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Abstract— Patent classification is a large-scale, hierarchical,
imbalanced, multi-label problem. The number of samples in a
real-world patent classification typically exceeds one million,
and this number increases every year. An effective patent
classifier must be able to deal with this situation. This paper
discusses the use of min-max modular support vector ma-
chine (M3-SVM) to deal with large-scale patent classification
problems. The method includes three steps: decomposing a
large-scale and imbalanced patent classification problem into
a group of relatively smaller and more balanced two-class
subproblems which are independent of each other, learning
these subproblems using support vector machines (SVMs) in
parallel, and combining all of the trained SVMs according to
the minimization and the maximization rules. M3-SVM has two
attractive features which are urgently needed to deal with large-
scale patent classification problems. First, it can be realized in a
massively parallel form. Second, it can be built up incrementally.
Results from experiments using the NTCIR-5 patent data set,
which contains more than two million patents, have confirmed
these two attractive features, and demonstrate that M3-SVM
outperforms conventional SVMs in terms of both training time
and generalization performance.

I. INTRODUCTION

CURRENT patent classification mainly relies on human
experts. The whole process is inefficient and imprecise.

Automatic classification systems based on machine learning
techniques can greatly reduce the workload, and human
experts could provide a further breakdown, if needed, of
automatic classification. Moreover, patent classification is
a fundamental of patent analysis. Through the analysis of
competitors’ patents, valuable information pertaining to mar-
ket strategy, product development direction, and so on can
be obtained. Related patents can also be mined for specific
information such as the identity of technical leaders and the
key technologies in a field.

Because of its great importance, automatic patent classi-
fication has received much attention [1], [2], [3], [4], [5],
[6]. The European Patent Office (EPO) tried a variety of
preprocessing methods on patent data, such as assigning
different weights to patent sections and, utilizing the co-
citation between patents. They also redefined the evaluation
standards for patent classification, and pointed out that pre-
cision levels of the order of 80% are required for practical
usage [1]. Larkey [2] [3] designed a system for searching and
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classifying U.S. patent documents based on query, and used
a K-nearest-neighbor algorithm in this system because of its
scalability to larger data sets. The Japan Patent Office [4]
developed a patent classification system based on keywords,
and used about 310,000 patents in the training procedure.
They achieved 96% classification accuracy in 38 categories
and 82.5% classification accuracy in 2,815 subcategories.
Their experiments also indicated that in order to ensure
higher classification accuracy, each subcategory should con-
tain at least 1,000 training samples. Fall et. al. compared
the most commonly used classifiers, such as naive Bayes, k-
NN, support vector machines (SVM), neural networks, and
decision rules, and reported that SVM provides the best
performance [5], [6].

The above research mainly dealt with small data sets, but
real-world patent classification problems may contain more
than a million samples. The time and space complexities
of SVM limit its application in such large-scale patent
classification.

In this paper, we use min-max modular support vector
machines (M3-SVM) [7], [8], [9], [10] to tackle large-scale
patent classification problems. M3-SVM includes three steps:
1) a large-scale pattern classification problem is divided
into a number of smaller and more balanced subproblems
according to decomposition strategies; 2) all of the subprob-
lems are solved by support vector machines in a massively
parallel way; 3) all of the trained support vector machines
are combined according to minimization and maximization
rules [11]. To speed up training and maintain the general-
ization performance of M3-SVM for patent classification, a
prior-knowledge-based task decomposition strategy is used.
We also analyze the incremental learning ability of M3-SVM.
Results from experiments using the NTCIR-5 database [12]
demonstrate that M3-SVM could surpass traditional SVM
in terms of both classification accuracy and training time.
We have also found that if a newly introduced training data
set is incrementally learned, the training time can be greatly
shortened.

The rest of the paper is organized as follows. Section II
provides background knowledge regarding patents and their
classification. In Section III, the min-max modular network
model is briefly introduced, and the incremental learning
ability of M3-SVM is analyzed. In Section IV, the experi-
ments using a large-scale patent data set are described and
experimental results are presented in detail. The conclusion
and future work are presented in Section V.
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Fig. 1. A sample of IPC taxonomy. Here ‘A’ is the SECTION category label, ‘A01’ is the CLASS category label, ‘A01B’ is the SUBCLASS category
label, and ’A01B 13/08’ is the GROUP category label.

