labeling methods are complex, expensive

and unreliable. Some researchers defined the vigilance as

several discrete stages to simplify the outputs [8]. This

caused fluctuating prediction results on minute scale, and the

This work was supported in part by the National Natural Science
Foundation of China under the grants NSFC 60473040 and NSFC 60773090,
the MOE-Microsoft Key Laboratory of Intelligent Computing and Intelli-
gent Systems, Shanghai Jiao Tong University, and the Okawa Foundation
Research Grant. M. Li, J. Fu, and B. L. Lu are with the Department
of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China. E-mail: {mai lm, gawafu, bllu}@sjtu.edu.cn.
∗Corresponding author.

shorter time window, the more fluctuations can be observed.

Lin and colleagues made use of the deviation between the

center of vehicle and the cruising lane to measure the alert-

ness level indirectly [9]. This made it possible to quantify

subject’s vigilance continuously during driving task rather

than discretely defining several stages. As a result, a close

relationship between minute-scale changes in driving perfor-

mance and the EEG power spectrum was demonstrated [10].

Another direction is to use unsupervised learning method to

help labeling data [11].

The scope of our study is mainly to classification two

different vigilance states, namely the sleep state and wake

state, during the driving simulation experiment. We assume

that low dimension latent Gaussian random variables for the

high dimension EEG signals, then use maximum likelihood

to estimate the model parameters. The features related to

class posterior probabilities are used for classification. Differ-

ent EEG frequency bands and time resolutions are considered

in this study.

This paper is organized as follows. In section II, our

experiment setup of driving simulation is introduced. The

proposed EEG feature extraction method is presented in

section III. Experimental results are described in section IV.

Finally, the conclusions and future work are given in section

V.

II. METHODS

A. Experiment Setup

In the experiment, each subject was required to drive a car

in a driving simulation environment as illustrated in Fig. 1.

The subjects sat on a chair and drove with a steering wheel.

The simulating driving scenes are displayed on a 19’ LCD

screen with 70cm length in front of him/her. The experiment

map consists of two long straight roads around 10km and two

spin turns. At the speed of 60 km/h, it takes about 10mins

to finish one round. The sceneries are monotonous so the

subject may feel drowsy easily and even fall asleep. The

experiment was carried on in an illuminated and sound proof

room, and lasted one and half an hour. The temperature of the

room was about 27 degrees and the humidity was between

40% and 60%.

B. Subjects

Ten healthy young volunteers, aged 18–28 years old, par-

ticipated in this driving simulation experiment. The subjects

were informed that the purpose of this experiment was to

investigate EEG patterns in different vigilance levels, and

were required to abstain from alcohol and caffeine one day

before the experiment. At the beginning of the experiment,
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Fig. 1. Driving simulation environment. Here EEG signals are captured
from scalp by the electrode cap (1), the subject’s face expression is recorded
by a DV (2), and driving scenes are displayed on the LCD screen (3).

there was a 10mins practice to help the subject get used to

the environment. The EEG data from five subjects, who had

shown a tendency to fall asleep during the driving simulation

(i.e. with eyes closed for at least 10mins), were selected for

data analysis in this paper.

C. Data Acquisition

The subjects were fitted with a 62-channel electrode cap

during the experiment. The Ag/AgCl electrodes are mounted

inside the cap with bipolar references at papillary place

behind ears. The electrodes were arranged according to the

international 10-20 system. The contact impedance between

electrodes and skin was kept less than 10kΩ. The EEG data

were recorded with 32-bit quantization level at a sampling

rate of 1000Hz. The subject’s facial expression and the

driving screen during the whole experiment were recorded

by two DV cameras, which were used for labeling the EEG

data.

D. Data Labeling

We labeled two time segments, namely the sleep segment

and wake segment, for each experiment according to the

videos. The wake segment was usually chosen as the several

minutes at the beginning of the experiment, when the subject

was clear-headed with eyes open and driving well. While the

sleep segment was usually chosen in the middle, on which

the subject closed his/her eyes and had stopped driving.

E. Data Processing

The flowchart of EEG signal processing procedure is

depicted in Fig. 2. The training process consists of three

steps. In the first step, the raw EEG data, which is a channel-

by-time matrix, is filtered into frequency bands using finite

impulse response (FIR) filter. Based on the consideration

of possible inter-subject differences, we try six different

frequency bands, which are α (8–12Hz), lower α (8–10Hz),

upper α (10–12Hz), β (19–26Hz), γ (38–42Hz) and broad

band (8–30Hz) [12], respectively. Since spectrum informa-

tion below 8Hz is ignored here, there is no other step to

handle artifacts such as EOG and EMG except for removing

time segments which are polluted by EMG seriously.

