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The number of samples that are available on the internet to train pattern
classifiers is increasing rapidly, while traditional pattern classification
techniques based on a single computer system are powerless to process
these large-scale data sets. This chapter presents a parallel and modu-
lar pattern classification framework for coping with large-scale pattern
classification problems. The proposed framework follows a divide-and-
conquer strategy that easily assigns a given large-scale problem to an
available parallel and distributed computing infrastructure. The frame-
work consists of three independent parts: decomposing training data sets,
training component classifiers in a parallel way, and combining trained
component classifiers. In order to evaluate the performance of the pro-
posed framework, we perform experiments on a large-scale Japanese
patent classification problem, containing about 3,500,000 patent docu-
ments. The experimental results show that our framework has the follow-
ing attractive features: (a) The framework is general, and therefore any
traditional pattern classification techniques such as support vector ma-
chines can be easily embedded in the framework as component classifiers.
(b) The framework can incorporate explicit domain or prior knowledge
into learning through the process of dividing training data sets. (c) The
framework has good scalability and is easily implementable in hardware.

1 Introduction

More and more large-scale classification problems appear in the field of machine
learning and pattern recognition. By large-scale we mean that the training set is
extremely large, typically to such an extent that traditional classifiers cannot fin-
ish the learning task within a bearable time. For example, recently, the training
of support vector machines (SVMs) on large real-world data sets is reported to
take several weeks. With the emergence of these large-scale classification prob-
lems, the efficiency of classifiers, besides accuracy, has become a subject of great
focus.



A large-scale classification problem has huge time and memory costs. The
ultimate solution to reducing time and memory costs is parallelism, that is,
splitting one large-scale classification task among several CPUs, by which the
system can meet an expected efficiency requirement. Unfortunately, most tra-
ditional classifiers are sequential in spirit, so we have to expend great efforts
in parallelizing them. Recently, several parallel implementations of SVMs have
been released [8, 4, 14, 34, 26, 13]. There are also parallel implementations of other
classifiers, such as k-NN [3].

A very useful technology for these large-scale classification problems is en-
semble learning. It employs a group of classifiers for a classification task, instead
of one single classifier. Ensemble learning aims to achieve high accuracy, and
it shows great efficiency in large-scale problems. Some of the ensemble learning
methods require the sub-classifiers to be trained sequentially, while the others
allow parallel training sub-classifiers. For methods such as Adaboost, the train-
ing set of a sub-classifier relies on feedback from previous trained sub-classifiers,
and thus parallel learning is infeasible. As for other parallel ensemble learning
methods, they are ideal solutions for large-scale tasks.

In this chapter, we introduce a parallel and modular pattern classification
framework, named min-max modular network (M3-network) [20, 21, 24]. This
framework is a kind of a parallel ensemble learning method. First we train com-
ponent classifiers on the subsets of the original data set. Then we make these
component classifiers produce predictions on the arriving test sample. In the end
we integrate all the predictions by two module combination rules, namely the
minimization principle and the maximization principle.

To solve a large-scale multi-class classification problem, the M3-network con-
sists of three main steps: (a) Decompose the original multi-class problem into
two-class problems and further divide the two-class problems which are difficult
to be learned into a series of relatively smaller and balanced two-class subprob-
lems. (b) Train all the two-class subproblems in parallel. (c) Combine all the
trained component classifiers into a hierarchical, parallel, and modular network
that serves as the solution to the original problem.

Many studies prove that M3-network is an efficient classifier, especially in
solving large-scale and complex pattern classification problems [22, 10, 32, 19,
5, 6]. M3-netowrk has the following three advantages over traditional pattern
classification approaches: (a) A large-scale and complex multi-class problem can
be decomposed to two-class subproblems as small as the user expects. (b) The
two-class subproblems are independent to each other, therefore, they can be
solved in parallel without the trouble of communication. (c) The two module
combination principles are simple, which are easily implementable in software
and hardware.

