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Abstract Imbalanced data sets have significantly un-
equal distributions between classes. This between-class
imbalance causes conventional classification methods to
favor majority classes, resulting in very low or even no
detection of minority classes. A Min-Max modular sup-
port vector machine (M3-SVM) approaches this problem
by decomposing the training input sets of the majority
classes into subsets of similar size and pairing them into
balanced two-class classification subproblems. This ap-
proach has the merits of using general classifiers, incor-
porating prior knowledge into task decomposition and
parallel learning. Experiments on two real-world pat-
tern classification problems, international patent classi-
fication and protein subcellar localization, demonstrate
the effectiveness of the proposed approach.

Keywords imbalanced data, Min-Max modular net-
work (M3-network), prior knowledge, parallel learning,
support vector machine (SVM)

1 Introduction

Imbalanced data sets exist in many real-world applica-
tions, where the sizes of majority classes severely exceed
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those of the minor classes. For example, in interna-
tional patent classification, some major classes have up
to hundreds of thousands of samples while some minor
classes have less than ten samples. A fundamental is-
sue of learning from imbalanced data sets is serious per-
formance degradation of standard learning algorithms,
such as back-propagation algorithm for multi-layer per-
ceptrons and support vector machines. Most standard
algorithms assume or expect balanced class distributions
or equal misclassification costs. Therefore, when serious
imbalanced data sets are presented, these algorithms fail
to properly represent the distribution characteristics of
the data and provide predictions favorable to the major-
ity classes.

In the last decade, imbalanced learning problem has
attracted an influx of attention in the research com-
munity [1]. Several major workshops, conferences, and
special issues reflect this attention, such as Association
for the Advancement of Artificial Intelligence (AAAI’00)
Workshop on Learning from Imbalanced Data Sets [2],
the Twentieth International Conference on Machine
Learning (ICML’03) Workshop on Learning from Imbal-
anced Data Sets [3], and ACM SIGKDD Explorations’04
[4]. Besides, the explosively growing number of publica-
tions on this topic also reflects this attention [1].

The frequently used approaches to imbalanced learn-
ing in the research community are sampling methods and
cost-sensitive methods. Sampling methods handle im-
balanced learning by constructing balanced training sets,
while cost-sensitive methods handle imbalanced learning
by making adaptive changes on extent classifiers. How-
ever, these methods are no longer adequate for large-
scale data sets. In this paper, we adopt Min-Max mod-
ular support vector machine (M3-SVM) [5], which can
naturally handle imbalanced problems well and is suit-
able to deal with large-scale training data sets.

M3-SVM is an extension of Min-Max modular net-
work (M3-network), which was proposed by Lu and Ito
initially as an effort to solve complex classification prob-
lems [6,7]. The M3-network approach consists of three
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steps: 1) decompose the training input sets of major-
ity classes into subsets of desired size; 2) learn the two-
class subproblems formed by the subsets in parallel; 3)
combine the trained component classifiers with the min-
imization and maximization principles. The decompo-
sition procedure of M3-network naturally converts the
imbalanced data sets into a group of balanced binary
data sets, which makes M3-network especially suitable
for imbalanced learning.

The rest of this paper is organized as follows. We first
review the state-of-the-art imbalanced learning methods
and compare M3-network with them in Sect. 2. Then
we formally describe M3-network in Sect. 3. After that
we apply M3-network to two real-world tasks in Sect. 4.
In the end we present the conclusions in Sect. 5.

2 Related work

In this section, we briefly review the state-of-the-art
methods for imbalanced learning. A detailed review can
be found at Refs. [1,8].

2.1 Sampling methods

These methods are concerned with converting an im-
balanced data set into a balanced one by manipulating
the samples. Two fundamental ideas are under-sampling
the majority classes, which removes majority samples
from the origin data set, and over-sampling the minor-
ity classes, which adds minority samples to the origi-
nal data set. Studies have shown that a balanced data
set provides improved overall classification performance
compared to an imbalanced data set for various base
classifiers [9–11].

Many researches on under-sampling have been re-
ported. Most of them follow the strategy of select-
ing a representative subset of the majority class, and
then combining it with the minor class to form a bal-
anced data set. The representative subset is usually
made by removing the overlapping via certain data
cleaning techniques. Some typical approaches include
the condensed nearest neighbor rule and Tomek links
(CNN+Tomek links) integration method [12], the one-
sided selection (OSS) method [13], the neighborhood
cleaning rule (NCL) based on the edited nearest neigh-
bor (ENN) [10], and the NearMiss method based on K-
nearst neighbor (KNN) [14].

As for other kinds of under-sampling methods, the
EasyEnsemble algorithm is to independently sample sev-
eral subsets from the majority class and to use multiple
classifiers based on the combination of each subset with
the minority class [15].

Researches on over-sampling are relative small in

numbers. The synthetic minority over-sampling tech-
nique (SMOTE) algorithm creates artificial minority
samples based on the feature space similarities be-
tween the existing minority samples [16]. The cluster-
based over-sampling (CBO) makes use of the K-means
clustering technique [17]. The integrations of under-
sampling and oversampling methods are studied by
Batista et al., including the integrations of SMOTE with
ENN (SMOTE+ENN) and SMOTE with Tomek links
(SMOTE+Tomek) [12].