II. PATENT CLASSIFICATION BACKGROUND

The International Patent Classification (IPC) provides a
common classification for patents and inventions, including
published patent applications, utility models and certifica-
tions. The IPC is a hierarchically structured system including
SECTION, CLASS, SUBCLASS, and GROUP layers as
illustrated in Fig. 1. The SECTION layer is the top layer,
and it has eight categories denoted by letters from A to
H. The CLASS layer is under the SECTION layer and
has 120 categories. The CLASS layer is expressed as a
SECTION label followed by two digits; for example, ‘A01’.
The third layer is the SUBCLASS layer, which is represented
as a CLASS label followed by a capital letter; for example,
‘A01B’. The number of categories in the SUBCLASS layer is
630. SUBCLASS can be further divided into GROUP, but in
general current research has mainly concentrated on the top
three layers since the definitions of layers below SUBCLASS
are still frequently changed.

Patent documents are generally stored in XML format as
shown in Fig. 2. A patent is composed of three main sec-
tions: Abstract, Claim, and Description, and other descriptive
information such as Title and IPC.

III. MIN-MAX MODULAR SUPPORT VECTOR MACHINE

Before using M3-SVM, we should divide a K-class prob-
lem into K(K − 1)/2 two-class subproblems according
to a one-against-one strategy. The work procedure of M3-
SVM consists of three steps: task decomposition, SVM
training, and module combination. Figure 3 shows this idea
of fine decomposition and module combination for a two-
class problem. Mini,∗ expresses the MIN unit for the ith
subset of the positive class.

A. Task Decomposition

Let Tij be the given training data set for a two-class
classification problem,

Tij = {(X
(i)
l , +1)}Li

l=1 ∪ {(X
(j)
l , −1)}

Lj

l=1 (1)

for i = 1, · · · , K and j = i + 1, · · · , K

Fig. 2. A sample Japanese patent document selected from NTCIR-5. Here,
this patent has two IPC labels, and the main IPC label is represented in Fig.
1.

where X
(i)
l ∈ Xi and X

(j)
l ∈ Xj are the training inputs

belonging to class Ci and class Cj , respectively; Xi is the
set of training inputs belonging to class Ci; Li denotes the
number of data in Xi; ∪K

i=1Xi = X ; and
∑K

i=1 Li = L. In
this paper, the training data in a two-class subproblem are
called positive training data if their desired outputs are +1.
Otherwise, they are called negative training data.

Although the two-class subproblems defined by Eq. (1) are
smaller than the original K-class problem, this partition may
not be adequate for parallel learning. To speed up training,
all the large and imbalanced two-class subproblems should
be further divided into smaller and more balanced two-class
subproblems.

Assume that Xi is partitioned into Ni subsets in the form

Xij = {X
(ij)
l }

L
(j)
i

l=1 (2)

for j = 1, · · · , Ni and i = 1, · · · , K,
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Fig. 3. Fine Decomposition and Module Composition of a Two-Class
Problem. Here the two-class problem is further decomposed into N1 ×N2

subproblems. Therefore, the M3 network consists of N1 × N2 individual
network modules, N1 MIN units, and one MAX unit.

where 1 ≤ Ni ≤ Li and ∪Ni
j=1Xij = Xi.

After partitioning Xi into Ni subsets, every two-class
subproblem Tij defined by Eq. (1) can be further divided into
Ni × Nj smaller and more balanced two-class subproblems
as follows:

T
(u, v)

ij = {(X
(iu)
l , +1)}

L
(u)
i

l=1 ∪ {(X
(jv)
l , −1)}

L
(v)
j

l=1 (3)

for u = 1, · · · , Ni, v = 1, · · · , Nj ,

i = 1, · · · , K, and j = i + 1, · · · , K

where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the training

inputs belonging to class Ci and class Cj , respectively;∑Ni

u=1 L
(u)
i = Li; and

∑Nj

v=1 L
(v)
j = Lj .

After task decomposition, each of the two-class subprob-
lems can be treated as a completely independent, non-
communicating problem in the learning phase. Therefore,
all the two-class subproblems defined by Eq. (3) can be
efficiently learned in a massively parallel way.

From Eqs. (1) and (3), we see that a K-class problem is
divided into

K−1∑

i=1

K∑

j=i+1

Ni × Nj (4)

two-class subproblems. The number of training data for each
of the two-class subproblems is about

�Li/Ni� + �Lj/Nj� (5)

Since �Li/Ni� + �Lj/Nj� is independent of the number of
classes K , the size of each of the two-class subproblems
is much smaller than the original K-class problem for
reasonable values of Ni and Nj .

B. Module Combination

After training, all the individual SVMs are integrated into
a M3-SVM with MIN and MAX units according to two
combination principles: the minimization principle and the
maximization principle [11].