2 Min-Max Modular Network

Lu and Ito proposed the Min-Max Modular Network (M3-network for short) in
order to solve hard classification problems in 1997 [20, 21]. M3-network is a sort



of ensemble learning methods that employs a group of classifiers for one classi-
fication problem. The M3-network follows the principle of divide and conquer,
dividing the whole problem into small pieces and solving them one by one, and
adopts a 3-step work flow: task decomposition, training component classifiers
and module combination (see Figure 1).

Fig. 1. Working Flow of the M3-network

Before formally describing the M3-network, we would like to present an illus-
tration (Figure 2) [25]. Suppose that subfigure (a) is the two-class classification
problem that needs to be solved, where small red disks represent positive sam-
ples and small blue rectangles represent negative ones. Though simple at first
sight, it’s actually a non-linearly separable problem. To demonstrate M3-network
learning, we divide samples of each class into two subsets, surrounded by dashed
lines in subfigure (a). According to this partition of the training data set, we
generate four smaller classification subproblems shown in subfigures (b) to (e).
Then we train classifiers on these subproblems, where dashed lines represent
the discriminant surfaces. After that we derive separately subfigures (f) and (g)
from subfigures (b) through (e) with the minimization operator, resulting in
negative zone expanding. Finally, we derive subfigure (h) from subfigures (f)
and (g) with the maximization operator, resulting in positive zone expanding.
From subfigure (h), it is obvious that we find the correct discriminant plane to
the classification problem.

2.1 Task Decomposition

Let T denote the training data set for a K-class classification problem,

T = {(Xi, Yi)}
L
i=1 (1)



Fig. 2. Illustration of the M3-network learning

where Xi ∈ Rd is the training input, Yi ∈ RK is the corresponding desired
output, and L is the total number of training samples.

At the beginning of the task decomposition process, a large-scale K-class
classification problem is divided into a series of relatively smaller two-class sub-
problems by using a one-versus-one or one-versus-rest task decomposition strat-
egy. Suppose a K-class classification problem is decomposed by a one-versus-one
strategy into the following K(K − 1)/2 two-class subproblems:

Tij = {(X i
l , +1)}Li

l=1 ∪ {(Xj
l , −1)}

Lj

l=1 (2)

for i = 1, · · · , K and j = i + 1, · · · , K

where X i
l ∈ Xi and Xj

l ∈ Xj are the training inputs belonging to class Ci and
class Cj, respectively; Xi is the set of training inputs belonging to class Ci; Li

denotes the number of data in Xi; ∪K
i=1Xi = X ; and

∑K

i=1 Li = L. In this
chapter, the training data in a two-class problem are called positive training
data if their desired outputs are +1, and they are called negative training data
if their desired outputs are −1.

Even though the two-class problems defined by Eq. (2) are smaller than
the original K-class problem, this partition may be not adequate for parallel
learning. Since the number of samples in each class varies largely, the sizes of
these two-class problems can be quite different. Thus the training period can
be delayed by some larger two-class problems. A large class and a small class
together form an imbalanced classification problem; there are too many samples
on one side, which increases the difficulty in training classifiers [2]. To speed
up training and to improve classification accuracy, all the large and imbalanced



two-class problems are further divided into smaller and more balanced two-class
problems.

Assume that Xi is partitioned into Ni subsets in the form

Xij = {X ij
l }

L
j

i

l=1 (3)

for j = 1, · · · , Ni and i = 1, · · · , K,

where 1 ≤ Ni ≤ Li and ∪Ni
j=1Xij = Xi.

After partitioning Xi into Ni subsets, every two-class problem Tij defined
by Eq. (2) is further divided into Ni × Nj smaller and more balanced two-class
subproblems:

T
(u, v)

ij = {(X
(iu)
l , +1)}

L
(u)
i

l=1 ∪ {(X
(jv)
l , −1)}

L
(v)
j

l=1 (4)

for u = 1, · · · , Ni, v = 1, · · · , Nj ,

i = 1, · · · , K, and j = i + 1, · · · , K,

where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the training inputs belonging to class Ci

and class Cj , respectively;
∑Ni

u=1 L
(u)
i = Li and

∑Nj

v=1 L
(v)
j = Lj .