In addition, the integration of sampling methods with
ensemble learning techniques is widely studied in the
community. Most reported work focused on the ensem-
ble method of Adaboost. The SMOTEBoost algorithm
integrates SMOTE with Adaboost.M2, which introduces
synthetic sampling at each boosting iteration [18]. The
DataBoost-IM algorithm combines data generation tech-
niques with Adaboost.M1 [19]. The JOUS-Boost re-
duces the computational complexity of data generation
in DataBoost-IM, by replacing it with adding indepen-
dently and identically distributed noise to minority sam-
ples [20].

2.2 Cost-sensitive methods

This kind of method uses different cost metrics that de-
scribe the costs for misclassifying any particular sample.
They can be naturally applied to imbalanced learning
by associating high misclassifying cost to the minority
classes [4,21,22]. Various empirical studies have shown
that in some applications, cost-sensitive methods are su-
perior to sampling methods [23–25].

Various cost-sensitive methods have been proposed
by integrating cost-sensitive fitting into existent classi-
fiers. There are lots of researches about cost-sensitive
SVMs. The cost-sensitive boosting methods introduce
cost items into the weight updating strategy of Ad-
aboost, such as AdaCost [26], AdaC1, AdaC2, AdaC3
[27], CSB1, and CSB2 [28]. There are also cost-sensitive
variants of neural networks [29,30], Bayesian classifiers
[31–34], and decision tree [21,35].

2.3 SVM methods

Lots of studies on enhancing SVMs for imbalanced learn-
ing have been reported, since SVMs are the widely rec-
ognized start-of-the-art classifiers.

Even without any imbalanced (or cost-sensitive) fit-
ting, SVMs can provide relatively robust classification
performance on imbalanced data sets, compared to other
classifiers such as linear discriminant analysis (LDA),
naive Bayes and neural networks. It is because SVMs
make the decision boundary by the samples near con-
cept boundaries only rather than all the samples. Under
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such framework, though the majority classes have large
number of samples, these samples may not actually af-
fect the decision boundary if they are far away from the
concept boundaries [36]. However, when the imbalance
is severe, SVMs will possibly fail and classify all exam-
ples as the majority classes.

The direct imbalanced fitting on SVMs can take three
forms. First, SVM’s optimization problem (or SVM’s
max margin model) can directly integrate cost func-
tions, which is adopted by the two popular implements
of SVMs, SVMlight [37,38] and LibSVM [39]. Second, the
raw outputs of SVMs can be biased towards the minor-
ity class through threshold strategies such as lowering
the threshold value for the minority class [40,41]. Third,
the SVMs’ class boundary can be adjusted by boundary
alignment techniques [42–44].

The indirect imbalanced cost-sensitive fitting are
those made on the ensembles of SVMs without modify-
ing the base classifiers of SVMs. The ensemble of SVMs
trained by over/undersampled methods is studied [45–
48]. Besides, the aforementioned integration of sampling
methods with ensemble learning such as cost-sensitive
Adaboost, usually take SVMs as component classifiers
in order to achieve good classification performance.

2.4 Active and one-class learning approaches

Active learning, unlike supervised learning which as-
sumes that all of the training data are given at the start,
interactively collect new examples, typically by making
queries to a human user. They are traditionally used to
solve problems related to unlabeled training data. Issues
on active learning from imbalanced data sets have been
discussed [49–52]. These variant active learning meth-
ods take the imbalance ratio of data into consideration
when selecting the most informative samples from the
unseen training data.

One-class learning aims to recognize instances of a
class by using mainly (or only) samples of that class,
rather than differentiating between positive samples and
negative samples. It is mainly used for novelty detection.
However, it is found to be particularly useful in dealing
with extremely imbalanced data sets with high feature
space dimensionality [18].

2.5 Remarks

Sampling methods and cost-sensitive methods handle,
respectively, the imbalanced learning from the two ba-
sic aspects of machine learning, data sets and classifiers.
Sampling methods approach the imbalanced learning by
constructing balanced training sets. The advantage of
this approach is the simplicity that no changes are made
on the classifiers, thus general classification techniques

such as SVMs including all their recent improvements
can be directly incorporated. However, under-sampling
methods usually explore a part of the original training
set, thus the result classifier may not be trained com-
pletely and cannot obtain high classification accuracy.

On the contrary, cost-sensitive methods approach the
imbalanced learning by adapting the existent classifiers
or ensembling methods such as Adaboost. The advan-
tage of this approach is the high classification perfor-
mance as the training set is unchanged and fully learned.
The disadvantage of this approach is that it highly de-
pends on the original classification method and lack of
generality.

Active learning and one-class learning are not sup-
posed to handle imbalanced learning in the first place,
but they do provide new perspectives to this problem.
In particular, for some extremely imbalanced problems
where sampling methods and cost-sensitive methods fail,
one-class learning can still work well as it is totally un-
affected by the sample ratio between the classes.

3 M3-SVM

Lu and Ito proposed the Min-Max modular neural net-
work in order to solve hard classification problems in
1997 [6]. M3-network is a sort of ensemble learning
methods that employ a group of classifiers for one classi-
fication problem. The M3-network follows the principle
of divide and conquer, dividing the whole problem into
small pieces and solving them one by one, and adopts
a three-step work flow (see Fig. 1): task decomposition,
training component classifiers, and module combination.
In 2004, Lu et al. extended M3-network to SVM and
proposed M3-SVM [5]. Their main contribution to SVM
is that a novel task decomposition strategy called part-
versus-part method was developed.

