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The image Euclidean distance (IMED) considers the spatial relationship between the pixels of different
images and can easily be embedded in existing image recognition algorithms that are based on Euclidean
distance. IMED uses the prior knowledge that pixels located near one another have little variance in
gray scale values, and defines a metric matrix according to the spatial distance between pixels. In this
paper, we propose an adaptive image Euclidean distance (AIMED), which considers not only the prior
spatial knowledge, but also the prior gray level knowledge from images. The most important advantage
of the proposed AIMED over IMED is that AIMED makes the metric matrix adaptive to the content of the
concerned images. Two ways of using gray level information are proposed. One is based on gray level dis-
tances, and the other is based on cosine dissimilarity of gray levels. Experiments on two facial databases
and a handwritten digital database show that AIMED achieves the highest classification accuracy when it
is embedded in nearest neighbor classifiers, principal component analysis, and support vector machines.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Measuring the distance or similarity between images is a funda-
mental and open problem in both psychology and computer vision.
Some psychologists suggest that we human beings judge image sim-
ilarity in a nonmetric way [1], while some believe that occurs in a
manifold way [2]. As in the field of computer vision, the most com-
monly used distance is Euclidean distance, which converts images
into vectors according to gray levels of each pixel, and then compares
intensity differences pixel by pixel. Since Euclidean distance discards
image structures, it cannot properly represent the real distance be-
tween images. If a small variation occurs in similar images, a large
Euclidean distance between the images could arise. To overcome
this shortcoming of Euclidean distance, various image distances
have been proposed in recent years, including histogram cosine dis-
tance [3], fractional distance [4], tangent distance [5], Hausdorff dis-
tance [6–8], fuzzy feature contrast [9], part-based methods [10,11],
Isomap [12], and local linear embedding (LLE) [13]. Among these
image distances, Isomap and LLE measure the distance in a manifold
way, while others are nonmetric as they do not satisfy all the metric
axioms, i.e., self-similarity, symmetry, and the triangle inequality.

On the other hand, applying statistical pattern recognition tech-
niques to computer vision has resulted in significant advancements
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in recent decades, such as the use of principal component analy-
sis (PCA) and support vector machines (SVMs). Since these tech-
niques are mainly based on the Hilbert space, Euclidean distance
has become the most widely used similarity measure. Embedding
other image distances into existing pattern classifiers, except for the
nearest neighbor classifier, is hard to implement since these image
distances are nonmetric. To benefit from the rapid development of
pattern recognition techniques, Wang and colleagues [14] have pro-
posed an image Euclidean distance (IMED), which takes the spatial
relationship of image pixels into account and is robust to both noise
and small deformation [15–20]. Moreover, the task of calculating the
IMED of images has been proven to be equivalent to two steps. The
first step is to perform a linear transformation on original images,
and the second step is to calculate the traditional Euclidean distance
between the transformed images. Therefore, IMED can be easily em-
bedded in many existing pattern classifiers such as PCA and SVMs.

IMED uses the prior knowledge that pixels located near one an-
other have little variance in gray levels, and determines the re-
lationship between pixels only according to the distance between
pixels on the image lattice. In many applications, however, we are
only interested in images in some categories, such as face images or
handwritten digital images. Therefore, more prior knowledge can be
obtained from these images to determine the relationship between
pixels. In this paper, we propose an adaptive image Euclidean dis-
tance (AIMED), which makes the image metric adaptive to the con-
tent of images by considering both the spatial relationship and the
gray level relationship between pixels.

The remainder of the paper is organized as follows. In Section 2,
the IMED and how to embed IMED into pattern recognition
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algorithms are briefly introduced, and the relationship between
IMED and manifold distances is also discussed. In Section 3, an
AIMED is proposed, and two ways to combine the gray level infor-
mation are introduced. Section 4 presents the experimental results
based on face images and handwritten digit images. Conclusions are
given in Section 5.

