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Abstract

Hierarchies are very popular in organizing documents

and web pages, hence automated hierarchical classification

techniques are desired. However, the current dominant hi-

erarchical approach of top-down method suffers accuracy

decrease compared with flat classification approaches, be-

cause of error propagation and bottom nodes’ data sparsity.

In this paper we flatten hierarchies to relieve such accuracy

decrease in top-down method, which aims to make hierar-

chies both effective enough to make large-scale classifica-

tion tasks feasible, and simple enough to ensure high clas-

sification accuracy. We propose two flattening strategies

based on these two causes of the accuracy decrease, and ex-

perimental results show that the flattening strategy designed

for error propagation is more effective, which suggests that

hierarchies with lots of branches at top layers can provide

high classification accuracy. Besides, we analyze the com-

putational complexity before and after flattening, which ap-

proximately agree with the experimental results.

1 Introduction

Hierarchies are widely used in most real-world datasets,

as they are natural ways to organize and classify objects.

The newswire article corpus of Reuters Corpus Volume 1

(RCV1) has a hierarchy of about 110 classes [12]. Open

Directory Project (ODP, http://dmoz.org ) and Yahoo! cat-

egory (http://dir.yahoo.com) are two hierarchical ontology

schemes for organizing web pages. International Patent

Classification is an official category for maintaining patent
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documents [7].

The widespread use of hierarchies makes hierarchical

classification a hot topic in research communities. Clas-

sification refers to the task of learning a model from classi-

fied instances that can predict the classes of previously un-

seen instances; hierarchical classification differs from nor-

mal classification by that the classes are organized in a hi-

erarchy. In hierarchical classification, an example that be-

longs to some class automatically belongs to all its super

classes.

Hierarchial classfication approaches fall into two cate-

gories according to their objectives. The first category of

approaches aims to raise classification accuracy via hierar-

chies, which use hierarchies as additional information in de-

ciding the classes of an instance, instead of using the con-

tent of the instance only. Barutcuoglu et al. model hier-

archy constraints by a Bayesian Network, which combines

individual binary predicts on each classes [1]. Cai and Hof-

mann develop a hierarchical SVM [3]; Labrou and Finin

develop hierarchical Rochhio-like classifiers [11]. Lu et al.

incorporate hierarchy into the task decomposition of a Min-

Max modular network [14].

The second category of approaches aims to reduce com-

putational complexity via hierarchies. Mostly, an isomor-

phism hierarchical network of classifiers is built. In the

training phrase, base classifiers are trained with respect to

internal nodes or parent-children branches, by the instances

belonging to those nodes; in the classifying phrase, in-

stances are filtered through the network of classifiers, pre-

dicting one or several topics at each layer, until they reach

the bottom layer [4, 13]. This category of approaches is

called top-down method [17, 19].

Flat classification approaches can also be used to handle

hierarchical classifications besides the above two categories

of hierarchical approaches [4, 13]. Flat classification ap-

proaches ignore hierarchies and treat the tasks as normal

multiclass classifications.

Among all these methods, top-down methods are rela-
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tively more valuable in real world applications, as most real-

world datasets are large-scale ones with hundreds of thou-

sands of classes. For example, the ODP has over 130 000

classes and the IPC has about 650 000 classes. The flat

methods and accuracy-aimed methods are not feasible on

these datasets.

However, top-down method suffers accuracy decrease,

for which there are two explanations [2, 4, 19]. The first

explanation is the data sparsity in bottom nodes, which

is caused by the simultaneous increase in the number of

classes and their organization. This data sparsity hinders the

training of classifiers for these bottom nodes in the training

phrase. The second explanation is the error propagation in

the test phrase. The prediction errors occurs at high levels

are not recoverable at lower layers, thus errors are amplified

through each layer and eventually greatly reduce the accu-

racy.