2.2 Training Component Classifiers

After task decomposition, all of the two-class subproblems are treated as com-
pletely independent, non-communicating tasks in the learning phase. Therefore,
all the two-class subproblems defined by Eq. (4) are efficiently learned in a mas-
sively parallel way.

From Eqs. (2) and (4), we see that a K-class problem is divided into

K−1∑

i=1

K∑

j=i+1

Ni × Nj (5)

two-class subproblems. The number of training data for each of the two-class
subproblems is approximately

⌈Li/Ni⌉ + ⌈Lj/Nj⌉, (6)

where ⌈z⌉ denotes the smallest integer than or equal to z. Since ⌈Li/Ni⌉ +
⌈Lj/Nj⌉ is independent of the number of classes, K, the size of each two-class
subproblems is much smaller than the original K-class problem for the reasonable
values of Ni and Nj .

Traditional machine learning algorithms and pattern classification approaches
such as multilayer neural networks [21], support vector machines [23] and k-
nearest neighbor algorithm [35], can be used to learn the two-class subproblems
defined by Eq. (4). In this chapter, most commonly used SVMs are selected as
component classifiers and used to learn all of the two-class subproblems.



2.3 Module Combination

After all of the two-class subproblems defined by Eq. (4) have been learned
by SVMs, all the trained SVMs are integrated into a M3-SVM with the Min
and Max units according to the minimization principle and maximization prin-
ciple [23]. The function of the Min unit is to find a minimum value from its
multiple inputs. The transfer function of the Min unit is given by

q(x) =
P

min
i=1

Mi(x) (7)

where x denotes the input variable. The function of the Max unit is to find a
maximum value from its multiple inputs. The transfer function of the Max unit
is given by

q(x) =
P

max
i=1

Mi(x) (8)

Minimization Principle : Suppose a two-class problem B is divided into
P smaller two-class subproblems, Bi for i = 1, · · · , P , and also suppose that
all the two-class subproblems have the same positive training data and different
negative training data. If the P two-class subproblems are correctly learned by
the corresponding P individual SVMs, Mi for i = 1, · · · , P , then the combina-
tion of the P trained SVMs with a Min unit will produce the correct output for
all the training inputs in B.

Maximization Principle: Suppose a two-class problem B is divided into
P smaller two-class subproblems, Bi for i = 1, · · · , P , and also suppose that
all the two-class subproblems have the same negative training data and different
positive training data. If the P two-class subproblems are correctly learned by the
corresponding P individual SVMs, Mi for i = 1, · · · , P , then the combination
of the P trained SVMs with a Max unit will produce the correct output for all
the training input in B.

Note that the module combination strategy based on the minimization and
the maximization principles is called the min-max module combination in this
chapter. Figure 3 illustrates the min-max module combination for a two-class
problem. Here the two-class problem is first decomposed into N1 ×N2 two-class
subproblems. Then each component classifier is trained on the corresponding
two-class subproblem. Finally a M3-network is constructed by combining these
component classifiers. In this case, the M3-network consists of N1 × N2 compo-
nent classifiers, N1 Min units, and one Max unit.

3 Parallel Implementation of M3-network

As a principle, improvement in both the feasibility and the efficiency of paralleliz-
ing in a computation process is inverse to communication among its high-level
parts. The M3-network is highly modular, that is, it has clear modules with al-
most no communication among them, except the final step of combining multiple
results. Therefore, it is natural and efficient to run these modules simultaneously,
that is, to parallelize M3-network.



Fig. 3. Illustration of min-max module combination for a two-class problem.

3.1 Parallel Training of M3-network

The parallel implementation of M3-network is based on its modular structure. In
the training phase, we first distribute subproblems among the computer nodes,
then the nodes train component classifiers independently, and finally we collect
all the trained component classifiers to finish training. In the test phase, we first
distribute component classifiers, namely modules, among computer nodes, then
we send the test samples to nodes and receive predictions from them, and finally
we get the final predictions of the test samples through both minimization and
maximization operations.