In the second step, the filtered data is reduced into D
dimension by applying probabilistic principle component

analysis (PPCA), which results in a D-by-T matrix. In

the third step, assuming an M -dimension latent Gaussian

random variable for each class, the model parameters are

estimated by using PPCA.

The testing process also consists of three steps. The first

two steps are the same as the training process. In the third

step, the features f1 and f2 are calculated by the model

parameters obtained from the training process, which are

proportional to the logical class posterior probabilities. The

details of feature extraction algorithm are to be stated in

Section III.
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Fig. 2. The flowchart of EEG data processing.

III. EEG FEATURE EXTRACTION

Given a N -channel spatial EEG signal x at time t, which

is a N -by-1 vector, we assume x a N -dimension random

variable with conditional distribution on latent variable z

given by

p(x|z) = N (x|Wz + µ, σ2
I), (1)

where z is a Gaussian random varible with p(z) = N (z|0, I),
W is a N × D linear trasformation matrix, and µ and

σ2 denote the mean and variance of x, respectively. The

marginal distribution of x is given by

p(x) = N (x|µ,WW
T + σ2

I). (2)

The parameters of this model is determined by using max-

imum likelihood, called probabilistic principle component

analysis (PPCA) [13].

Assume that we have T signals, denote by X = {xt}T
t=1,

with mean x and covariance S

x =
1

T

T∑

t=1

xt, S =
1

T

T∑

t=1

(xt − x)(xt − x)T. (3)

The log likelihood function corresponding to (2) is

ln p(X|µ,W, σ2) =
T∑

t=1

lnN (xt|µ,WW
T + σ2

I). (4)

By setting the derivative of (4) with respect to µ,W and σ2

to zero respectively, we get

µ̂ = x (5)

Ŵ = U(L − σ2
I)

1

2 (6)

σ̂2 =
1

N − D

N∑

i=D+1

λi, (7)
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where (λ1, · · · , λN ) are the eigenvalues of the covariance

matrix S with descending order, L is the diagonal matrix

diag(λ1, · · · , λD) and U is a N ×D matrix whose columns

are eigenvecters of S correspoding to the eigenvalues of L.

Then the sphere transformation P is given by

P (x) = L
− 1

2 Ŵ
†(x − µ̂), (8)

which sphere x into a zero-mean and unit-covariance D-

dimension Gaussian random variable. Here the symbol †
means pseudo-inverse.

Further, assume x consist of two different kinds of EEG

signals C1 and C2, namely sleep and wake. Let Xi = {x|x ∈
Ci}, and Bi be the corresponding transformed signals, i.e.

Bi = P (Xi), for i = 1, 2. Define the covariance matrix Si

of Bi as (3), we could get S1 + S2 = I [14][15]. Assume

an M -dimensional latent variable and applying PPCA for

each class, the marginal distribution of b in Bi is given by

p(b) = N (b|0, Σ̂i) with

Σ̂i = Ui(Li − σ̂2
i
)UT

i
+ σ2

i
I, (9)

where Ui, Li and σ̂2
i

are similarly as Eqs. 5 through 7.

In order to classify a new coming trial X
′ into class C1

or C2, which is a N × T ′ matrix, we first transform X
′ into

B
′ using transformation P , then consider the feature fi

fi =

T
′∑

t=1

lnN (bt|0, Σ̂i) = ln p(B′|Ci) (10)

= ln p(Ci|B
′) + c, for i = 1, 2

where c is contant. We assume b is conditional independent

on Ci and the prior probability p(Ci) and p(B′) are constant,

then fi is the logical class posterior probability p(Ci|B
′) plus

a constant.

The time complexity of our method is linear with the

number of samples. The time complexity using PPCA is

O(N2 × D × T ), and the second part of time cost is

O(D2 × M × T ). Since the parameters N , D and M are

very small comparing to the number of samples T , the time

complexity is O(T ).

IV. RESULTS

For the five chosen subjects (Sec. II.B), we select around

10mins sleep data and equal length wake data for each one

(Sec. II.D). Then we divide the data into ten segments for

cross-validation, seven segments are selected for training and

the remainder three for testing, we repeat that for ten times

to get average accuracy. Let the classes C1 and C2 be wake

and sleep, respectively. In the training stage, we choose the

number of dimension D which captures 90% eigenvalues

for the first time of applying PPCA, and then we use a fixed

dimension M = 3 for the second time of using PPCA. In

the testing stage, we use 5s length trials with 2.5s overlap

between two adjacent trials. A trial is classified into wake

(C1) if the corresponding feature f1 is larger than f2 or sleep

(C2) otherwise.