In this paper, we flatten the hierarchies to reduce the

accuracy decrease of top-down methods. Two flattening

strategies, top-flattening and bottom-flattening, are pro-

posed based on the two explanations of accuracy decrease,

error propagation and data sparsity, in order to get higher

accuracies via the flattened hierarchies. Besides the com-

putational complexity before and after flattening are an-

alyzed. We do experiments on a sub-hierarchy of ODP,

which shows the flattening strategy based on error propa-

gation overperforms the other one.

D’Alessio et al study the effects of modifying the

hiearchies in the context of ACTION algorithm, and they

also achieve positive results [6]. Malik flattens the hierar-

chies in the context of the top-down methods, while he con-

ducts flattening only in the bottom-up manner [15]. This

corresponds to the bottom-flattening in our paper, which is

proved to be less effective than the top-flattening.

The rest of this paper is organized as follows: we first

formally describe the top-down method and analyze its

computational complexity in Sec.2; then we present our

flattening method and two flattening strategies , analyze

the computational complexity after flattening in Sec.3; af-

ter that we present the experiments where three flattened

hierarchies are tested on two datasets in Sec.4; in the end

we give our conclusions and future works in Sec.5.

2 Top-down method

In this section we formally present the top-down method

and its related issues, which are the foundations of this pa-

per. We first define the task of hierarchical classification;

then we present the algorithm of top-down method; in the

end we analyze the computational complexity of top-down

method, where we explain how this method makes large-

scale classifications feasible.

There are two issues about our presentation compared

with previous researches. First, we use natural multi-

class classifiers, and train one classifier for each node to

distinguish its children nodes; while previously most re-

searchers use binary classifiers, and train one classifier for

each parent-child branch. Second, we handle the problem of

single-label hierarchical classification. For the counterpart

methods of multi-label hierarchical classification, please

see [4].

2.1 Hierarchical classification

The task of single-label hierarchical classification can be

defined as follows(similar with [18]):

Given:

• an instance space X

• a class hierarchy(C, >h), where C is a set of classes

and >h is a partial order representing the parent-child

relationship (for all C1,C2 ∈ C, C1 >h C2 if and only

if C1 is the parent of C2).

• a label space Y = {(y1, y2, . . . , yk) | yj >h yj+1, yk

is a leaf}, which denotes all the paths from the root to

leafs

• a set T of examples{(xi,yi) | i=1,2,. . . ,n}

Find:

find a function f:X→ Y that maximizes accuracy f(x)=y.

2.2 Top-down method

The algorithm of top-down includes training and clas-

sifying, which are given in the form of pseudo-code in al-

gorithm 1. The process of training is to make local train-

ing sets and training base classifiers on them. The process

of classifying is to filter an instance through the hierarchy,

from the root node to a certain leaf node.

2.3 Computational complexity

In this subsection, we first discuss the complexity of mul-

ticlass SVMs, which are used as the base classifiers in this

paper. Then we will discuss the complexity of hierarchical

classification.

2.3.1 Complexity of multiclass SVMs

To handle the multiclass problems at internal nodes in hi-

erarchical classification, multiclass SVMs are used in this

paper. They can achieve the same accuracy with the stat-

of-the-art method of one-vs-rest binary SVMs, and with
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Algorithm 1 Top-down method

Training

Input: a set of samples {(xi,yi)| i=1,2,. . . ,n}
a class hierarchy H = (C, >h)

Output: a network of classifiers {fC | C is a internal node

in H}
1: for C is an internal node of H do

2: TC = {(xi,y
p
i ) | yp−1

i =C}
3: fC ← train a classifier by TC

4: end for

5: return {fC | C is a internal node in H}

Classifying

Input: a instance x

a class hierarchy H = (C, >h)

a network of classifiers {fC | C is a internal node in H}
Output: a hierarchical label y=(y1,y2,. . . ,yk)

1: y← ()

2: C← the root node of H

3: while true do

4: C← fC(x)

5: y← (y1,y2,. . . ,yk, C)

6: if C is a leaf of H then

7: return y

8: end if

9: end while

10: return y

much less time cost ( http:// www.cs.cornell.edu/ People/

tj/ svm light/ svm multiclass.html).