2. Image Euclidean distance

2.1. Definition

An image with fixed size M × N can be written as a vector
x = {x1, x2, . . . xMN} according to gray levels of each pixel. The tradi-
tional Euclidean distance dE(x1, x2) between vectorized images x1
and x2 is defined as

d2E(x1, x2) =
MN∑
k=1

(xk1 − xk2)
2 = (x1 − x2)

T(x1 − x2) (1)

For traditional Euclidean distance, the assumption that different di-
mensions xi and xj are perpendicular is made, and the relationship
between pixels is discarded. As a result, Euclidean distance cannot
reflect the real distance between images. On the other hand, the
IMED takes the angles between different dimensions into account
by introducing the metric matrix G. The IMED d2IE(x1, x2) between
images x1 and x2 is defined as

d2IE(x1, x2) =
MN∑
i=1

MN∑
j=1

gij(x
i
1 − xi2)(x

j
1 − xj2) = (x1 − x2)

TG(x1 − x2) (2)

where the symmetric and positive definite matrix G is referred to
as metric matrix, and gij is the metric coefficient indicating the spa-
tial relationship between pixels pi and pj. The definition of gij is
given by

gij = f (dsij) = 1
2��2

exp

⎛
⎝−

(dsij)
2

2�2

⎞
⎠ (3)

Fig. 1. Similar and dissimilar images. Here, the gray levels of images (a)–(c) become darker from upper row to lower row, while the gray levels of image (d) change in the
opposite direction.

Fig. 2. Masks formed by different image metrics at different locations: (a) IMED, (b) IMED, (c) AIMED-D, and (d) AIMED-D. Here the location of each mask is indicated by a
small circle.

where dsij is the spatial distance between pi and pj on the image

lattice, and � is the width parameter. For example, if pi is at location
(k, l) and pj is at location (k′, l′), then dsij is

dsij =
√
(k − k′)2 + (l − l′)2 (4)

Since IMED considers the spatial relationship between pixels,
it is relatively insensitive to small spatial deformation. For exam-
ple, two images as shown in Figs. 1(a) and (b) are different, but
the image in Fig. 1(c) is slightly deformed from that in Fig. 1(a).
Computing the Euclidean distances between these images, we have
dE(a, b) = 5.63 and dE(a, c) = 6.31. While computing IMED, we have
dIE(a, b) = 3.91 and dIE(a, c) = 2.15. By examining Figs. 1(a)–(c), we
can see that IMEDs are more reasonable than Euclidean distances
are, because dIE(a, c) is less than dIE(a, b), while dE(a, c) is larger
than dE(a, b).

2.2. Standardizing transformation

In comparison to other image distances, one prominent charac-
teristic of IMED is that it can be easily embedded into almost all of
the existing pattern classifiers. By applying the standardizing trans-
formation G1/2 [14] to the original images x1 and x2, we have

u1 = G1/2x1 and u2 = G1/2x2 (5)

Thus, the task of calculating IMED between images x1 and x2 can
be converted to the calculation of the traditional Euclidean distance
between u1 and u2 as follows:

d2IE(x1, x2) = (x1 − x2)
TG(x1 − x2)

= (x1 − x2)
TG1/2G1/2(x1 − x2)

= (u1 − u2)
T(u1 − u2) (6)

Following Eq. (6), embedding IMED in a classifier is to simply per-
form the standardizing transformation to images before feeding
them to the classification algorithm. Moreover, most elements in
G1/2 are nearly zero, and the transformation of G1/2 can be viewed as
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a two-dimensional convolution with a small mask. Figs. 2(a) and (b)
show the masks at different locations for the digital images shown
in Fig. 1. Since gij is only correlated with the spatial distance dsij, the

masks are the same at different locations, and the values in the mask
are invariant with directions.

2.3. Relationship with manifold ways of image distance

In this subsection, we provide further insights into IMED from
the Riemannian geometry [21,22] perspective and discuss the rela-
tionship between IMED and manifold distances. Seung and Lee [2]
have proposed that images can be considered to be low dimen-
sional manifolds in a high dimensional image space. To measure the
distance between two vectors in a manifold, Riemannian geometry
is normally used. According to Riemannian geometry, the distance
between vector w and vector w + dw in an M dimension space is
defined as

d2R(w,w + dw) =
M∑
i=1

M∑
j=1

dwidwjgij(w) = dwTG(w)dw (7)

where G(w) is a positive definite matrix and is called the Riemann
metric tensor.