Minimization Principle: Suppose a two-class problem
B is divided into P smaller two-class subproblems, Bi for
i = 1, · · · , P , and also suppose that all the two-class sub-
problems have the same positive training data and different
negative training data. If the P two-class subproblems are
correctly learned by the corresponding P individual SVMs,
Mi for i = 1, · · · , P , then the combination of the P trained
SVMs with a MIN unit will produce the correct output for
all the training inputs in B, where the function of the MIN
unit is to find a minimum value from its multiple inputs. The
transfer function of the MIN unit is given by

q(x) =
P

min
i=1

Mi(x) (6)

where x denotes the input variable.
Maximization Principle: Suppose a two-class problem

B is divided into P smaller two-class subproblems, Bi for
i = 1, · · · , P , and also suppose that all the two-class sub-
problems have the same negative training data and different
positive training data. If the P two-class subproblems are
correctly learned by the corresponding P individual SVMs,
Mi for i = 1, · · · , P , then the combination of the P trained
SVMs with a MAX unit will produce the correct output for
all the training input in B, where the function of the MAX
unit is to find a maximum value from its multiple inputs.
The transfer function of the MAX unit is given by

q(x) =
P

max
i=1

Mi(x) (7)

C. Incremental Learning

Patent classification is a typical incremental learning prob-
lem, because new patents are issued continuously. Incremen-
tal learning could be used to learn the novel knowledge from
in-coming patents, and models which have been trained can
be reused. M3-SVM has such incremental learning ability
if a decomposition strategy, such as prior-knowledge-based
decomposition, can be used to divide each new data set in-
dependently of the learned datasets whereas random decom-
position can-not be accommodated within the incremental
learning architecture. Figure 4 shows M3-SVM models after
addition of a new data set. Previously trained models are
reused in M3-SVM.

First, the number of training models in the original data
set can be easily calculated using

M (1) =
∑

0<i<j≤K

(�
Li

ai

� × �
Lj

aj

�) (8)

where Li is the sample number in the ith category, and
ai is the sample number in each subset of the ith category.
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Fig. 4. Modification of modules in the case where new training data is added to existing classes. Here N
′

1
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2
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new ),i = 1, 2, . . . , N1. (b) newly created i

′

th MIN units(Mini
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1
(c) Fig. 3 after incremental learning.

K denotes the category number. After the introduction of a
new data set, the number of models increases to M (2):

M (2) =
∑

0<i<j≤K

((�
Li

ai

� + �
L

′

i

a
′

i

�) × (�
Lj

aj

� + �
L

′

j

a
′

j

�)) (9)

where L
′

i is the sample number in the ith category in the
newly introduced data set, and a

′

i is the sample number in
each subset of the ith category in the newly introduced data
set. Assuming the newly introduced data set is equal in sizes
to the original data set, we let all ai and a

′

i be equal to a
and all Li and L

′

i be equal to L. Equations (8) and (9) then
become

M (1) =
K(K − 1)

2
�
L

a
�2 (10)

M (2) =
4K(K − 1)

2
�
L

a
�2 (11)

The number of models which should be incrementally
learned is

M (2) − M (1) =
3K(K − 1)

2
�
L

a
�2 (12)

After we introduce another data set (equal in size to the first
data set),

M (3) =
9K(K − 1)

2
�
L

a
�2 (13)

The number of models which should be incrementally
learned becomes

M (3) − M (2) =
5K(K − 1)

2
�
L

a
�2 (14)

Thus, we can infer that after the introduction of the ith new
data set (equal in size to the first data set),

M (i) = i2W (15)

where W = K(K−1)
2 �L

a
�2 is a constant. The number of

models which should be incrementally learned is

M (i) − M (i−1) = i2W − (i − 1)2W = (2i − 1)W (16)

Equations (15) and (16) show that when incremental learning
is used, the number of models which should be incrementally
learned decreases from O(i2) to O(i)

This theoretical analysis has been verified by our experi-
mental results, which are given in Section IV.

IV. PATENT CLASSIFICATION EXPERIMENTS

A. Data Set

The data set used in our experiment was collected from
the NTCIR-5 patent data set [12] which follows the IPC
taxonomy. There are about 350,000 new patents in per year,
and new patents from a 7-year period were used in our
experiment. The total number of patents is 2,399,884. We
use the patents from the first five years’ as training data, and
those from the final two years’ as test data. The number of
patents in each year and in each class are listed in Table I.

We used the hierarchical text classification model to solve
the patent classification problem, and focused on using M3-
SVMs to solve the large-scale problem in the SECTION
layer. The SECTION layer has eight categories from A to
H, and the distribution of patents in eight categories is listed
in Table I. Note that a patent has one main category label
and may also have several compensatory labels. Here, we
simplify the multi-label problem into a unique label problem
by only considering the main label of the patent.