Multiclass SVM is based on SVMstruct and uses cut-

plane algorithm for training [8, 9]. The cut-plane solution

is an iterative algorithm, terminating when a pre-defined er-

ror tolerance is satisfied. Joachims et al. prove that the

number of iterations is linear to the number of samples, and

not directly related to the size of label space [9]. While in

multiclass SVMs each iterations’ complexity is linear to the

number of classes. So the complexity of training a multi-

class SVM is

O (nm) (1)

where n is the number of samples and m is the number of

classes.

Empirically, a multiclass SVM runs many times faster

than a batch of binary SVM under one-vs-rest framework in

solving a multiclass classification problem. The underlying

reason is that a multiclass SVM handles all the classes at

the same time so it can save much common computation.

2.3.2 Complexity of hierarchical classification

Hierarchical classification reduces the computational com-

plexity of a large classification problem, which can be seen

as an effect of dividing it into many smaller ones. In hier-

archical classification, training the root classifier is dealing

with all the samples but fewer target classes, and training the

rest nodes are dealing with both fewer samples and fewer

classes.

The complexity of top-down method presented here is

similar to the case discussed in Yang’s paper [20]. By apply-

ing (1), the complexity of training in the top-down method

can be expressed as

thierarchy =
h
∑

i=1

li
∑

j=1

O (nijmij)

=

h
∑

i=1

O (n)

li
∑

j=1

O (πijmij) (2)

where h is the max depth of internal nodes, that is, the

height of hierarchy minus one; li is the number of classes

at the ith level; i = 0, 1, . . . , h, and i = 0 corresponds to the

root level; j = 1, 2,. . . ,li are the classes at the ith level; nij

is the number of local training samples; mij is the number

of local classes; πij =
nij

n
and

∑li
j=1

πij=1.

The computational complexity of hierarchical classifi-

cation depends on the hierarchies according to (2). To il-

lustrate the effectiveness of hierarchy actually reducing the

complexity, suppose the hierarchy is a standard m0-ary tree,

this is, all the internal nodes have m0 children. Then we can

get

thierarchy = hnm0

= hnm
1

h (3)

where n and m is the total number of samples and classes,

h is the depth of the tree minus one. (3) shows that the com-

plexity with respect to the number of classes is greatly re-

duced, which explains how hierarchy make large-scale clas-

sifications feasible.

3 Flattening hierarchies

In this section we first present the process of flattening

hierarchies; then we introduce two flattening strategies, top-

flattening and bottom-flattening; at last we analyze the com-

putation complexity of the top-down methods on flattened

hierarchies.

3.1 Flattening method

Hierarchies are flattened by removing internal nodes. In

Fig. 1, suppose nodes b1, b2, . . . , bk be the nodes to be re-

moved, a is the parent node, c1, c2 , c3 ,. . . ,cp are the chil-

dren nodes of b’s. To remove nodes b’s, we just connect

nodes c’s to parent node a. After flattening c’s become the

direct child nodes of a.
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Figure 1. Flatten hierarchies by removing in-
ternal nodes

3.2 Flattening strategies

Error propagation and data sparsity in bottom nodes are

the two possible causes of accuracy decrease in top-down

methods, as mentioned in Sec. 1. We design two flattening

strategy based on these two causes, named top-flattening

strategy and bottom-flattening strategy.

Top-flattening strategy is based on the cause of error

propagation. It removes the root node’s child nodes and at-

taches the grandchild nodes directly to the root node. This

results in enlarging the number of classes at the root node,

and converting the top part of the original hierarchy from

a two-layered hierarchical classification into a flat multi-

class classification. Hence the chances that classification

mistakes happen at top level are reduced, thus error propa-

gation is relieved too.