3.1 An illustration

Before formally describing the M3-network, we would
like to present an illustration. Suppose that a two-class
classification problem as depicted in Fig. 2(a) needs
to be learned, where small red disks represent positive
samples and small blue rectangles represent negative
samples [53]. Though simple at first sight, it is actually
a non-linearly separable problem. To demonstrate M3-
network learning, we divide the samples of each class
into two subsets, surrounded by dashed lines in Fig.
2(a). According to this partition of the training data
sets, we generate four smaller classification subproblems
shown in Figs. 2(b) to (e). Then we train four compo-
nent classifiers on these subproblems, where dashed lines
represent the discriminant surfaces. After training, we



Bao-Liang LU et al. Learning from imbalanced data sets with a Min-Max modular support vector machine 59

Fig. 1 Working flow of M3-network

separately obtain two middle combination results with
the minimization operators. One of the middle results
(see Fig. 2(f)) is the combination of Figs. 2(b) and
(c), and the other (see Fig. 2(g)) is the combination
of Figs. 2(d) and (e). From Figs. 2(f) and (g), we
can see that this kind of classifier combination results in
negative zone expanding. Finally, we obtain the com-
plete result (see Fig. 2(h)) from Figs. 2(f) and (g) with
the maximization operator, resulting in positive zone ex-
panding. From Fig. 2(h), we can see that the correct
decision boundary for the original two-class classification
problem is achieved.

Fig. 2 Illustration of M3-network learning

3.2 Unique task decomposition

Let T denote the training data set for a K-class classi-
fication problem,

T = {(Xi, Yi)}L
i=1, (1)

where Xi ∈ Rd is the training input, Yi ∈ RK is the cor-
responding desired output, and L is the total number
of training samples. Without loss of generality and for
simplicity of description, we consider only mono-label

classification problems in this paper, in which any train-
ing input has one and only one desired output. It should
be noted that our proposed method can be used to deal
with multi-label classification problems.

At the beginning of the task decomposition process,
a large-scale K-class classification problem can be di-
vided into a series of relatively smaller two-class sub-
problems by using a one-versus-one or one-versus-rest
task decomposition strategy. Suppose a K-class classifi-
cation problem is divided into the following K two-class
subproblems with the one-versus-rest strategy,

Ti = {(X i
l , 1)}Li

l=1∪
K
j=1,j �=i{(X

j
l , 0)}Lj

l=1,

for i = 1, 2, . . . , K, (2)

where X i
l ∈ Xi is the training input belonging to class

Ci, Xi = {X i
l}

Li

l=1 is the set of training inputs belong-
ing to class Ci, Li denotes the number of data in Xi,
X = ∪K

i=1Xi, and L =
∑K

i=1 Li. In this paper, the
training data in a two-class problem are called positive
training data if their desired outputs are 1, and they are
called negative training data if their desired outputs are
0.

From Eq. (2), we see that the number of training data
for each of the two-class subproblems is the same as that
of the original K-class problem. The main weakness of
the one-versus-rest strategy is that this strategy may
cause the training data sets of the two-class subprob-
lems defined by Eq. (2) very imbalanced, even through
the number of data among the classes in the original
K-class problem is quite balanced.

Suppose a K-class classification problem is decom-
posed into the following K(K−1) two-class subproblems
with the one-versus-rest strategy,

Tij = {(X i
l , 1)}Li

l=1 ∪ {(Xj
l , 0)}Lj

l=1,

for i = 1, 2, . . . , K and j �= i, (3)

where X i
l ∈ Xi and Xj

l ∈ Xj are the training inputs
belonging to class Ci and class Cj, respectively.
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From pattern classification’s point view, only
K(K − 1)/2 two-class subproblems need to be learned,
because the other K(K − 1)/2 two-class subproblems
defined by Eq. (3) have just opposite desired outputs
and the same training inputs. Thus, only the following
K(K − 1)/2 two-class subproblems are considered usu-
ally in the training phase,

Tij = {(X i
l , 1)}Li

l=1 ∪ {(Xj
l , 0)}Lj

l=1,

for i = 1, 2, . . . , K and j = i + 1, i + 2, . . . , K.

(4)

Examining Eqs. (2) and (4), we can see that the two-
class subproblems generated by both one-versus-rest and
one-versus-one task decomposition strategies are unique
to a given training data set T . The reason is that the
partition of training input sets in multi-class level has
already determined by Eq. (1).

3.3 Various ways of fine task decomposition

Even though the two-class problems defined by Eq. (4)
are smaller than the original K-class problem, this par-
tition may be not adequate for parallel learning. The
reason is that the number of samples in each class varies
largely and the sizes of these two-class problems can be
quite different, especially for large-scale real-world classi-
fication problems. Consequently, the training period can
be delayed by some larger two-class subproblems. In ad-
dition, a large class and a small class together form an
imbalanced classification problem, which increases the
difficulty in training component classifiers. To speed up
training and to improve classification accuracy, all the
large and imbalanced two-class subproblems should be
further divided into relatively smaller and more balanced
two-class subproblems.

Assume that Xi is partitioned into Ni subsets in the
form

Xij = {X ij
l }Lj

i

l=1,

for j = 1, 2, . . . , Ni and i = 1, 2, . . . , K, (5)

where 1 � Ni � Li and ∪Ni

j=1Xij = Xi. It should be
noted that these subsets, Xij , can be either mutually
exclusive or overlapping.