For the data distribution of real world images, G(w) changes with
w, and can be estimated by the nearest neighbors around w, such
as the implementation of LLE [13]. But estimating G(w) is time con-
suming, and also demands that the distribution of training samples
should be dense enough. Another open problem with unfixed G(w)
is that the corresponding distance can only be embedded in a near-
est neighbor classifier in most cases, and it is hard to be applied to
other pattern classifiers such as SVMs.

On the other hand, Eq. (7) can be reduced to Eq. (2), providing
that G(w) is independent of w. Thus, the task of calculating the dis-
tance between two vectors in Riemann space can be carried out by
using Eq. (6), which is rather straightforward. Since G(w) is vector
invariant, IMED may not reflect the real data distribution in the im-
age space. IMED can thus be viewed as a tradeoff between precision
and computation.

3. Adaptive image Euclidean distance

IMED uses the prior knowledge that pixels located near one an-
other have little variance in gray scale values, and defines the metric
matrix G according to the spatial distance between pixels. However,
in many applications, only those images from certain categories are
of interest, such as the facial images in face recognition problems.
These images comprise several objects. For example, a face image of-
ten includes eyes, nose, mouth, and so on. The pixels located on the
same object may have a closer relationship than that of pixels located
on different objects, even though the former have larger spatial dis-
tances than do the latter. Therefore, more prior knowledge should
be used to define the metric matrix G to adapt to the content of im-
ages. From the view of Riemannian geometry, the images concerned
constitute a specific manifold in image space. To express the mani-
fold more precisely and to maintain the easily embedded ability of
IMED, different vector invariant metric matrices should be used ac-
cording to different manifolds. In this paper, we propose an AIMED,
which is adaptable to the content of the images of interest by consid-
ering the relationship between pixels according to both the spatial
information and the gray level information. Two methods for com-
bining the gray level information are considered in this paper. One
is based on the distance of gray levels between pixels (AIMED-D),
and the other is based on the cosine dissimilarity of gray levels be-
tween pixels (AIMED-C).

3.1. AIMED-D

Let T be the given set of images

T = {xl}Ll=1 (8)

where xl ∈ RMN is the l th image, and L is the total number of
images. Let TS be the set of images after performing the standardizing
transformation:

TS = {ul}Ll=1 = {G1/2xl}Ll=1 (9)

To define the gray level distance between different pixels on the
given set T, we vectorize the gray level of each image on the pixel
pi as follows:

qi = [xi1, x
i
2, . . . , x

i
l , . . . , x

i
L] (10)

where xil is the gray level value of the l th image on the i th pixel.
Then the gray level distance of two pixels pi and pj on the set T can
be defined as the distance of vectors qi and qj as follows:

dgij =
√
(qi − qj)

T(qi − qj) =

√√√√√
L∑

l=1

(xil − xjl)
2 (11)

By using Eq. (11), we can calculate the gray level distance between
pixels based on the original images. However, this gray level distance
is sensitive to noise and small spatial deformation. To overcome this
deficiency, we redefine the gray level distance between pixels based
on the standardizing transformed image set TS in Eq. (9) as follows:

dgij =

√∑L
l=1 (u

i
l − ujl)

2

L
(12)

where uil is the gray level value on the i th pixel of the l th standard-
izing transformed image.

Following Eq. (3), we define the matrix coefficient gdij which

represents the gray level relationship between pixels pi and pj as
follows:

gdij = 1
2��2

exp

⎛
⎝−

�(dgij)
2

2�2

⎞
⎠ (13)

where � is a coefficient that makes the contribution of gray scale dis-
tance comparable with that of spatial distance. Since a small distance
means a close relationship, we can choose � to make the number of
small values in dgij comparable with that in dsij.