B. Feature Selection Method

First, the raw Japanese patent was segmented using
chasen [13], a Japanese morphological analyzer, and all
auxiliary words and punctuation were removed. A patent
consists mainly of three sections - Abstract, Claim, and
Description. In our experiment, the three sections were
weighted equally and wholly indexed into a single vector
using the TFIDF method. Other researchers have proved that
χavg , χmax and Information Gain [14] are the top feature
selection methods for text classification. We compared these
three methods in our experiment. The results showed that the
three methods are approximately equal in performance. We
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TABLE I

NUMBER OF PATENTS PER YEAR IN EIGHT SECTIONS

SECTION 1993 1994 1995 1996 1997 1998 1999 TOTAL
A 30,583 31,316 28,357 25,444 22,475 32,427 33,126 203,728
B 65,538 68,474 68,130 68,278 62,436 68,148 69,648 470,652
C 30,747 31,834 34,163 37,996 35,700 31,198 31,494 233,132
D 4,904 5,228 5,794 6,127 5,604 4,642 4,968 37,267
E 18,605 18,000 16,114 13,690 11,099 18,604 18,810 114,922
F 30,296 31,188 29,358 28,258 26,671 31,403 32,938 210,112
G 77,692 81,691 81,677 88,716 95,679 79,158 83,942 588,555
H 72,589 72,164 72,544 81,486 86,834 75,305 80,594 541,516

TOTAL 330,954 339,895 336,137 349,995 346,498 340,885 355,520 2,399,884

also tuned the dimension parameter from 2,500 to 160,000,
and found that 5,000 was the smallest value that enabled
close to the top performance. Thus, we used the χavg method
and a dimension size of 5000 in the experiments discussed
in this paper.

C. Classifier

The M3 framework can use support vector machine, K
nearest neighbor, or neural network classifiers as the base
classifier. In the experiments of other researchers, the support
vector machine has proved to be the optimal classifier for
most text classification problems, so we used SVMlight [15],
[16] in our experiment as the baseline algorithm and base
classifier of M3. SVMlight is designed to solve large-scale
text classification problems. It optimizes the speed of both
the training and the testing, while also ensuring classification
accuracy. Because of the outstanding capability of SVMlight,
we considered it the most appropriate classifier for our
experiment. We also used the linear kernel for SVM, because
the linear kernel enables the shortest training and test times.
We attempted to use other types of kernel, but the training
seemed endless in the same experimental environment.

D. Decomposition Strategies

Effective task decomposition is vital for M3-SVMs to
achieve satisfactory performance [7]. We use three decom-
position strategies in our experiments.

1) Random task decomposition is quite straightforward.
After the subset sizes are decided, patents are randomly
selected to form subsets. In our experiment, we set the
subset size to 2000 based on our experience.

2) Year&Random task decomposition first divides patents
into subsets according to year, and then each year’s
patents are further divided into subsets using the
Random Algorithm according to the predefined subset
size(2000 in our experiments).

3) Year&CLASS task decomposition first divides patents
into subsets according to year, and then each year’s
patents are further divided into subsets according to
taxonomy. The CLASS layer is used in our exper-
iments. The CLASS number in each SECTION is
shown in Table II.

TABLE II

CLASS NUMBER IN EACH IPC SECTION

SECTION A B C D E F G H
CLASS number 15 36 19 8 7 17 13 5

Among the three decomposition strategies, Year&CLASS
decomposition provided the best performance, as shown
in Fig. 5. In the following discussion, we therefore only
consider M3-SVM based on Year&CLASS decomposition.

E. Baseline Comparison

As noted, SVMlight performed well for most of the text
classification problems, including our patent data set, in
terms of both speed and classification accuracy. We com-
pared M3-SVM based on Year&CLASS decomposition with
SVMlight, and found that our method could surpass even
SVMlight in the following four regards:

1) Classification Accuracy: We use the 1998-1999 patents
as a test set, and the 1997, 1996-1997, 1995-1997, 1994-
1997, and 1993-1997 sets in turn as the training set . Figure 5
shows the classification results with M3-SVM and SVMlight.
As the training data number increased, the performance of
M3-SVM surpassed that of SVMlight. In addition, the perfor-
mance of SVMlight dropped sharply with the introduction of
distant years’ patents, which would complicate the decision
boundary. M3-SVM can simplify the decision boundary by
dividing the original complex problem into a group of much
simpler subproblems.