After partitioning Xi into Ni subsets, every two-class
problem Tij defined by Eq. (4) is further divided into the
following Ni × Nj smaller and more balanced two-class
subproblems,

T (u, v)
ij = {(X(iu)

l , +1)}L
(u)
i

l=1 ∪ {(X(jv)
l , −1)}L

(v)
j

l=1 ,

for u = 1, 2, . . . , Ni, v = 1, 2, · · · , Nj,

i = 1, 2, . . . , K, and j = i + 1, i + 2, . . . , K,

(6)

where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the training

inputs belonging to class Ci and class Cj , respectively,
Li =

∑Ni

u=1 L
(u)
i , and Lj =

∑Nj

v=1 L
(v)
j . This partition is

called part-versus-part task decomposition strategy [5].
Suppose the training set of each two-class subprob-

lem defined in Eq. (6) has only two different samples.
Then they can be easily separated by a hyperplane or a
Gaussian zero-crossing discriminate function [54,55] as
follows,

fij (x) = exp

[

−
(
‖x − ci‖

σ

)2
]

−exp

[

−
(
‖x − cj‖

σ

)2
]

, (7)

where x is the input vector, ci and cj are the given train-
ing inputs belonging to class Ci and class Cj (i �= j),
respectively, σ = λ‖ci − cj‖, and λ is a user-defined con-
stant.

The output of M3-network with Gaussian zero-
crossing discriminate function is defined as follows,

gi(x) =

⎧
⎪⎨

⎪⎩

1, if yi(x) > θi,

unknown, if −θj � yi(x) � θi,

−1, if yi(x) < −θj ,

(8)

where θi and θj are the threshold limits of class Ci and
Cj , respectively. yi denotes the transfer function of the
M3-network for class Ci, which discriminates the pattern
of the M3-network for class Ci from those of the rest
of the classes. The M3-networks with Gaussian zero-
crossing discriminate function have a useful ability of
saying ‘unknown’ to unfamiliar inputs [56].

How to divide Xi into Ni subsets is critical for M3-
network. In the last several years, we have proposed var-
ious approaches for partitioning Xi. These approaches
fall into four main categories: 1) random partition [6];
2) geometrical partition [57]; 3) learning-based partition
[58,59]; and 4) knowledge-based partition [60]. It should
be noted that decomposition of Xi into Ni subsets is not
unique to a given training data set T , no matter which
kind of partition strategy is used.

The random partition strategy is simple and straight-
forward. We simply randomly divide the training in-
put set Xi into Ni smaller subsets, with the constraint
that these subsets must be of equal size roughly. This
constraint is very important because we want the sub-
problems to be balanced. The advantage of this method
is that it can be easily implemented. However, it does
not make use of any statistical properties of the training
data or prior knowledge of the training data.

In geometrical partition, the geometrical relation-
ship among training inputs is considered. Hyperplane
method is a typical geometrical partition strategy [57].
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The hyperplane method consists of the following three
main steps. First, we project the training inputs onto
the direction of the normal vector by computing the
dot product between each training input and the vector.
Then we sort the training inputs according to their pro-
jections. Finally, we divide the training inputs equally
according to the sorting result. An illustration of the
hyperplane method is depicted in Fig. 3.

Fig. 3 Illustration of hyperplane method, where 20 training in-
puts are divided into three subsets

In learning-based partition, both unsupervised and
supervised learning techniques are used to find suit-
able partition of training inputs. We have devel-
oped perceptron-based partition [59] and clustering-
based partition [58]. Our experimental results indicate
that these two methods are superior to random partition
in generalization accuracy. But, the main deficiency of
the learning-based partition is that extra training time is
required. About knowledge-based partition, we will de-
scribe its mechanism and advantages through two real-
world classification problems in Sect. 4.

3.4 Training component classifiers

After task decomposition, all of the two-class sub-
problems are treated as completely independent, non-
communicating tasks in the learning phase. Therefore,
all the two-class subproblems defined by Eq. (6) are ef-
ficiently learned in a massively parallel way.

From Eqs. (4) and (6), we see that a K-class problem
is divided into

K−1∑

i=1

K∑

j=i+1

Ni × Nj (9)

two-class subproblems. The number of training data for
each of the two-class subproblems is approximately

�Li/Ni� + �Lj/Nj�, (10)

where �z� denotes the smallest integer than or equal to

z. Since �Li/Ni� + �Lj/Nj� is independent of the num-
ber of classes, K, the size of each two-class subproblems
is much smaller than the original K-class problem for
the reasonable values of Ni and Nj .

Traditional machine learning algorithms and pattern
classification approaches such as multilayer perceptrons
[7], SVMs [5], and KNN algorithm [61], can be used
to learn the two-class subproblems defined by Eq. (6).
In this paper, the conventional SVMs are selected as
component classifiers and used to learn all of the two-
class subproblems. These component classifiers can be
trained in parallel as they are totally independent. More
precisely, the component classifiers are distributed to a
group of CPUs at the beginning of the training phrase,
and afterwards each CPU performs training by its own.

3.5 Module combination

After all of the two-class subproblems defined by Eq. (6)
have been learned by SVMs, all the trained SVMs are
integrated into a M3-SVM with the Min and Max units
according to the minimization principle and maximiza-
tion principle [5].