According to the discussions mentioned above, the definition of
AIMED-D between images x1 and x2 can be expressed as

d2D(x1, x2)=(u1−u2)
TGD(u1−u2)=

MN∑
i=1

MN∑
j=1

gdij(u
i
1−ui2)(u

j
1−uj2) (14)

where u1 and u2 are the images after the standardizing transfor-
mation of x1 and x2, respectively. Comparing Eq. (14) with Eq. (2),
we can see that AIMED-D considers not only the spatial relationship
between pixels, but also the gray level relationship between pixels.
Considering gray level information makes AIMED-D adaptive to the
content of the concerned images.

Aside from considering the relationship between pixels, another
prominent characteristic of IMED is that it can be easily embedded
in existing pattern recognition algorithms by using the standardiz-
ing transformation. In the following, we will show that introducing
the gray level information will not influence the embeddability of
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AIMED-D. Since dgij satisfies the metric axioms, matrix GD is sym-

metric and positive definite [14], and can be decomposed as

GD = G1/2
D G1/2

D (15)

Applying the transformation G1/2
D G1/2 to the images x1 and x2, we

have

v1 = G1/2
D u1 = G1/2

D G1/2x1

and

v2 = G1/2
D u2 = G1/2

D G1/2x2 (16)

As a result, the AIMED-D between x1 and x2 can be reduced to the
following traditional Euclidean distance between v1 and v2,

d2D(x1, x2) = (u1 − u2)
TGD(u1 − u2)

= (u1 − u2)
TG1/2

D G1/2
D (u1 − u2)

= (x1 − x2)
TG1/2G1/2

D G1/2
D G1/2(x1 − x2)

= (v1 − v2)
T(v1 − v2) (17)

Similar to IMED, we can reshape the values in the transformation

G1/2
D G1/2 to the original image size. Figs. 2(c) and (d) show the two

masks in AIMED-D for the digital images in Fig. 1. From Fig. 2, we
can see that in IMED, the masks are the same at different locations,
and the values in the masks are invariant with direction. They can-
not reflect any information about the content of the images, while in
AIMED-D, the masks are adaptive to the shape of digital numbers at
different locations. Therefore, the masks in IMED smooth the images
with a side effect of introducing the influence of the background,
while the masks in AIMED-D smooth the gray level differences be-
tween pixels only on the same object. Here, we must point out that
since the mask in AIMED-D is position-dependent, the transforma-

tion of G1/2
D G1/2 cannot be viewed as a two-dimensional convolution.

One may wonder that AIMED-D cannot take the advantage of being
computable by the fast Fourier transform (FFT). In actuality, since
the mask size is very small in IMED, the computation implemented
directly can be very fast, and there is no need to use the FFT.

Since AIMED-D considers both spatial and gray level relationships
between pixels, it is relatively insensitive to both small deforma-
tion and gray level deformation. For example, the images shown in
Figs. 1(a) and (d) have the same shape but different changes in gray
levels, and the images of Figs. 1(a) and (b) have different shapes but
the same change in gray levels. Computing the Euclidean distances
yields dE(a, b)= 5.63 and dE(a,d)= 9.32. Computing the IMED yields
dIE(a, b)= 3.91 and dIE(a,d)= 6.39. Both Euclidean and IMED cannot
lead to satisfactory results. On the contrary, calculating the AIMED-D
yields dD(a, b) = 19.27 and dD(a,d) = 12.27. Obviously, AIMED-D is
vastly superior to both Euclidean distance and IMED in expressing
similarities between images.

3.2. AIMED-C

In the preceding subsection, we defined the relationship between
two pixels as the function based on the combination of spatial dis-
tance and gray level distance. In this subsection, we consider the
relationship between two pixels based on the cosine dissimilarity of
gray levels and combine it with spatial distance.