Figure 4 illustrates the parallel framework for training M3-network. From the
viewpoint of parallel programming, M3-network falls into the category of pleas-
ant parallel problems, and therefore master-salve framework is recommended for
this category [29].

In the training phase, we need to provide each slave node with samples, which
have long input vectors in large volumes. If we store all of the samples in the
master node and then later send them into the slave nodes together with the
subproblems, the master node will become a bottleneck for data transfer. As
a solution, we distribute the samples into salve nodes that can communicate
with one another through point-to-point communication. Thus, in assigning the
subproblems, the master node only needs to send the slaves nodes the indexes
of the samples, which greatly reduces the communication load.

Figure 5 illustrates the parallel framework of M3-network in test phase. In the
test phase, the operation of either minimization or maximization can be done
with one call to MPI Reduce procedure in MPI programming environment,
which is well designed and works acceptably fast [29].



Fig. 4. The parallel framework for training M3-network.

Fig. 5. The parallel framework of M3-network in test phase.



3.2 Asymmetric and Symmetric Module Selection Strategies

The symmetric module selection strategy is an improved version of the min-max
module combination method, namely asymmetric module selection strategy. This
strategy works exponentially faster. Its main disadvantage is that it must work
on concrete classifiers which output either 0 or 1, instead of continuous confidence
values in the min-max module combination.

Let us review the min-max module combination method, and explain why we
call it the asymmetric module selection strategy. Suppose the outputs of all of the
modules on a test sample are positive 1 or negative 0 ( see Figure 6(a)). Follow-
ing the min-max module combination method, we first perform minimization
operation along each row, then perform maximization operation among the
rows’ results. The final result is 1 in this example. Note that this result is caused
by the fourth row, full of 1’s as its elements. The translation of this process in
feature space is that the test sample input is located within the subset Xi, 4, so

that it shows positive in all the subproblems T
(4, k)

ij (k = 1, 2, . . . , 5). The logical

definition of the min-max module combination for M3-network is:

– If there exists a row of all 1 in module’s prediction matrix, the output is 1;
– Otherwise, the output is 0.

The min-max module combination method has a bias towards the output of 0,
and that is why we call it asymmetric module selection.

The other combination method, the symmetric module selection strategy, is
illustrated in Figure 6(b) [36]. In this method, we start from the top left element.
If the element is 1, we go one step right; otherwise, we go one step down. The
process continues until we go beyound the boundaries of the matrix. If we pass
through the right edge of the matrix, the method outputs 1; otherwise, it outputs
0. The logical definition of this method is:

– If there exists a row of all 1 in module’s prediction matrix, the output is 1;
– If there exists a column of all 0, the output is 0;
– Otherwise, the output can be either 1 or 0.

The third case is rare in solving regular pattern classification problems with
M3-network, and it doesn’t need to be considered [36]. From the viewpoint of
feature space, the first case means that the test sample input is located within
some positive subsets, and the second case for some negative subsets, so this
method make sense. Moreover, this method has no bias towards either 1 or 0,
that is why we call it a symmetric module selection. Indeed, this characteristic
makes it likely to perform better than the asymmetric module selection method.

The symmetric module selection strategy has a great advantage on computa-
tion complexity, compared with the asymmetric one. Suppose the training data
sets for two classes are divided into m and n subsets, respectively. The complex-
ity of the asymmetric module selection is O(mn), and that of symmetric module
selection is O(m + n); so it is clear the symmetric module selection is one order
faster than the asymmetric module selection. Further, the component classifiers



(a) (b)

Fig. 6. Two module selection strategies: (a) asymmetric module selection and (b) sym-
metric module selection.

that are not visited do not need to be actually computed (see Figure 6), that is,
the module combination method determines the complexity of whole test pro-
cess of M3-network. For these two reasons, the new symmetric module selection
method can greatly accelerate the response speed of M3-network, which is our
main purpose.