Minimization principle Suppose a two-class pro-
blem B is divided into P smaller two-class subproblems,
Bi for i = 1, 2, . . . , P , and also suppose that all the two-
class subproblems have the same positive training data
and different negative training data. If the P two-class
subproblems are correctly learned by the corresponding
P individual SVMs, Mi for i = 1, 2, . . . , P , then the
combination of the P trained SVMs with a Min unit will
produce the correct output for all the training inputs in
B, that is,

B(x) =
P

min
i=1

Mi(x), (11)

where x denotes an input instance.
Maximization principle Suppose a two-class pro-

blem B is divided into P smaller two-class subproblems,
Bi for i = 1, 2, . . . , P , and also suppose that all the two-
class subproblems have the same negative training data
and different positive training data. If the P two-class
subproblems are correctly learned by the corresponding
P individual SVMs, Mi for i = 1, 2. . . . , P , then the
combination of the P trained SVMs with a Max unit
will produce the correct output for all the training input
in B, that is,

B(x) =
P

max
i=1

Mi(x), (12)

where x denotes an input instance.
In this paper, the module combination strategy based

on the minimization and the maximization principles
is called the Min-Max module combination in this pa-
per. Figure 4 illustrates the Min-Max module com-
bination for a two-class problem. Firstly the original
two-class problem is decomposed into Ni ×Nj two-class
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subproblems. Then each component classifier is trained
on the corresponding two-class subproblem. Finally a
M3-network is constructed by combining these compo-
nent classifiers. In this case, the M3-network consists of
Ni × Nj component classifiers, Ni Min units, and one
Max unit.

Fig. 4 Illustration of Min-Max module combination for a two-
class problem

3.6 Asymmetric and symmetric module combination
strategies

When the outputs of the component classifiers are sim-
plified to binary value, i.e., either 0 or 1, the above
standard Min-Max module combination method can be
greatly simplified by the means of logistics. Though the
logical semantics before and after the simplification are a
little different, that is, produce different outputs on some
rare cases, yet they are the same on most cases, and thus
work well both in practical applications. According to
this difference on semantics, we name the standard Min-
Max combination asymmetric module combination, and
name the simplified method symmetric module combina-
tion. The symmetric module combination method em-
ploys much less modules in classifying an instance than
the asymmetric one does, which results in a great im-
provement on the classification speed. One disadvantage
of the symmetric strategy, however, is that it only works
on specific classifiers that output either 0 or 1.

Let us review the standard Min-Max module combina-
tion method, and explain why we call it the asymmetric
module selection strategy. Suppose the outputs of all of
the modules on a test sample are positive 1 or negative 0
(see Fig. 5(a)). Following the Min-Max module combi-
nation method, we first perform minimization operation
along each row, then perform maximization operation
among the rows’ results. The final result is 1 in this

example. Note that this result is caused by the fourth
row, full of 1’s as its elements. The translation of this
process in feature space is that the test sample input is
located within the subset Xi, 4, so that it shows positive
in all the subproblems T (4, k)

ij (k = 1, 2, . . . , 5). The log-
ical definition of the Min-Max module combination for
M3-network is

1) If there exists a row of all 1 in module’s prediction
matrix, the output is 1.

2) Otherwise, the output is 0.
The Min-Max module combination method has a bias

towards the output of 0, and that is why we call it asym-
metric module selection.

Fig. 5 Two module selection strategies. (a) Asymmetric module
selection; (b) symmetric module selection

The other combination method, the symmetric mod-
ule selection strategy, is illustrated in Fig. 5(b) [62]. In
this method, we start from the top left element. If the
element is 1, we go one step right; otherwise, we go one
step down. The process continues until we go beyound
the boundaries of the matrix. If we pass through the
right edge of the matrix, the method outputs 1; other-
wise, it outputs 0. The logical definition of this method
is

1) If there exists a row of all 1 in module’s prediction
matrix, the output is 1.

2) If there exists a column of all 0, the output is 0.
3) Otherwise, the output can be either 1 or 0.
The third case is rare in solving regular pattern classi-

fication problems with M3-network, and it doesn’t need
to be considered [62]. From the viewpoint of feature
space, the first case means that the test sample input
is located within some positive subsets, and the second
case for some negative subsets, so this method makes
sense. Moreover, this method has no bias towards ei-
ther 1 or 0, that is why we call it a symmetric module
selection. Indeed, this characteristic makes it likely to
perform better than the asymmetric module selection
method.

The symmetric module selection strategy has a great
advantage on computation complexity, compared with
the asymmetric one. Suppose the training data sets for
two classes are divided into m and n subsets, respec-
tively. The complexity of the asymmetric module selec-
tion is O(mn), and that of symmetric module selection is
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O(m+n); so it is clear the symmetric module selection is
one order faster than the asymmetric module selection.
Further, the component classifiers that are not visited
do not need to be actually computed (see Fig. 5), that
is, the module combination method determines the com-
plexity of whole test process of M3-network. For these
two reasons, the symmetric module selection method
can greatly accelerate the response speed of M3-network,
which is our main purpose.