The cosine dissimilarity of two pixels pi and pj on a given image
set described in Eq. (8) can be defined as

cij = 1 −
qTi qj

‖qi‖‖qj‖
= 1 −

∑L
l=1 (x

i
lx
j
l)√∑L

l=1 (x
i
l)
2
√∑L

l=1 (x
j
l)
2

(18)

where qi and qj are defined by Eq. (10). To eliminate the influence
from noise and small spatial deformation, we redefine cij based on
the standardizing transformed images as follows:

cij = 1 −
∑L

l=1 (u
i
lu

j
l)√∑L

l=1 (u
i
l)
2
√∑L

l=1 (u
j
l)
2

(19)

where uil is the gray level value on the i th pixel of the l th standard-
izing transformed image.

Following Eq. (14), the AIMED-C between images x1 and x2 can
be expressed as

d2C(x1, x2)=(u1−u2)
TGC(u1−u2)=

MN∑
i=1

MN∑
j=1

gcij(u
i
1−ui2)(u

j
1−uj2) (20)

where u1 and u2 are the images after the standardizing transforma-
tion of x1 and x2, respectively, and gcij is defined as

gcij = 1
2��2

exp
(

−
�cij
2�2

)
(21)

For images with positive gray values, GC is symmetric and positive
definite. Therefore, GC can be decomposed as

GC = G1/2
C G1/2

C (22)

Similarly, we can apply the transformation G1/2
C G1/2 to images x1

and x2, and reduce the AIMED-C between original images to the
traditional Euclidean distance between the transformed images.

The AIMED-Cs for the images shown in Fig. 1 are calculated as
dC(a, b) = 32.29, dC(a, c) = 4.80, and dC(a,d) = 18.50. Examining the
images in Fig. 1, we can see that AIMED-Cs are more reasonable than
both IMEDs and Euclidean distances.

Finally, we want to discuss the relationship between IMED,
AIMED, and the pre-whitening method. Although they all decorre-
late the relationship between pixels, they are completely different.
The distance between vectors after pre-whitening can be viewed
as a special case of the Mahalanobis distance. Wang and colleagues
have revealed that the Mahalanobis distance is even more sensitive
to small deformation than the traditional Euclidean distance is, and
it has a completely opposite behavior as dose IMED [14].

Moreover, there are more restrictions on pre-whitening. For some
applications where the number of vectors is fewer than the dimen-
sion of vectors, the covariance matrix is not positive definite, there-
fore the vectors cannot be pre-whitened. For example, the image size
of the images shown in Fig. 1 is 28×28, which means the dimension
of the corresponding vectors is 784. Since there are only four im-
ages, they cannot be pre-whitened. But the calculation of the IMED,
AIMED-D, and AIMED-C between these images is not influenced by
the number of images.

4. Experiments

In order to evaluate our proposed AIMED, we have conducted
experiments on two kinds of images. One is the facial images from
the CAS-PEAL-R1 face database [23] and the UMIST face database
[24], and the other is the handwritten digital images from the MNIST
database [25].

In the experiments, GD and GC were calculated according to all
the training data in each data set. The parameter � in Eq. (3) affects
the spatial correlation among image pixels [16]. A small value of �
means considering little correlation among pixels, and makes the
performance of IMED very close to that of the Euclidean distance,
while a large value of � means considering too much correlation
among pixels, which would blur the images. Therefore, � should be
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chosen according to cross-validation on the training data set. In our
experiments, � was chosen from the set [0.1, 0.25, 0.5, 1, 1.5, 2, 2.5].
The parameter � in Eqs. (13) and (21) should be chosen to make the
contributions of considering pixel relationships based on gray level
and space comparable, and it was chosen to be from 26 to 215 in our
experiments based on cross-validation on the training data set.

4.1. Gender classification

The CAS-PEAL-R1 face database [23] currently contains 21,832
images of 1040 individuals (595 males and 445 females) in the `pose'
subdirectory. The training and test data sets are collected according
to the same rule in Ref. [20]. For this series, 5460 images of 260
individuals whose ID numbers could be evenly divided by four are
used as the test data sets, while the remaining 16,372 images of
780 individuals are used as the training data sets. The images of the
individuals whose ID numbers are less than 800 in the training data
sets are divided into three groups according to poses: looking left
(looking left from 22◦ to 90◦), looking straight ahead (from looking
left at 22◦ to looking right as 22◦), and looking right (looking right
from 22◦ to 90◦). The images of the remaining individuals in the

