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Abstract— In avoiding fatal consequences in accidents behind
steering wheel caused by low level vigilance, EEG has shown
bright prospects. In this paper, we propose a novel method for
discriminating two different vigilance states of the subjects,
namely wake state and sleep state, during driving a car
in a simulation environment. After filtering the EEG data
into a specific frequency band, we use probabilistic principle
component analysis (PPCA) to reduce the data dimension. Then
we modal each vigilance state as a lower dimension Gaussian
random variable by applying PPCA again. The feature related
to class posterior probability is calculated for classification.
The experimental results show satisfying time resolution (≤ 5s)
and high accuracy (≥ 96%) across five subjects on common
frequency bands β (19-26Hz), γ (38-42Hz), and broad band
(8-30Hz).

I. INTRODUCTION

Retaining vigilance above a constant level is of vital
importance to car, airplane or plant operators, but it is
difficult to achieve this goal, especially while performing
repetitive, monotonous and long-term tasks. Previous studies
have shown that low vigilance due to drowsiness is a major
factor to automobile crashes [1]. Thus to develop accurate
and non-intrusive real-time techniques to estimate vigilance
is highly desirable in a variety of human-machine interaction
systems.

During the past few decades, many studies have shown
that information related to vigilance can be found in EEG
[2]. Comparing to other physical and physiological signals
such as facial expression and skin potential [3], EEG can
directly represent human brain electronic activity and has
higher time resolution. Some changes in EEG spectrum have
been observed while the vigilance state varies [4][5]. These
include decreased β activity and increased α activity with
decreased vigilance. However, previous results have also
shown that there are a variability of key parameters denoting
vigilance across different subjects [6].

Most previous studies have focused on applying super-
vised learning methods to estimate vigilance states [7]. But
this requires a standard criterion for vigilance scale labeling,
while the existing labeling methods are complex, expensive
and unreliable. Some researchers defined the vigilance as
several discrete stages to simplify the outputs [8]. This
caused fluctuating prediction results on minute scale, and the
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shorter time window, the more fluctuations can be observed.
Lin and colleagues made use of the deviation between
the center of vehicle and the cruising lane to measure
the alertness level indirectly [9][10]. This made it possible
to quantify subject’s vigilance continuously during driving
task rather than discretely defining several stages. As a
result, a close relationship between minute-scale changes
in driving performance and the EEG power spectrum was
demonstrated [11]. Another direction is to use unsupervised
learning method to help labeling data [12].

The scope of our study is mainly to classification two
different vigilance states, namely the sleep state and wake
state, during the driving simulation experiment. We assume
that low dimension latent Gaussian random variables for the
high dimension EEG signals, then use maximum likelihood
to estimate the model parameters. The features related to
class posterior probabilities are used for classification. Differ-
ent EEG frequency bands and time resolutions are considered
in this study.

This paper is organized as follows. In section II, our
experiment setup of driving simulation is introduced. The
proposed EEG feature extraction method is presented in
section III. Experimental results are described in section IV.
Finally, the conclusions and future work are given in section
V.

II. METHODS

A. Experiment Setup

In the experiment, each subject was required to drive a car
in a driving simulation environment as illustrated in Fig. 1.
The subjects sat on a chair and drove with a steering wheel.
The simulating driving scenes are displayed on a 19’ LCD
screen with 70cm length in front of him/her. The experiment
map consists of two long straight roads around 10km and two
spin turns. At the speed of 60 km/h, it takes about 10mins
to finish one round. The sceneries are monotonous so the
subject may feel drowsy easily and even fall asleep. The
experiment was carried on in an illuminated and sound proof
room, and lasted one and half an hour. The temperature of the
room was about 27 degrees and the humidity was between
40% and 60%.

B. Subjects

Ten healthy young volunteers, aged 18-28 years old, par-
ticipated in this driving simulation experiment. The subjects
were informed that the purpose of this experiment was to
investigate EEG patterns in different vigilance levels, and
were required to abstain from alcohol and caffeine one day
before the experiment. At the beginning of the experiment,

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 30th Annual International IEEE EMBS Conference.
Received April 7, 2008.



2

3

1

Fig. 1. Driving simulation environment. Here EEG signals are captured
from scalp by the electrode cap (1), the subject’s face expression is recorded
by a DV (2), and driving scenes are displayed on the LCD screen (3).

there was a 10 minutes practice to help the subject get used to
the environment. The EEG data from five subjects, who had
shown a tendency to fall asleep during the driving simulation,
were selected for data analysis in this paper.

C. Data Acquisition

The subjects were fitted with a 62-channel electrode cap
during the experiment. The Ag/AgCl electrodes are mounted
inside the cap with bipolar references at papillary place
behind ears. The electrodes were arranged according to the
international 10-20 system. The contact impedance between
electrodes and skin was kept less than 50kΩ. The EEG data
were recorded with 32-bit quantization level at a sampling
rate of 1000Hz. The subject’s facial expression and the
driving screen during the whole experiment were recorded
by two DV cameras, which were used for labeling the EEG
data.