Bottom-flattening strategy is based on the cause of data

sparsity in bottom nodes. It removes the bottom internal

nodes, and attaches their child nodes (or classes precisely)

to high-layered parent nodes. Hence the bottom internal

nodes in the new hierarchy are larger classification tasks

with more training instances as well as more classes. So

the data sparsity can be relieved.

3.3 Complexity of flattened hierarchies

Let’s consider the changes of complexity for the top-

down method on flattened hierarchy in figure 1. The com-

plexities before and after flattening are

torigin = O

(

nk +

k
∑

i=1

nimi

)

tflattened = O

(

n

k
∑

i=1

mi

)

.

Hence the complexity increases after flattening. To il-

lustrate the extent of increasing, suppose the hierarchy is a

standard m-ary tree, that is,

k = n1 = n2 = . . . = nk = m.

Then the complexity formula can be simplified into ,

torigin = 2O (nm)

tflattened = O
(

nm2
)

,

which means the local computational complexity is m
2

times larger after flattening in a standard m-ary tree.

4 Experiments

In this section we do experiments on the datasets of ODP

web pages to test the method of flattening hierarchies. We

first introduce the experimental settings; then describe how

we apply the two flattening strategies and get three flattened

hierarchies; in the end we present and discuss the experi-

ments’ results.

4.1 Experimental settings

We use the datasets of ODP web pages in our experi-

ments, and use normalized TFIDF as features. An empirical

formula is established by us to estimate the optimal param-

eter C’s of multiclass SVMs.

4.1.1 Datasets and preprocessing

The datasets of large-scale hierarchical text categorization

(LSHTC, http://lshtc.iit.demokritos.gr) are used in our ex-

periments, which are single-label hierarchical classifica-

tion tasks obtained from ODP web pages, including over

120 000 classes and 155 000 instances. The datasets of the

basic track and the cheap track are used here. The dataset

of each track consists of a textual description of the hier-

archy, a training set of about 90 000 labeled instances, a

development set of about 30 000 labeled instances, and a

test set of about 35 000 instances. These two track’s hierar-

chies are the same, and the difference is feature vectors. In

the basic task, features of all instances are indexing of web

pages’ content; while in the cheap task, features of training

instances and development instances are indexing of web

pages’ ODP descriptions, and features of test instances are

indexing of web pages’ content.

The prediction labels of the test set can be submitted to

the LSHTC web site, which returns the classification re-

sults including accuracy, macro-F1, macro-p, macro-r, and

tree induced-error. In the challenge participants can use

both training set and development set in training classifiers,

while here we use the training set only.

142



The instances of the LSHTC datasets are presented in

the form of term frequencies, that is, IDs of words and their

times of occurrences; the real words are unknown. The fea-

ture related preprocess that we perform includes TFIDF and

normalization [12, 16].

4.1.2 Parameter C of SVMmulticlass

The key parameter of a multiclass SVM is the trade off

between training errors and margins, usually noted as C,

which is the same as a binary SVM. However, the param-

eter C of SVMmulticlass implemented by Joachims et al.

is scaled differently from conventional binary SVM such as

SVMlight.

We find that the following empirical formula estimates

the optimal C of SVMmulticlass well1,

Copt = max(4nm, 40 000), (4)

where n and m are numbers of samples and classes.

4.1.3 Software and hardware

Our system is coded with the computer languages of C and

Python. In order to use Joachims’ multiclass SVM in an

efficient manner as the base classifiers of top-down method,

its IO parts have been rewritten. The training of classifiers

can be run parallel.

The experiments are done on a 64-bit computer with an

AMD 1.4Ghz CPU and 64G memory. Large memory is re-

quired by the base classifier of multiclass SVM, which uses

up to 20G memories in learning the largest classification

task ( the root node in flattened hierarchies).

4.2 Flatten hierarchy of ODP

The ODP hierarchy of LSHTC dataset is 6-layered in

height, with 4 928 internal nodes and 12 994 leafs. By ap-

plying the flattening strategies in Sec. 3.2, three hierarchies

are made(see fig. 2). Note that leaf nodes can locate at high

layers other than the bottom layer.