3.3 Parallel Implementation of Symmetric Module Selection

A kind of communication exists among the modules by symmetric module selec-
tion, that is, whether a module needs to be run depends on the output of some
other modules. Though we can ignore such dependency and run all the modules
with the master-slave framework adopted in Section 3.1, it is not a wise choice.

The parallel pipeline framework shown in Figure 7 fits this context well.
In a pipeline, some nodes do partial processing of data and then forward the
partially processed results to another processing nodes down the pipeline for
further processing [29].

The key issue of applying the pipeline framework is to design the task for
each stage. To implement M3-network in the style of a pipeline, we decompose
the matrix of modules along the reverse diagonals; then take the modules in the
same reverse diagonal as one stage, and number them from 1 to n + m + 1, the
same as the distance to the top-left cell (see the nine dotted lines in Figure 8) [33].

We build M3-network by assigning some computer nodes to run the modules
in each reverse diagonal. After that we start the system by inputting a test
sample with a position status of (1, 1), to a computer node that is in charge of
the first reverse diagonal. All the successive steps are iterative. When the test
sample with the position status (r, c) arrives at the (r+c−1)th reverse diagonal,

a computer node of that diagonal first runs the module M
(r, c)
ij corresponding to

the two-class subproblem T
(r c)

ij . Then it updates the sample’s position status
with (r, c + 1) if the module outputs 1, or with (r + 1, c) otherwise. At last it
passes this sample to the next reverse diagonal. The advantage of such stage
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Fig. 7. Illustration of the pipeline framework

design is that each computer node can complete its job by running exactly one
module, which simplifies workload balancing.

Fig. 8. Design of a pipeline for M3-network

The number of computer nodes assigned to each reverse diagonal should
agree with the number of arriving samples, for the sake of workload balance.
Considering that samples leave the matrix from the right and bottom edges, from
1th to min(n, m)-th reverse diagonals, the number of computer nodes should be
fixed; after that, the number should gradually decrease.



4 Application to Patent Documents Classification

Patents, as a social innovation system, have been an increasingly important role
in science and technology improvement. As a result, automatic patent classifica-
tion, as a basic data mining technique on patents, has received wide attention.
A number of organizations including the European Patent Office, the Japanese
Patent Office, and companies have been working on this topic [9, 12].

4.1 Patent Documents Classification

Patent documents classification takes the standard of the International Patent
Classification (IPC) as a label system [12]. IPC is a complex hierarchical symbol
system, where all the technological fields are divided into 8 Sections, 120 Classes,
630 Subclasses and approximately 69,000 Groups. We use M3-network to classify
Japanese patent documents on the Section level of the International Patent
Classification taxonomy, which is a very large classification task [25].

We work on a Japanese patent corpus called the Japanese National Infor-
mation Institutes’ Testing Corpus for Information Retrieval (NTCIR), which is
publicly available for research purpose1. The corpus consists of about 3,500,000
documents of Japanese patent applications from 1993 to 2002. A patent docu-
ment is a structured text with one title and three fields, Abstract, Claim and
Description (see Table 1).

Fig. 9. Illustration of the IPC taxonomy. Here, ‘A’ is the Section category label, ‘A01’
is the Class category label, ‘A01B’ is the Subclass category label, and ’A01B 13/08’ is
the Group category label.

1 http://research.nii.ac.jp/index-en.html



Table 1. The structure of Japanese patent documents

PATENT-JA-UPA-1998-000001

<Bibliography>

[ publication date ] (43)=úOF>²¤¬«£¬´´³¤¬�±F
[ title of invenction ] (54)=²�¶¡>èUû�{�v���Ó

<Abstract>
[purpose ] =�K> %è»6!A�Èþ%è»6���´�9È . . .
[solution ] =)℄�ã>%è»6«1_x��^℄¤,M4�`� . . .