D. Data Labeling

We labeled two time segments, namely the sleep segment
and wake segment, for each experiment according to the
videos. The wake segment was usually chosen as the several
minutes at the beginning of the experiment, when the subject
was clear-headed with eyes open and driving well. While the
sleep segment was usually chosen in the middle, on which
the subject closed his/her eyes and had stopped driving.

E. Data Processing

The flowchart of EEG signal processing procedure is
depicted in Fig. 2. The training process consists of three
steps. In the first step, the raw EEG data, which is a channel-
by-time matrix, is filtered into frequency bands using finite
impulse response (FIR) filter. Based on the consideration
of possible inter-subject differences, we try six different
frequency bands, which are α (8-12Hz), lower α (8-10Hz),
upper α (10-12Hz), β (19-26Hz), γ (38-42Hz) and broad
band (8-30Hz) [13]. Since spectrum information below 8Hz
is ignored here, removing artifacts such as EOG and EMG is
not necessary, and the experimental results show that EOG
or EMG affects the classification accuracy little.

In the second step, the filtered data is reduced into D
dimension by applying probabilistic principle component
analysis (PPCA), which results in a D-by-T matrix. In
the third step, assuming an M -dimension latent Gaussian

random variable for each class, the model parameters are
estimated by using PPCA, .

The testing process also consists of three steps. The first
two steps are the same as the training process. In the third
step, the features f1 and f2 are calculated by the model
parameters obtained from the training process, which are
proportional to the logical class posterior probabilities. The
details of feature extraction algorithm are to be stated in
Section III.
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Fig. 2. The flowchart of EEG data processing.

III. EEG FEATURE EXTRACTION

Given an N -channel spatial EEG signal x at time t,
which is an N -by-1 vector, we assume x an N -dimensional
Gaussian random variable with dimension D. Let z be the
latent variable with a zero-mean unit-covariance Gaussian
distribution p(z) = N (z|0, I), the conditional distribution of
x conditioned on z, which is also a Guassian, has the form

p(x|z) = N (x|Wz + µ, σ2I), (1)

where W is an N ×D linear transformation matrix, and µ
and σ2 governs the mean and variance of x. The marginal
distribution of x is given by

p(x) = N (x|µ,WWT + σ2I). (2)

The parameters of this model are obtained by using max-
imum likelihood, called probabilistic principle component
analysis [14].

Assume that we have T signals, denote by X = {xt}T
t=1,

with mean x and covariance S given by

x =
1
T

T∑
t=1

xt, S =
1
T

T∑
t=1

(xt − x)(xt − x)T. (3)

The log likelihood function corresponding to (2) is

ln p(X|µ,W, σ2) =
T∑

t=1

lnN (xt|µ,WWT + σ2I). (4)

By setting the derivative of (4) with respect to µ, W, and
σ2 to zero, respectively, we have

µML = x (5)
WML = UD(LD − σ2I)1/2 (6)

σ2
ML =

1
N −D

N∑

i=D+1

λi, (7)

where (λ1, · · · , λN ) is the eigenvalues of the covariance
matrix S with descending order, LD is the diagonal matrix
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diag(λ1, · · · , λD), and UML is a N × D matrix whose
columns are eigenvecters of S correspoding to LD.

Now we define a transformation P

P (x) = L−1/2
ML W†

ML(x− µML) (8)

which transfers x into a zero-mean and unit-covariance D-
dimensional Gaussian random variable. Here the symbal †
denotes pseudoinverse.

Further, assume that x consists of two different kinds of
EEG signal C1 and C2, namely sleep and wake. Let X(i) =
{x|x ∈ Ci}, and B(i) be the corresponding trasformed
signals, i.e. B(i) = P (X(i)), for i = 1, 2. By defining
the covariance matrix S(i) of B(i) as (3), we could get
S(1) + S(2) = ID [15][16]. Assuming an M -dimensional
latent Gaussian random variable r for C1 and C2, we get the
conditional distribution of transformed signal b by

p(b|r) = N (b|W(i)r + µ(i), σ(i)2), (9)

for b in B(i), i = 1, 2. Applying PPCA again, the marginal
distribution is given by p(b) = N (b|0,Σ(i)

ML) with

Σ(i)
ML = U(i)

M (L(i)
M − σ

(i)
ML)U(i)T

M + σ
(i)2
ML IM , (10)

where the parameters U(i)
M , L(i)

M , and σ
(i)2
ML are similarly

defined as before.
In order to classify a new coming trial Xnew, which is

an N × T ′ matrix, into class C1 or C2, we first transform
Xnew into Bnew using transformation P , then we consider
the feature fi for i = 1, 2

fi =
T ′∑
t=1

N (bt|0,Σ(i)
ML) (11)

= ln p(Bnew|Ci) ∝ ln p(Ci|Bnew),

where we assume the prior probability p(Ci) and p(Bnew)
to be constant and conditional independent on Ci, then
fi is proportional to the logical class posterior probability
p(Ci|Bnew).

The time complexity of the proposed method is linear with
the number of samples. The first time using PPCA costs
O(N2 ×D × T ) time, and the second time costs O(D2 ×
M ×T ). Since the parameters N , D, and M are very small
comparing to the number of samples T , the time complexity
is O(T ).