Table 1
Number of images in each data set in the CAS-PEAL-R1 face database

No. Pose Male Female Training Test

1 Left 3039 2422 3826 1635
2 Mid 3729 3402 4941 2190
3 Right 3039 2422 3826 1635
4 All 5732 3507 3779 5460

Fig. 3. Masks generated by three different methods at different locations. Here, the first row shows the location of each mask with the mark `+', and the values of G1/2, G1/2
D ,

and G1/2
C are shown in second row, third row, and fourth row, respectively.

training data sets form the fourth training data set. Detailed infor-
mation from each data set is listed in Table 1.

In our experiments, images are scaled according to the eye coor-
dinates and cropped to leave only the face area. Nomasking template
was used because we think that the face outlines are important for
gender classification, while this information will be removed when
using masking template. The final image resolution is 60×48 pixels.

Fig. 3 shows the 7×7 masks produced by three different methods
at different locations, where the masks of AIMED-D and AIMED-C
are calculated from the second training data set, which has the face
pose of looking straight ahead. We can see that the masks in IMED
are the same at different locations, except for pixels that are located
on the image border. These masks are not relevant to the content
of the facial images and do not reflect any information about the
images. While in AIMED-D and AIMED-C, the masks are different at
different locations. Only pixels with near intensities are affected with
one another. Each mask reflects the shape around each pixel. For
example, the mask on the nose is upright; the mask on the mouth
is horizontal, as is the shape of lips; the mask on the cheek is nearly
round; the mask on the face outline has the same direction as the
edge; and the mask on the right eye has almost a single nonzero
value at the center point, since the pixels on the eyes always have
varied intensity.

After using different transforms on the images according to dif-
ferent image distances, two pattern recognition methods were used
to distinguish genders. One was the nearest neighbor classifier, and
the other was SVM with radial basis function, a proven classifier in
gender classification [20,26,27]. In our experiments, LIBSVM [28] was
used for the implementation of SVM, and the parameters in SVMs
were chosen by five-fold cross-validation on the training data sets.
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Fig. 4. Classification accuracies with different image metrics: (a) nearest neighbor
classifiers and (b) support vector machines.

Table 2
Results of SVMs with different image metrics

No. Euclidean IMED AIMED-D AIMED-C

nSV Time nSV Time nSV Time nSV Time

1 2418 284 97 1946 330 79 1230 215 51 1218 163 50
2 3130 688 127 2500 557 102 1207 293 50 1746 261 72
3 2185 253 92 1764 307 73 1145 144 48 1135 140 47
4 2304 385 93 1864 301 78 1452 164 59 1172 143 51

Here, `nSV' denotes the number of support vectors, the left column in `Time' denotes
the training time (the unit is s), and the right column denotes the test time of each
sample (the unit is ms).

The experiments were performed on a 2.8GHz Pentium 4 PC with
1GB RAM. The classification results of the two methods are shown
in Fig. 4. The number of support vectors and the training time of
SVMs are presented in Table 2, where the bold values indicate the
least number of support vectors and the shortest training time.

Sine in AIMED-C, the cosine similarity is used to calculate matrix
GC , experiments using cosine similarity between the images and
the cosine similarity between their IMED standardized transforms
have been performed for comparison. Since the cosine similarity
cannot satisfy the triangle inequality, it is nonmetric, and cannot
be embedded in SVMs directly. Therefore, we only show the results
obtained using nearest neighbor classifiers with the cosine similarity
measure.

From Fig. 4, we can see that IMED performs better than tradi-
tional Euclidean distance, AIMED-D performs better than IMED, and
AIMED-C achieves the best performance whether embedded in near-
est neighbor classifiers or SVMs. When nearest neighbor classifiers
are used, the average accuracies of AIMED-D and AIMED-C increase
by 0.95% and 1.37%, respectively, compared to those of traditional
Euclidean distance and by 0.18% and 0.60%, respectively, compared
to those of IMED. When SVMs are used, the average accuracies of
AIMED-D and AIMED-C increase by 0.72% and 0.98%, respectively,
compared to those of traditional Euclidean distance and by 0.29%
and 0.55%, respectively, compared to those of IMED. Compared to
cosine dissimilarity and cosine dissimilarity on the IMED standard-
ized transforms, AIMED-D outperforms these metrics by 0.95% and
0.25%, respectively, and AIMED-C outperforms them by 1.37% and
0.67%, respectively.