3.7 Features of M3-network approach

M3-network is most similar to the integration of sam-
pling methods with ensemble learning among all the
methods described above. However, both the sampling
and the ensemble of M3-network are quit different from
others. The sampling of M3-network is task decomposi-
tion, instead of under-sampling the majority classes or
over-sampling the minority classes. And the ensemble
of M3-network is through a specially designed Min-Max
network, different from the commonly used weighted
voting such as the Adaboost.

Both M3-network and other integration methods of
sampling and ensemble can convert imbalanced data into
balanced, thus eventually solve the imbalanced learning
problem. However, M3-network has a notable merit of
parallel learning, which is precise in facing large-scale
data sets. The modules in M3-network are independent
thus they can be learned individual, while the modules
in Adaboost must be generated sequentially.

4 Applications

In this section, we choose two representative real-world
imbalanced tasks to demonstrate the effectiveness of M3-
network for learning from imbalanced data sets. The
first task is patent document classification from the do-
main of data mining and information retrieval. The

experiment on this very large-scale task, which con-
tains about seventy thousands classes and three hundred
thousands samples, demonstrates M3-network’s ability
to handle large-scale imbalanced data sets. The second
task is protein subcellar localization from the domain of
bioinformatics. The experiment on this multi-label task,
where each sample has average 2.16 labels, demonstrates
M3-network’s ability to handle multi-label imbalanced
data sets.

4.1 Patent documents classification

In this section, we apply M3-network to patent docu-
ments classification [63]. This is a real-world applica-
tion, and many organizations and companies have been
working on this topic such as the European and Japan
Patent Office and Fujitsu company [64,65].

4.1.1 Introduction to international patent classification

Patent documents classification takes the standard of the
international patent classification (IPC) as a label sys-
tem [65]. IPC is a complex hierarchical symbol system,
where all the technological fields are divided into eight
sections, 120 classes, 630 subclasses and approximately
69000 groups (see Fig. 6). In this paper, we use M3-
network to classify Japanese patent documents on the
Section level of IPC taxonomy.

The corpus that we work on is from the NTCIR work-
shop, which is publicly available for research purpose1) .
The corpus consists of about 3500000 documents of
Japanese patent applications from 1993 to 2002. A
patent document is a structured text with four main
fields: title, abstract, claim, and description (see Table
1).

4.1.2 Task decomposition with years and hierarchies

We incorporate the prior knowledge of publish dates and

Fig. 6 Illustration of IPC taxonomy. Here, ‘A’, ‘A01’, ‘A01B’, and ‘A01B 13/08’ are the section, class, subclass, and
group labels, respectively

1) http://research.nii.ac.jp/index-en.html
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Table 1 Structure of Japanese patent documents

PATENT-JA-UPA-1998-000001

<Bibliography>

[ publication date ] (43)������� 10 � (1998) 1 � 6 �
[ title of invenction ] (54)�������������������

<Abstract>

[purpose ] ������������������������. . .

[solution ] ��������������	��
�������. . .

<Claims>

[claim1 ] ���� 1�����������
�������. . .

[claim2 ] ���� 2����������
�������. . .

<Description>

[technique field ] �������������������������. . .

[prior art] ����������������������
��. . .

[problem to be solved ] �������������������������. . .

[means of solving problems] ���������	��������������. . .

[effects of invention] �������������������������. . .

. . . . . .

< Explanation of Drawing >

[figure1] �� 1���������������
. . . . . .

hierarchical labels of patent documents into task decom-
position for M3-network. The decomposition process,
namely M3 Year-Class Decomposition (M3-YC), consists
of the following three steps (see Fig. 7).

Step 1 Divide the training data set of each section
by publish dates, each subset for one year.

Step 2 Divide the subsets by class, thus each subset
for one class published in one year.

Step 3 Randomly divide the remaining large subsets
into smaller fix-sized subsets.

Fig. 7 Illustration of task decomposition of Japanese patent clas-
sification with prior knowledge. Different attributes among the
samples are shown by colors and shapes. The task decomposition
consists of three steps. The first step is to use prior knowledge
of the publish year (b), the second step is to use class category
information (c), and the last step is to randomly divide remaining
large subsets (d)

Note that with Steps 1 and 2 removed, the above
process becomes the standard M3-network, namely M3-
Rand. In this research, we compare M3-Rand and M3-
YC to plain SVMs, which are taken as the baseline meth-
ods.

In both M3-Rand and M3-YC, we can control the size
of subproblems through the step of random decomposi-
tion, for example, setting the maximum number of sam-
ples in a subset. We must keep the subproblems in mod-
erate size, neither too large for a single classifier to learn,
nor so small that there are too many little subproblems.
We finally decide on the maximum size of a subset to be
2000 samples, according to some pilot experiments [66].

4.1.3 Experiment settings

Data sets split The corpus that we use consists of
all the patent applications published by the Japanese
Patent Office from 1993 to 2002. We make eight pairs
of training and test data sets, creating a real-world con-
text to test the classification methods (see Table 2). The
data distribution of the largest training set and the test

Table 2 Description of training and test data sets

years set size

training test training test

2000 2001,2002 358072 733570

1999,2000 2001,2002 714004 733570

1998–2000 2001,2002 1055391 733570

1997–2000 2001,2002 1386850 733570

1996–2000 2001,2002 1727356 733570

1995–2000 2001,2002 2064325 733570

1994–2000 2001,2002 2415236 733570

1993–2000 2001,2002 2762563 733570
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set is shown by Table 3, which is quite imbalanced.
Feature extraction and filtering We follow a

standard chain of preprocess for text categorization, in
order to go the vector representation of the Japanese.
The preprocesses include tokenization, term filtering,
and term indexing.