IV. RESULTS

For the five chosen subjects, we selecte around 10 minutes
sleep data and equal length wake data for each one, and then
we divide the data into ten segments for cross-validation.
Seven segments are selected for training and the remainder
three segments for testing, we repeat that for ten times to
get average accuracy. Let the classes C1 and C2 be wake
and sleep, respectively. In the training stage, we choose the
number of dimension D which captures 90% eigenvalues
for the first time of applying PPCA, and then we use a fixed
dimension M = 3 for the second time of using PPCA. In
the testing stage, we use 5s length trials with 2.5s overlap
between two adjacent trials. A trial is classified into wake

TABLE I
THE TEST ACCURACIES (%) OF FIVE SUBJECTS. THE LENGTHES OF

AWAKE AND SLEEP SEGMENTS ARE GIVEN IN LENGTH COLUMN WITH

FORMAT AWAKE/SLEEP IN MINUTE. DATE ARE FILTERED INTO SIX

COMMON CONSIDERED FREQUENCY BANDS.

Sub. Length α Lα Uα β γ 8-30Hz
1 13 / 13 89.6 82.9 93.2 98.2 94.1 98.8

2 6 / 6 84.0 91.3 85.3 100.0 100.0 96.8

3 11 / 11 96.9 87.6 95.9 98.4 98.5 96.1

4 13 / 13 88.1 88.9 86.3 98.1 98.1 95.7

5 10 / 10 93.8 91.1 96.7 89.1 98.4 96.2

(C1) if the corresponding feature f1 is larger than f2 or sleep
(C2) otherwise.

The test accuracies for five subjects are shown in Table I.
Six commonly used frequency bands are considered, which
are α, lower α, high α, β, γ, and a broad band, corresponding
to 8-12Hz, 8-10Hz, 10-12Hz, 19-26Hz, 38-42Hz and 38-
42Hz, respectively. The best result for each subject is higher
than 98% (100% for subject 2 and 98% for subject 1, 3, 4 and
5, respectively), which is obtained with different frequency
bands. Notice that β, γ, and 8-30Hz give average subjects
accuracies 97%, 98% and 97%, respectively. Further, γ and
8-30Hz are stable across subjects.

The test accuracy as a function of trial length for each
subject is illustrated in Fig. 3, in which the trial length
changes from 10s to 0.4s and the frequency band is 8-30
Hz. As we expected, the accuracy declines as the trial length
shortens. But notice that the accuracy changes little with trial
length varies from 10s to 5s, and it is still acceptable for 1s,
with 96%, 95%, 96%, 94% and 92% for subject 1, 2, 3, 4
and 5, respectively.
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Fig. 3. Accuracy v.s. trial length. The accuracy delines slowly with trial
length shortening, and is acceptable for 1 sec. trial length.

We present the performance of subject 3 during the whole
experiment in Fig.4. Two feature estimation methods are
used, one is comparing f1 and f2 and classify the trial into
classes wake or sleep as before, the other is the normalization
of features f1/(f1 + f2), we call it C1 score, which is an
approximation of the class posterior probability.

The recorded face video shows that subject 3 is awake
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Fig. 4. The performance of subject 3 during an 86-min length driving simulation experiment. X-axis is the time in minute. Nine face video snippets are
presented in the top, whose times are corresponding to the x-position of the numbers below them. The classification results are given in the WAKE and
SLEEP rows; each plus sign means a 5 sec. time. The weighted mean of feature f1 and f2, i.e. f1/(f1 +f2), are showed in the bottom. The 0.5 threshold
line is also drawn.

at the beginning 10mins (according to snippet 1 in Fig. 4)
and the last 3mins (snippet 9), is drowsy from 10mins to
45mins (snippet 2-5) and fall asleep from 45mins to 83mins
(snippet 6-8). The training data for wake we choose is the
first 10mins, and the time segment from 45mins to 55mins
for sleep. From Fig. 4, notice that two wake segments at the
beginning and end are classified correctly, and a temporary
arousal around 30mins is also recognized. During the drowsy
segment (from 10mins to 45 mins), the classification results
are fluctuating to some extent. Further, the C1 score shows
a continuous variety with the time, especially it declines
smoothly as the sleep deepens (from 50mins to 80mins).

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an EEG signal clas-
sification method for distinguishing wake and sleep states
on driving simulation experiment, which using probabilistic
principle component analysis to reduce the dimension and
then using probabilistic principle component analysis again
for each state to get the posterior probability feature. Our
method gives over 96% average accuracy with 5s time res-
olution for five subjects on three different frequency bands,
which are β (19-26 Hz), γ (38-42 Hz), and broad band (8-30
Hz), respectively. The accuracy is still acceptable even with
1s time resolution.

Our method can be used as a real time classifier directly.
After training using about 20 minutes length data, it can
output high accuracy for high time resolution (less than
5s). From Fig. 4, the C1 score varies continuously with the
time in a certain extent continuous, we are seeking real-time
continuous vigilance estimation method.
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