<Claims>
[claim1 ] =��~¬> ,M4�`��Ó«^℄�%è»6�� . . .
[claim2 ] =��~> ,M4�`��Ó�℄�!v�A�L . . .

<Description>

[technique field ] =²�ár¤EÉ©�>�²�!èUû�{�v . . .
[prior art] =á5�EÉ>Éç�L¡e�y9È�C¨¥�℄¤G . . .

[problem to be solved ] =²e)℄p¡_�r¤�K>%è»6�Ï~Sk� . . .
[means of solving problems] =�K«)℄r¤x���ã>ã�¡_�8�ã¤r . . .

[effects of invention] =²�¸J>±þ��²d¢²¢d�¡_�!�² . . .
. . . . . .

< Explanation of Drawing >

[figure1] = ¬> �²«�rÉçä¡ �[¤"
. . . . . .

4.2 Task Decomposition with Prior Knowledge

Using hints greatly improves the effects of machine learning [1]. In this appli-
cation we make use of the patents’ hints, publish dates and hierarchical labels,
to perform the task decomposition for M3-network. The decomposition process,
namely M3-YC, consists of the following three steps (see Figure 10).

step 1 Divide the training data set of each Section by publish dates, each subset
for one year;

step 2 Further divide the subsets by class, thus each subset for one Class pub-
lished in one year;

step 3 Further randomly divide the remaining large subsets into smaller fix-
sized subsets.

Note that with steps 1 and 2 removed, the above process becomes the stan-
dard M3-network, namely M3-Rand. In this research, our main concern is M3-
YC, and we take M3-Rand and plain SVMs as the baseline methods.

In both M3-Rand and M3-YC, we can control the size of subproblems through
the step of random decomposition, for example, setting the maximum number
of samples in a subset. We must keep the subproblems in moderate size, neither
too large for a single classifier to learn, nor so small that there are too many
little subproblems. We finally decide on the maximum size of a subset to be 2000
samples, according to some pilot experiments.



Fig. 10. Illustration of task decomposition with prior knowledge. Different attributes
among the samples are shown by colors and shapes. The colors correspond to publish
dates: red samples published in the same year and blue ones in another. The shapes
correspond to the sub-categories: rectangles and triangles for two sub-categories of
category A, and the circles and diamonds for two sub-categories of category B. The
task decomposition consists of three steps, first by the prior knowledge of the publish
year (b), and then by the Class category (c), and last by random for remaining large
subsets (d).



4.3 Experiment Settings

Training and Test Data Sets We have an extended version of NTCIR-5
Japanese patent corpus at hand, which consists of all the patent applications
published by the Japanese Patent Office from 1993 to 2002. In order to truthfully
evaluate the three methods, conventional SVMs, M3-Rand and M3-YC, we make
eight pairs of training and test data sets, creating a real-world context (see
Table 2).

Table 2. Description of training and test data sets

# of years years set size
for training training test training test

1 2000 2001,2002 358,072 733,570
2 1999,2000 2001,2002 714,004 733,570
3 1998–2000 2001,2002 1,055,391 733,570
4 1997–2000 2001,2002 1,386,850 733,570
5 1996–2000 2001,2002 1,727,356 733,570
6 1995–2000 2001,2002 2,064,325 733,570
7 1994–2000 2001,2002 2,415,236 733,570
8 1993–2000 2001,2002 2,762,563 733,570

Feature extraction and filtering Several steps of preprocessing need to be
done before getting the vector representation of the Japanese text used by clas-
sifiers. These steps are tokenization, term filtering, and term indexing.

Tokenization generates a list of clean and informative words from raw text.
We first extract the raw text from the four patent fields, Title, Abstract, Claim
and Description (see Table 1), as they are most informative about the patent’s
content. Then we segment these texts into isolated words using the software
Chasen2. After that, we remove the stop words (or empty words) from the re-
sults. The remaining words, namely terms in the research domain of text cate-
gorization, are features for the successor classification task. Table 3 shows the
result we get from the example shown in Table 1.

