
A Hierarchical Particle Swarm Optimizer with Latin

Sampling Based Memetic Algorithm for Numerical

Optimization

Yong Penga,∗, Bao-Liang Lua,b

aCenter for Brain-like Computing and Machine Intelligence, Department of Computer
Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P.R.China;

bMoE-Microsoft Key Laboratory for Intelligent Computing and Intelligent Systems,
Shanghai Jiao Tong University, Shanghai 200240, P.R.China;

Abstract

Memetic algorithms, one type of algorithms inspired by nature, have been
successfully applied to solve numerous optimization problems in diverse fields.
In this paper, we propose a new memetic computing model, using a Hier-
archical Particle Swarm Optimizer (HPSO) and Latin Hypercube Sampling
(LHS) method. In the bottom layer of hierarchical PSO, several swarms
evolve in parallel to avoid being trapped in local optima. The learning s-
trategy for each swarm is the well-known Comprehensive Learning method
with a newly designed mutation operator. After the evolution process accom-
plished in bottom layer, one particle for each swarm is selected as candidate
to construct the swarm in the top layer, which evolves by the same strategy
employed in the bottom layer. The local search strategy based on LHS is
imposed on particles in the top layer every specified number of generations.
The new memetic computing model is extensively evaluated on a suite of 16
numerical optimization functions as well as the cylindricity error evaluation
problem. Experimental results show that the proposed algorithm compares
favorably with conventional PSO and several variants.

Keywords: Memetic Algorithm; Particle Swarm Optimizer; Latin
Hypercube Sampling; Comprehensive Learning; Cylindricity

∗Corresponding author
Email address: StanY.Peng@gmail.com (Yong Peng)

Preprint submitted to Applied Soft Computing May 13, 2012

1. Introduction

Optimization has been a research hotspot for several decades. Many real-
world optimization problems in engineering are becoming increasingly com-
plicated, so optimization algorithms with high performance are needed [1, 2].
Unconstrained optimization problems can be formulated as D-dimensional
optimization problems over continuous space

min f(x), x = [x1, x2, . . . , xD] (1)

Evolutionary algorithms, inspired by natural evolution, have been widely
used as effective tools to solve optimization problems. One class of natural
inspired algorithms are swarm intelligent algorithms. Particle swarm opti-
mizer (PSO) [3, 4] has attracted attention in the academic and industrial
community. Although PSO shares many similarities with evolutionary al-
gorithms, the original PSO does not use the traditional evolution operators
such as crossover and mutation. PSO draws on the swarm behavior of birds
flocking where they search for food in a collaborative way. Each member,
in the swarm, called a particle, represents a potential solution to the target
problem and it adapts its search patterns by learning from its own experience
and other members’ experience. The particle is a point in the search space
and it aims at finding the global optimum which is regarded as the location
of food. Each particle has two attributes called position and velocity and
its direction of flight is adjusted according to the experiences of the swarm.
The swarm as a whole searches for the global optimum in D-dimensional
feasibility space.

The PSO algorithm is easy to understand and implement, and has been
proved to perform well on many optimization problems. However, it may
easily get trapped in a local optimum for many reasons, such as the lack of
diversity among particles and overlearning from the best particle found so far.
To improve PSO’s performance on complex numerical optimization problems,
we propose a hierarchical PSO framework, in which several swarms evolve in
parallel towards the global optimum and we design a new mutation operator
to increase the diversity of swarms. After evolving for a specified number
of generations, a Latin Hypercube Sampling method is used to execute the
local search.

This paper is organized as follows. Section 2 introduces the original PSO
and some variants. Section 3 describes the proposed hierarchical PSO with

2

Latin sampling based memetic algorithm, including four subsections: hierar-
chical PSO framework, mutation strategy, Latin Hypercube Sampling based
local search strategy and the overall framework of the proposed memetic
algorithm. Section 4 gives the experimental results, describes the related
parameter tuning process and compares the performance of the proposed al-
gorithm on a suite of test problems to that of other PSO variants. Section 5
gives conclusions and describes future work.

2. Particle Swarm Optimizers

2.1. Original PSO

PSO is a stochastic optimization algorithm which simulates swarm be-
havior. The individuals move over a specified D-dimensional feasible space.
As in a the genetic algorithm, the particles in PSO are initialized with ran-
dom velocities and positions. The algorithm adaptively updates the velocity
and position of each particle in the swarm by learning from the good expe-
riences. In the original PSO [3], the velocity Vi

d and position Xi
d of the dth

dimension of the ith particle are updated as follows.