The test accuracies for five subjects are shown in Table I.

Six commonly used frequency bands are considered, which

TABLE I

THE TEST ACCURACIES (%) OF FIVE SUBJECTS. THE LENGTHS OF

AWAKE AND SLEEP SEGMENTS ARE GIVEN IN LENGTH COLUMN WITH

FORMAT AWAKE/SLEEP IN MINUTE. DATA ARE FILTERED INTO SIX

COMMON CONSIDERED FREQUENCY BANDS.

Sub. Length α Lα Uα β γ 8–30Hz

1 13 / 13 89.6 82.9 93.2 98.2 94.1 98.8

2 6 / 6 84.0 91.3 85.3 100.0 100.0 96.8

3 11 / 11 96.9 87.6 95.9 98.4 98.5 96.1

4 13 / 13 88.1 88.9 86.3 98.1 98.1 95.7

5 10 / 10 93.8 91.1 96.7 89.1 98.4 96.2

are α, lower α, high α, β, γ, and a broad band(8–30Hz),

respectively. The best result for each subject is higher than

98% (100% for subject 2 and 98% for subject 1, 3, 4 and

5, respectively), which is obtained with different frequency

bands. Notice that β, γ, and 8–30Hz give average subjects

accuracies 97%, 98% and 97%, respectively. Further, γ and

8–30Hz are stable across subjects.

The test accuracy as a function of trial length for each

subject is illustrated in Fig. 3, in which the trial length

changes from 10s to 0.4s and the frequency band is 8–30

Hz. As we expected, the accuracy declines as the trial length

shortens. But notice that the accuracy changes little with trial

length varies from 10s to 5s, and it is still acceptable for 1s,

with 96%, 95%, 96%, 94% and 92% for subject 1, 2, 3, 4

and 5, respectively.
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Fig. 3. Accuracy v.s. trial length. The accuracy delines slowly with trial
length shortening, and is acceptable for 1 sec. trial length.

We present the performance of subject 3 during the whole

experiment in Fig.4. Two feature estimation methods are

used, one is comparing f1 and f2 and classify the trial into

classes wake or sleep as before, the other is the normalization

of features f1/(f1 + f2), we call it C1 score, which is an

approximation of the class posterior probability.

The recorded face video shows that subject 3 is awake

at the beginning 10mins (according to snippet 1 in Fig. 4)

and the last 3mins (snippet 9), is drowsy from 10mins to

45mins (snippets 2 through 5) and fall asleep from 45mins
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Fig. 4. The performance of subject 3 during an 86-min length driving simulation experiment. X-axis is the time in minute. Nine face video snippets are
presented in the top, whose times are corresponding to the x-position of the numbers below them. The classification results are given in the WAKE and
SLEEP rows; each plus sign means a 5 sec. time. The weighted mean of feature f1 and f2, i.e. f1/(f1 +f2), are showed in the bottom. The 0.5 threshold
line is also drawn.

to 83mins (snippets 6 through 8). The training data for

wake we choose is the first 10mins, and the time segment

from 45mins to 55mins for sleep. From Fig. 4, notice that

two wake segments at the beginning and end are classified

correctly, and a temporary arousal around 30mins is also

recognized. During the drowsy segment (from 10mins to 45

mins), the classification results are fluctuating to some extent.

Further, the C1 score shows a continuous variety with the

time, especially it declines smoothly as the sleep deepens

(from 50mins to 80mins).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an EEG signal classifi-

cation method for distinguishing wake and sleep states on

driving simulation experiment. The proposed method adopts

probabilistic principle component analysis to reduce the

dimension and then uses probabilistic principle component

analysis again for each state to get the posterior probability

feature. Our method gives over 96% average accuracy with

5s time resolution for five subjects on three different fre-

quency bands, which are β, γ, and broad band (8–30 Hz),

respectively. The accuracy is still acceptable even with 1s

time resolution.

Our method can be used as a real time classifier directly.

After training using about 20mins length data, it can output

high accuracy for high time resolution (less than 5s). From

Fig. 4, the C1 score varies continuously with the time

in a certain extent continuous, we are seeking real-time

continuous vigilance estimation methods.
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