Table 3. The terms of a Japanese patent document shown in Table 1è(soil) Uû(improve) �{(methods) ��(working) Ó(machine) % title%è(subsoil) »6(crack) Èþ(snow) %è »6 �� . . .% abstract,M4�`(subsoiler) �� Ó %è »6 �� . . .%claim²(patent) è Uû �{ . . .%description

2 http://chasen.naist.jp/hiki/ChaSen/



Term Filtering removes the useless terms in the classification task. This
shortens the length of the representation vectors, and thus cuts the computa-
tional cost and reduces generalization errors. We take χ2

avg as filtering criterion
[31]), and pick up 5000 top terms as features, according to our pilot experiments.
Table 4 shows the top 10 terms sorted by χ2

avg, most of which are technical terms
representing patent documents.

Table 4. Top 10 terms selected by χ2

avg

terms explanation χ2

avg terms explanation χ2

avg>�6 data 10384.72 Ô article 7528.72�ä information 10199.42 ¹k contain 7374.12£´ circuit 9561.67 �G connect 7324.43&Ò signal 8387.75 Æ
 insulation 7194.856` record 7901.17 Ä� baseplate 7076.72

Term Indexing generates the weights of feature terms for a sample with
the real numerical vectors. We adopt the dominant methods of TFIDF [27].

tfidf(t, d) = n(t, d) log
|Tr|

nTr
(t)

(9)

where t denotes a term, d denotes a document, Tr denotes the training corpus,
n(t, d) denotes the number of times t occurs in d, namely term frequency, and
nTr(t) denotes the number of documents where t occurs, namely document fre-
quency. Table 5 shows the vector representations of selected patent documents.

Table 5. The vector representations of patent documents, where the format of the
vectors adopted by SVMlight is taken, that is, vetor := (dimension : value)+.

No. Vectors

1 72 : 0.730 98 : 1.790 138 : 1.310 141 : 4.495 . . .
2 28 : 26.353 29 : 9.232 31 : 2.795 71 : 1.463 . . .
3 71 : 1.463 79 : 2.441 85 : 2.993 113 : 11.393 . . .
4 42 : 2.164 60 : 0.905 109 : 2.061 138 : 2.947 . . .
5 28 : 7.529 72 : 6.577 139 : 8.103 167 : 8.728 . . .

Computational Platform A Lenovo cluster system consisting of three fat
nodes and thirty thin nodes run all of our experiments. Each fat node has 32
GB of RAM and two 3.2-GHz quad-core CPUs, while each thin node has 8 GB
of RAM and two 2.0-GHz quad-core CPUs. Experiments with the conventional
SVMs were performed on the fat nodes because they need large memory, while
experiments with the M3-network were done on the thin nodes because each sub-
problem was small and a lot of processors were required for parallel training.



Training Component Classifier M3-network is a general framework for pat-
tern classification. The user can select suitable component classifiers according
to the classification task to be solved and available computing resource. There
are several alternative choices, such as multilayer neural networks[21], k-nearest-
neighbor algorithm[35, 30], and SVMs [23]. Here we select conventional SVMs
with linear kernel and use SVMlight, an implement of SVM by Joachims [15].
SVMlight actually plays two roles in this chapter, the baseline method and the
component classifiers for M3-network.

Performance Measurement The conventional measurement of accuracy in
machine learning domain makes less sense for most text categorization tasks;
instead, we ususally use the function F1 [27]. The formular F1 of one class is :

F1 =
2PR

P + R
(10)

P =
TP

TP + FP
(11)

R =
TP

TP + FN
(12)

where TP is the number of classifier’s True Positive predictions, FP for False
Positive, and FN for False Negative. P is named the precision, and R is named
the recall. In practice, there are the two following versions of F1, depending on
the methods of integrating individual results:

micro − F1 =
2PR

P + R
(13)

macro − F1 = avg
c∈C

2PcRc

Pc + Rc

(14)

where P and R are computed with all the classes, while Pc and Rc are computed
on only class c. For example, sample s actually belongs to classes c1 and c2, while
the classifier’s predictions is c2 and c3. Then in computing micro−F1, TP , FP
and FN will be increased by 1, while in computing Pc1 and Rc1 for macro−F1,
only FN will be increased by 1.