Table 3 Training and test data distribution of patent document
corpus

lable description training test

1 human necessities 228832 74483

2 performing operations and trans-
porting

532529 134350

3 chemistry and metallurgy 290417 69246

4 textiles and paper 41563 8977

5 fixed constructions 132817 34395

6 mechanical engineering, lighting
and so on

241624 62855

7 physics 671487 186100

8 electricity 623297 163165

total No. of documents 2762566 733571

Tokenization generates a list of clean and informative
words from raw text. We first extract the raw text from
the four patent fields: title, abstract, claim, and descrip-
tion (see Table 1), and segment these texts into isolated

words using the software Chasen1) . After that, we re-
move the stop words (or empty words) from the results.

Term Filtering removes the useless terms in the clas-
sification task. We take χ2

avg as filtering criterion [41]),
and pick up 5000 top terms as features, according to our
pilot experiments.

Term Indexing generates the weights of feature terms
for a sample with the real numerical vectors. We adopt
the dominant methods of Term Frequency-Inverse Doc-
ument Frequency (TFIDF) [67].

Component classifiers M3-network is a general
framework for pattern classification. The user can se-
lect suitable component classifiers according to the clas-
sification task to be solved and available computing re-
source. There are several alternative choices, such as
multilayer neural networks [7], KNN algorithm [61], and
SVMs [5]. Here we select conventional SVMs with lin-
ear kernel and use SVMlight, an implement of SVM by
Joachims [37]. SVMlight actually plays two roles in this
paper, the baseline method and the component classi-
fiers for M3-network.

Performance measure We choose the commonly
used micro-F1 and macro-F1 as the performance mea-
sure [67]. They are defined as follows,

Fig. 8 Performance comparison of conventional SVMs, M3-Rand and M3-YC. (a) Micro-F1 on test data; (b) macro-F1

on test data; (c) micro-F1 on training data; (d) macro-F1 on training data

1) http://chasen.naist.jp/hiki/ChaSen/
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micro − F1 =
2PR

P + R
, (13)

macro − F1 = avg
c∈C

2PcRc

Pc + Rc
, (14)

where P and R are overall precision and recall, and Pc

and Rc are the local precision and recall of the class c.

4.1.4 Experimental results

Figure 8 shows the experimental results with micro-F1

and macro-F1. The following points can be drawn from
the results:

1) On the aspect of test accuracy, the two M3-SVM
methods, M3-Rand and M3-YC, are both superior to
conventional SVMs. We can learn from the training
scores that conventional SVMs with linear kernel are
unable to learn the training set completely, because its
micro-F1 and macro-F1 are only about 80%; while M3-
SVMs have learned all of the training data with accuracy
of nearly 100%.

2) M3-Rand and M3-YC show superior robustness to
conventional SVMs over dated samples. Along the start-
ing time point of training set moving back, more and
more dated samples are added; the performance of flat
SVMs decreases, while the performance of two M3-SVMs
increases at the same time.

3) M3-YC outperforms M3-Rand on each year point,
which indicates that incorporating prior knowledge of
the publishing date and the class category into task de-
composition will undoubtedly improve classification per-
formance.

4.2 Protein subcellar localization

Protein subcellular localization has a close relationship
with protein function as proteins need to be in the right
compartments in order to carry out their cellular func-
tions. Automatic tools for predicting protein subcellular
locations are very helpful because they can save a lot of
wet-bench experimental work. Therefore, protein sub-
cellular localization has been an active research topic in
bioinformatics since last decade [68].

Till now, a lot of methods have been proposed to pre-
dict protein subcellular location [69]. However, few of
them addressed the imbalanced data distribution prob-
lem, as the numbers of proteins located in different com-
partments vary significantly. And, many proteins bear
multi-localization characteristics [70], i.e., a protein may
have multiple locations. Therefore, we propose to use
the Min-Max modular support vector machine to deal
with these problems [71].

4.2.1 Data set

We worked on the DBMLoc database which collects
multi-locational proteins from animal, plant, virus and
bacteria [72]. All the cellular compartments were as-
signed into twelve categories: extracellular, cell wall,
membrane, cytoplasm, mitochondrion, nucleus, ribo-
some, plastid, endoplasmic reticulum (ER), Golgi ap-
paratus, vacuole, and virion. Some subcellular location
annotations that can not be classified into the twelve
categories are assigned to ‘others’. As a result, the num-
ber of classes used in our prediction system is 13. The
detailed data distribution is shown in Table 4. There is
a total of 2975 protein samples, and 6426 labels. Thus
each protein has 2.2 labels in average. We can observe
that this data set is extremely imbalanced. The nucleus
proteins take nearly a third of the whole set, while the
number of vacuole proteins is only 20.

Table 4 Training and test data distribution of DBMLoc

lable location training test

1 others 134 36

2 extracellular 471 43

3 ribosome 58 15

4 virion 31 2

5 membrane 1240 283

6 cytoplasm 1172 417

7 mitochondrion 445 123

8 nucleus 844 344

9 plastid 132 8

10 vacuole 16 4

11 cell wall 21 5

12 ER 322 53

13 Golgi 162 45

total No. of labels 5048 1378

total No. of proteins 2344 631

4.2.2 Task decomposition with gene ontology

During the past decades, various annotation data of pro-
teins have grown dramatically in the public databases.
Thus, plenty of prior knowledge, such as motif, function
domain, and gene ontology (GO), are available in the
study of protein function, regulation and other charac-
teristics.