First, by the top-flattening strategy, the internal nodes

at the second layers are removed. The new root node is

connected to two parts of nodes: the original leaf nodes at

the second layer, and the removed nodes’ child nodes at the

third layer. As the new hierarchy has a large number of

parent-child branches (311 branches) at the first layer, we

name it flat-headed hierarchy.

Second, by the bottom-flattening strategy, the internal

nodes at the fourth and fifth layers are removed. In the new

hierarchy, the original leaf nodes at the fifth and sixth layer

are attached to their ancestor nodes at the third layer. As the

1There is an exception that we set the C of the root node in flattened

hierarchy to be 6×106

Figure 2. Number of nodes at each layers of
experiments’ ODP Hierarchies

new hierarchy has a large number of parent-child branches

(311 branches) just above the bottom layer, we name it flat-

dilate hierarchy.

Third, by the both two strategies, the internal nodes at

the original second, fourth and fifth layers are all removed.

The new hierarchy is a heavily flattened 3-layered hierarchy,

which we name flat-double hierarchy.

4.3 Experimental results and discussion

The experimental results of the four hierarchies at two

tasks are shown in Tab. 1, with measurements of effective-

ness and time cost. Here the measurement of accuracy is

taken as a main criterion, since LSHTC datasets are single-

labeled ones. The following three points can be got from

these results.

First, flattening hierarchies can raise classification accu-

racies, as all the flattened hierarchies overperform the orig-

inal one, and the heavily flattened hierarchy of flat-double

achieves the highest accuracy.

Second, the top-flattening strategy overperforms the

bottom-flattening strategy, as the flat-headed hierarchies

accuracies are obviously higher that the flat-tailed ones’,

though the previous one has the larger height and costs less

training time. This implies that error propagation has a

greater effect on the accuracy decrease of top-down meth-

ods than bottom nodes’ data sparsity does.

Third, flattening hierarchies does raise the computational

complexity as the training times are lengthened several

times, which roughly agrees with the complexity analysis

in Sec. 3.3.
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Table 1. Results on LSHTC datasets
Task Hierarchy Acc. Ma-F1 Training

basic origin 0.409 0.278 8h21m

flat-headed 0.420 0.284 25h35m

flat-tailed 0.411 0.286 37h53m

flat-double 0.423 0.293 53h57m

cheap origin 0.322 0.206 54m

flat-headed 0.341 0.218 1h20m

flat-tailed 0.331 0.217 1h24m

flat-double 0.349 0.230 2h20m

5 Conclusions and future work

Through this research we demonstrate that flattening hi-

erarchies can raise the accuracies of hierarchical classifica-

tion. Moreover, by testing two opposite flattening strategies

by experiments, we know that error propagation should be

blamed more than data sparsity for the accuracy decrease

of top-down method. From another viewpoint, flat-headed

hierarchies can provides higher classification accuracy than

flat-tailed hierarchies .

Besides, theoretical analysis shows that the computa-

tion complexity of training classifiers via flattened hierar-

chies will be enlarged several times, linear to the number

of branches per node, which is roughly confirmed by the

experiments.

In terms of practical applications, our method of flatten-

ing hierarchies can serve as a trade-off between standard

top-methods and flat methods, with respect to time cost and

accuracy. The top-flattening strategy shows a direction of

flattening hierarchies effectively. Typically, for a 6-layered

sub-hierarchy of ODP, a 2-layered hierarchy of classifiers is

proper, which both makes the task feasible and ensures high

accuracy.

In terms of researches, the good performance of top-

flattening strategy suggests that error propagation is the

main cause of the accuracy decrease of top-down method

in hierarchical classifcation. Researchers might take it into

consideration when doing researches related to hierarchical

classification.

In future we will first test our method on larger datasets,

such as IPC, in order to confirm the results in this paper and

to test the scalability of our method. Then we will try to

develop more effective hierarchical methods based on top-

flattening strategy.
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