From Table 2, we can see that the proposed AIMEDs can reduce
the number of support vectors substantially. AIMED-C uses only 53%
and 65% support vectors in comparison with traditional Euclidean
distance and IMED, respectively. We attribute this sharp decrease
in the number of support vectors to the fact that AIMED reflects
the data distribution more accurately than traditional Euclidean dis-
tance dose. Traditional Euclidean distance is sensitive to noise and
small deformation. The images that are similar to one another may
exhibit sparse distribution in a Euclidean space, most of which must
be treated as support vectors to guarantee satisfactory classification
accuracy. On the contrary, these images are gathered together in the
AIMED space, and only representative images need to be treated as
support vectors. Therefore, the number of support vectors can be
greatly reduced. In addition, fewer support vectors can save hard-
ware memory requirements and speed up the training and recog-
nition processes. As listed in Table 2, the training time and the test
time with AIMED-C are only 47% and 54% of those of the Euclidean
distance method, respectively.

4.2. Face recognition

In this experiment, we used the UMIST face database [24], which
is a multi-view database consisting of 575 gray-scale images of 20
subjects. Each of the subjects covers a wide range of poses from pro-
file to frontal views as well as a variety of races, genders, and ap-
pearances. In our experiment, all the images were scaled to the size
of 56 × 46 pixels. A total of 10 images per person were randomly
chosen as the training data set, and the remaining 375 images were
used to form the test set. PCA [29] based on different distance def-
initions was used as the dimension reduction method. The cosine
dissimilarity was not considered since it cannot be embedded in the
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Fig. 5. Classification accuracies under different numbers of principal components in
the UMIST database.
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Fig. 6. Classification accuracies at different sampling ratios on the UMIST database: (a) AIMED-D and (b) AIMED-C.

PCA. After the dimension reduction, the nearest neighbor classifier
was used to recognize faces. We repeated the experiments 10 times
by randomly dividing the training and test data set, and the average
classification accuracies under different numbers of principal com-
ponents are depicted in Fig. 5.

From this figure, we can see that the two proposed AIMED
methods always outperform both the traditional Euclidean dis-
tance and IMED under different numbers of principal components.
The average accuracy improvement for AIMED-D with respect to
Euclidean distance and IMED is, respectively, 1.28% and 0.66%, and
for AIMED-C, these values are 2.04% and 1.42%, respectively. Even
when the number of principal components is as few as 10, the
classification accuracy of AIMED-C can still be as high as 94.08%,
which is better than the highest classification accuracy of Euclidean
distance. In addition, the standard derivations of classification ac-
curacy for AIMED-C, AIMED-D, IMED, and Euclidean distance are
0.59%, 0.90%, 1.01%, and 1.09%, respectively. This indicates that
AIMED-C has the most stable performance among the four distance
metrics.

The matrices GD and GC were calculated on all the training data
in the preceding experiments. We have also carried out experiments
using parts of training data to estimate GD and GC . The nearest neigh-
bor algorithm was used as the classifier to recognize faces in this ex-
periment. We carried out experiments at the sample ratio from 10%
to 100%. At each sample ratio, images were randomly chosen from
the training data set 10 times, and GD and GC were calculated on the
selected images for each time. The mean classification accuracies at
different sample ratios are shown in Fig. 6. The best and the worst
performances at different sample ratios are also shown in this figure.
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Fig. 7. Standard deviation of the accuracies at different sampling ratios on the UMIST
database.

The results of using traditional Euclidean distance and IMED are also
shown as the baseline. Since the nearest neighbor classifier was used
in the experiments, we also show the results of cosine dissimilar-
ity and cosine dissimilarity between the IMED standard transformed
images for comparison. We can see that the proposed AIMEDs out-
perform all the other distances, even though only a small portion of
the training data is used to estimate the matrices GD and GC .