GO [73] has been demonstrated to be very useful in
improving the prediction accuracy for protein subcellu-
lar localization [74]. However, many proteins do not
have GO annotation, especially the proteins to be tested.
Therefore, we did not incorporate GO for feature vectors
to build our predictor. Instead, we use GO annotation
to guide the task decomposition as the DBMLoc data is
fully annotated with GO.

GO terms have semantic relations with each other,
e.g., ‘is-a’ and ‘part-of’. Here, we measure the similar-
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ity of GO terms based on their semantic relations [75].
Because each training data has a set of GO terms, the
similarity of two proteins can be obtained by calculating
the similarity between their corresponding GO term sets.
Thus, the similarity matrix is constructed for each class
to be decomposed, and then we use the clustering tool
of CLUTO [76], to partition the data based on the sim-
ilarity matrix. The numbers of clusters are determined
by the predefined module size. We also test random de-
composition with M3-SVMs on this data set. These two
methods are denoted as M3-GO and M3-Rand, respec-
tively.

4.2.3 Experimental settings

Component classifier We chose LibSVM version 2.8
[39] to train component classifiers for M3-SVMs, and
used multi-class SVMs with one-versus-rest strategy. We
experimented with polynomial, sigmoid and RBF ker-
nels and observed that RBF kernel has the best classifi-
cation accuracy. Thus the results reported in the follow-
ing were obtained by using RBF kernel. Both M3-SVMs
and traditional SVMs have the same experimental set-
tings.

Performance measure Multiple measures are
used to assess the overall classification performance, in-
cluding macro-F1, total accuracy (TA) and location ac-
curacy (LA). Total accuracy and location accuracy were
first defined in Ref. [77]. We redefine them as the fol-
lowing equations because of the multi-label context on
DBMLoc database.

TA =
∑K

l=1 TPl

N
, (15)

LA =
∑K

l=1 Rl

K
, (16)

where N is the total number of labels, K is the num-
ber of subcellular locations, TPl is the number of true
predictions at location l, and Rl is the recall of location
l.

4.2.4 Experimental results

Table 5 shows the overall performance (TA, LA and

macro-F1) of the three methods, where traditional
SVMs, M3-Rand, and M3-GO with three different mod-
ule sizes are compared. Column 2 shows the predefined
module sizes; column 3 shows the numbers of subprob-
lems. From Table 5, several observations can be made.

1) Both M3-SVMs with random decomposition and
GO decomposition have higher TA and LA than tradi-
tional SVMs. The M3-SVMs improve not only average
location accuracy but also total accuracy, which indi-
cates that they do not sacrifice minority classes for the
classification of majority classes.

2) M3-SVMs have higher macro-F1 than traditional
SVMs except M3-Rand with module size 100. And M3-
GO with module size 800 achieved the highest macro-F1.
As the module size decreases, LA increases, but macro-
F1 decreases, which suggests a higher false positive rate
of M3-SVMs when the module size becomes small. So
there is a tradeoff between location accuracy and false
positive rate.

3) M3-GO generally performs a little higher than M3-
Rand, and the superiority is obvious when the module
size is small (100). Since random decomposition divides
each training class into equal size modules randomly,
while GO decomposition bases on the real relationship
between proteins, the GO decomposition has a more sta-
ble performance.

In order to observe the classification accuracy on each
subcellular location, we draw the recall and F1 values
of the traditional SVMs and M3-SVMs with GO decom-
position on 13 classes in Fig. 9. Obviously, the mod-
ulization helps to improve recall a lot, especially for the
minority classes, e.g., cell wall. And, M3-SVMs gener-
ally have higher F1 values than traditional SVMs.

5 Conclusions

In this paper we study the problem of learning from
imbalanced data sets. A brief review of the state-of-
the-art methods for learning from imbalanced data is
presented, where sampling methods and cost-sensitive
methods are the two dominate sorts of approaches. In
order to deal with large-scale imbalanced data sets, we
introduce Min-Max modular support vector machine,

Table 5 Overall accuracy of three methods on DBMLoc

method module size module No. TA/% LA/% macro-F1/%

SVM / 13 64.7 41.4 42.0

M3-Rand 100 848 65.1 48.0 40.7

400 83 66.9 47.7 42.7

800 38 66.2 45.2 43.4

M3-GO 100 848 66.2 48.5 42.3

400 83 67.1 45.2 42.6

800 38 66.3 43.4 43.6
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Fig. 9 Comparison of recall (a) and F1 (b)

which is an integration of sampling method and ensem-
ble learning approach. To show the effectiveness of our
proposed method, we apply M3-SVMs to two real-world
imbalanced data sets and compare their performance
with that of standard SVMs. The experimental results
demonstrate that the imbalanced data sets do cause per-
formance degradation of standard SVMs, which confirms
the observations in related literature. However, the per-
formance can be improved by M3-SVMs, which achieve
high classification accuracy by handling imbalanced data
with task decomposition strategy. Moreover, the exper-
imental results indicate that incorporating prior knowl-
edge into task decomposition of M3-SVMs can obviously
improve their classification performance.
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