2) Parameters Independence: The support vector machine
algorithm can achieve advanced performance only when the
training parameters are properly set. For large-scale classi-
fication problems, it could require several days or more to
finish one round of training, so parameter tuning is unrealistic
for this kind of problem. Although we can select part of the
training data to use for parameter tuning, whether this subset
will accurately represent the whole data set is not guaran-
teed. In our experiment using the SVMlight classifier, the
performance of SVMlight changed dramatically along with
the parameter tuning. In contrast, M3-SVM could provide
satisfactory performance regardless of parameter changes.
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Fig. 5. Performance of different classifiers, (a) Macro precision, (b) Macro recall, (c) Macro F1, (d) Micro F1.

This is shown in Fig. 6, and calculated mean and standard
deviation values are shown in Table III. In general, M3-SVM
provided the best performance without parameter selection,
and this capability is important for large-scale problems.

3) Time Cost: We also compared the training and test
times between M3-SVM and SVMlight. SVMlight provides
greatly improved training and test times compared with
those of traditional SVM classifiers. Our experiments were
done on a Lenovo cluster composed of three fat nodes and
thirty thin nodes. Each fat node had 32G RAM and two
3.2GHz Intel(R) Xeon(TM) CPUs, while each thin node had
8G RAM and two 2.0GHz Intel(R) Xeon(TM) CPUs with
each CPU having four cores. The SVMlight experiments
were done on the fat nodes, and the M3-SVM experiments
were done on the thin nodes. The results are shown in Fig.
7. We found that although running on slower CPUs, M3-

SVM can greatly reduce the training time. However, M3-
SVM needed more testing time than SVMlight. For a fixed
subproblem size, the M3-SVM model number will grow with
the training set size, so the test time will also increase.
In the SVMlight test process with a linear kernel, though,
only the distance between the test vectors and the dividing
hyperplane needs to be calculated, which is independent of
the training set size. Although the test time was greater, M3-
SVM needed only 2ms to test a patent, and can be used in
real-time. Moreover, we used just 240 CPU cores to do the
computation in parallel in the M3-SVM experiment, but all
the training of subproblems could be done in parallel. Using
the Year&CLASS decomposition method, the original five
years’ of patents were divided into almost 150,000 subsets
according to CLASS as shown in Table II. With enough
computation nodes, the M3-SVM training and test times
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Fig. 6. Performance under different training parameters: (a) Macro F1, (b) Micro F1.
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Fig. 7. Training and test times for M3-SVM and SVMlight. (a) Training time, (b) Test time

TABLE III

MEAN AND STANDARD DEVIATION VALUES FOR M3-SVM AND

SVMlight

classifier mean SD
Macro precision M3-SVMs 0.8137 0.0035

SVMlight 0.7917 0.0180
Macro recall M3

− SV Ms 0.8068 0.0039
SVMlight 0.7747 0.0320

Macro F1 M3-SVMs 0.8097 0.0040
SVMlight 0.7818 0.0268

Micro F1 M3-SVMs 0.8178 0.0073
SVMlight 0.7906 0.0219

could be greatly reduced to 240/150, 000 ≈ 1/625, much
shorter than those of SVMlight. The scalability of M3-SVMs
is illustrated in Fig. 8.

4) Incremental Learning: We also tested the M3-SVM in-
cremental learning ability by successively adding one year’s
patents to the training set. The results are shown in Fig. 9. As
we expected, the training time of incremental learning grew
linearly, while the training time of no incremental learning
grew quadratically.

V. CONCLUSION

We have used M3-SVM to address a large-scale patent
classification problem on the IPC top layer. M3-SVM pro-
vides better generation performance than conventional SVM,
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and more stable performance than conventional SVM with
regard to parameter tuning. The training time of M3-SVM
can be greatly reduced. Experimental results showing that
training and test times are inversely proportion to the number
of CPU cores demonstrate the scalability of the parallel
M3-SVM system. We also verified the incremental learning
ability of M3-SVM, which is a valuable property for large-
scale patent Consequently, the training time is reduced from
quadratic complexity to linear complexity. In the future,
the multi-label and hierarchical structure of patents will be
considered with the goal of solving the patent classification
problem integrally.

VI. ACKNOWLEDGEMENTS

We sincerely thank Zhifei Ye and Feng Zhou for their
helpful advices, and Cong Hui for his coding help.

This work was supported in part by the National Natural
Science Foundation of China via the grant NSFC 60773090,
the Microsoft Laboratory for Intelligent Computing and
Intelligent Systems of Shanghai Jiao Tong University, and
the Okawa Foundation Research Grant.

REFERENCES
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