We also find that the performance of the AIMED is very robust.
The best and the worst performances at each sample ratio are very
close to each other. We calculated the standard deviation of the
classification accuracies at each sampling ratio, which is shown in
Fig. 7. We can see that the deviations are very small. The highest
values of AIMED-D and AIMED-C are 0.0029 and 0.0033, respectively.
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Fig. 8. Masks generated by different distance metrics at different locations. The first
row: masks at the location of the upper left corner; the second row: masks at the
location of the center. The values of G1/2, G1/2

D , and G1/2
C are shown from left to right

in each row, respectively.

On the whole, the standard deviation decreases with the increasing
of sample ratio.

From Figs. 4(a) and 6, we find that the cosine dissimilarity
achieves comparable performance with Euclidean distance. We
think the reason is that cosine dissimilarity calculates the angle be-
tween vectors just in the same space as Euclidean distance. While
AIMED-C decorrelates the relationship between pixels, it computes
the distance between images in a different space from that of
Euclidean distance.

4.3. Handwritten digital recognition

To further evaluate the proposed distance metrics, the handwrit-
ten digital images from the MNIST [25] database were used in our
experiments. This database contains a training set of 60,000 images,
with a test set of 10,000 images. In this experiment, we used the
nearest neighbor classifier and SVMs with radial basis functions to
recognize digits with different distance metrics. The values of G1/2,

G1/2
D , and G1/2

C at different locations are shown in Fig. 8. From this

figure, we can see that G1/2
D and G1/2

C at the upper left corner reflect
the background of digits. The large difference between pixels located
on the background is apportioned to some smaller differences on
the background by the mask, and the distance will be decreased. On
the other hand, digital images of different numbers are highly dis-

tinct, therefore G1/2
D and G1/2

C at the center point almost have a single
nonzero value.

The classification results with different image distance metrics on
this database are shown in Fig. 9. From this figure, we can see that
AIMED-D achieves comparable performance to IMED, and AIMED-C
achieves better performance than IMED and Euclidean distance, both
embedded in nearest neighbor classifier and in SVMs. There is almost
no gray level deformation in this database since the gray level values
of the images are almost `0' or `255'. Therefore, the effect of AIMED
in handwritten images is less pronounced than that in face images.

The classification results of using the L3 distance and tangent
distance [5] are also shown in Fig. 9 for comparison. The tangent
distance was developed specifically for handwritten digit recogni-
tion, and has achieved the best performance among image similar-
ity measures on this database [25]. From Fig. 9, we can see that the
AIMED with nearest neighbor classifiers performs better than the
L3 distance, but cannot perform as well as tangent distance. How-
ever, AIMED can be easily embedded in other pattern recognition
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Fig. 9. Error rates with different image distance metrics on the MNIST database.

algorithms, and benefit from the high classification accuracies of
these algorithms. In this experiment, the performance of AIMED-C
with SVMs is very close to that of tangent distance, which is the best
performer of image similarity measures in this database.

5. Conclusions

With the characteristic of considering spatial relationship be-
tween pixels and the ability of being easy embedded in existing
pattern recognition algorithms, IMED is a preferred distance measur-
ing method for images. Based on IMED, we have proposed AIMED,
which considers not only the spatial relationship between pixels,
but also the gray level relationship between pixels. Our proposed
AIMED makes the metric matrix adaptable to the content of the
images and can reflect the shapes of the images. The experimental
results on embedding AIMED into nearest neighbor classifiers, prin-
cipal component analysis (PCA), and support vectormachines (SVMs)
demonstrate that the proposed AIMED achieves higher classification
accuracy than both traditional Euclidean distance and the original
IMED. Moreover, the proposed AIMED can gather similar images and
reduce the number of support vectors when it is embedded in SVMs,
and the performance of AIMED is more stable than that of the tra-
ditional Euclidean distance and IMED when it is embedded in PCA.
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