4.4 Results and Discussions

Accuracy Figure 11 is the experimental results, with micro-F1 and macro-F1

used as accuracy measurements. The following conclusions can be drawn from
our results:

(a) On the aspect of test accuracy, the two M3-SVM methods, M3-Rand and
M3-YC, are both superior to conventional SVMs. We can learn from the
training scores that conventional SVMs with linear kernel are unable to
learn the training set completely, because its micro-F1 and macro-F1 are



only about 80%. On the contrary, as an ensemble learning algorithm, M3-
SVMs can generate a powerful classifier by combining simple classifiers. As
a result, M3-SVMs have fulfilled the learning on all the training sets with
accuracies of nearly 100%.

(b) M3-Rand and M3-YC show superior robustness to conventional SVMs over
dated samples. Along the moving backward of the starting time point of
training set, more and more dated samples are added, thus the performance
of conventional SVMs decreases. Contrarily, the performance of two M3-
SVMs increases at the same time. Though their performance deceases a little
in the 5th year point and 7th year point. This does not affect the curves’
overall trend.

(c) M3-YC over-performs M3-rand on each year point, which indicates that in-
corporating prior knowledge of the publishing date and the Class category
into task decomposition will undoubtedly improve classification performance.

Time Cost As mentioned before, M3-SVMs (both M3-Rand and M3-YC) have
the merit of parallel computing, which greatly speeds up learning. However, we
are sharing the Lenovo parallel computer system with other users while per-
forming the experiments, so the accurate time cost of M3-SVMs could not be
measured. The time cost of conventional SVMs has been recorded as it didn’t
involve parallel running.

We evaluate the time cost of M3-YC using the following formula:

tM3 =
nmod × t0

ncpu

(15)

where nmod is the number of modules (or subproblems), t0 is the average time
cost of per module, and ncpu is the number of CPUs. During our experiments,
nmod have been recorded automatically and ncpu is 30 on the Lenovo cluster
system. As for t0, it must be measured by experiment, and the eventual value
we get is 0.025 seconds per module.

Figure 12 is the time costs of conventional SVMs and M3-YC in our experi-
ments. From this figure, we can know that the M3-YC’s time cost is only about
1/10 of the SVM’s, which agrees with our expectation well.

5 Conclusions

In this chapter, we presente a parallel and modular pattern classification frame-
work for large-scale problems. The framework works in a modular manner, and
has several advantages in solving large-scale problems. On the one hand, mas-
sively parallel and distributed training is easily implementable because of its
modularity. On the other hand, it has a balanced performance on all classes
because of various task decomposition strategies.

The experiments are conducted on a large-scale Japanese patent corpus. Tak-
ing into account prior/domain knowledge, we partition large training data sets
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Fig. 11. Performance comparison of conventional SVMs, M3-Rand and M3-YC: (a)
micro-F1 on test data; (b) macro-F1 on test data; (c) micro-F1 on training data; and
(d) macro-F1 on training data.
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Fig. 12. Training time comparison of conventional SVMs and M3-YC.

into smaller subsets according to the publishing date and the subclass. The ex-
perimental results show the effectiveness of the proposed framework, and demon-
strate that M3-SVMs is superior to conventional support vector machines in
solving such complex problems.

As more and more large-scale applications appear in the fields of machine
learning and pattern recognition, there is greater need for parallel and dis-
tributed methods. M3-network uses simple task decomposition methods and ef-
ficient module selection strategies and can be implemented easily in practice.
We recognize that incorporating prior/domain knowledge into task decomposi-
tion is a reliable way to improve the learning efficiency and the generalization
performance of M3-network. We believe that the proposed parallel and modular
framework will be very useful for solving complex classification problems with
very large data sets.
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