V d
i := V d

i + c1 · rand1di · (pbestdi −Xd
i) + c2 · rand2di · (gbestd −Xd

i) (2)

Xd
i := Xd

i + V d
i (3)

where Xi = (X1
i , X

2
i , . . . , X

D
i) is the position of the ith particle and Vi =

(V 1
i , V

2
i , . . . , V

D
i) represents velocity of particle i, pbest i = (pbest1i , pbest

2
i ,

. . . , pbestDi) is the best previous position yielding the best fitness value for the
ith particle, gbest = (gbest1, gbest2, . . . , gbestD) is the best position found so
far over the whole swarm, c1 and c2 are the acceleration constants, reflecting
the weighting of stochastic acceleration terms that pull each particle towards
pbest and gbest positions, respectively. rand1di and rand2di are two random
numbers in the range [0,1].

A particle’s velocity on each dimension is confined to a maximum magni-
tude Vmax. If |V d

i | exceeds a pre-specified positive constant value V d
max, then

the velocity on the dimension is assigned to sign(|V d
i |)V d

max.
The framework of the original PSO is shown in algorithm 1. From the

flow of the iterative process, we can find that each particle flies to the global
best particle in the swarm; this leads to a severe drawback of overlearning
from the best particle. Consequently, the diversity of the whole swarm will
drop down dramatically. If the best particle does not share the same niche

3

Algorithm 1 Original Particle Swarm Optimizer

//Initialize swarm S
for i := 1 to swarmsize do
for d := 1 to D do
V d
i := rand[Vmin, Vmax]; X

d
i := rand[Xmin, Xmax];

end for
end for
Compute the fitness value of each particle F = (f1, f2, . . . , fps);
Set the pbest = (pbest1, pbest2, . . . , pbestps) and the gbest ;
Set the acceleration constants c1 and c2;
Set the iteration counter t :=0;
while t ≤ Gen do
for i := 1 to swarmsize do
for d := 1 to D do
//Update the velocity V d

i of particle Xi using Eq.2
V d
i := V d

i + c1 · rand1di · (pbestdi −Xd
i) + c2 · rand2di · (gbestd −Xd

i);
//Update the position Xd

i of particle Xi using Eq.3
Xd

i := Xd
i + V d

i ;
end for
Evaluate the fitness value fi of the new particle Xi;
if fi is better than the fitness value of pbesti then
Set Xi to be pbesti;

end if
if fi is better than the fitness value of gbest then
Set Xi to be gbest;

end if
end for
if termination condition is met then
break;

else
t := t+ 1;

end if
end while

with the global optimum, the particles may easily get trapped in a local op-
timum. Since PSO’s introduction in 1995, many researchers have worked on
improving its performance in various ways and many more effective variants

4

have been proposed; these will be discussed in next subsection.

2.2. Some Variants of PSO

This section gives a brief survey of several PSO variants proposed in recent
years. Shi and Eberhart [5] introduced inertia weight w into the original PSO
algorithm, so the criterion for updating the velocity was changed to

V d
i := w · V d

i + c1 · rand1di · (pbestdi −Xd
i) + c2 · rand2di · (gbestd −Xd

i). (4)

They indicated that the inertia weight plays an important role in balancing
the global and local search abilities; a large inertia weight encourages global
search while a small inertia weight encourages local search. Based on this
idea, the inertia weight is usually set to decrease linearly over iterations.

Different types of topologies have been designed to improve PSO’s per-
formance in solving different optimization problems. Kennedy [6, 7] claimed
that PSO with a small neighborhood might perform better on complex prob-
lems, while PSO with large neighborhood would perform better on simple
problems. Suganthan [8] defined the neighborhood of a particle as the sev-
eral nearest particles in each iteration so that a dynamic neighborhood is
computationally intensive. Jian et al. [9] examined several neighborhood
topologies. The unified PSO (UPSO) proposed by Parsopoulos and Vrahatis
[10] combined the global version and local version of the original PSO. Med-
des and Kennedy [11] used all the neighbors of the particle to update the
velocity instead of the pbest and the gbest. The neighbors of each particle
were selected based on its fitness value and the size of neighborhood. Peram
et al. [12] proposed the fitness-distance-ratio-based PSO (FDR-PSO). When
updating each velocity dimension, the FDR-PSO algorithm selects one other
particle nbest, which has a higher fitness value and is nearer to the particle
being updated. In Comprehensive Learning PSO (CLPSO)[13], the velocity
of each dimension is influenced by pbest of every other particle, which in-
creases the diversity of the swarm for multimodal optimization problems. In
[14], several subswarms were used to coevolve with each other. The entire
population was shuffled at periodic stages and subswarms were reassigned.
Yang et al.[15] developed a hierarchical clustering method to partition the
original swarm into several subswarms, which locate and track multiple opti-
ma in dynamic environments. Wang et al. [16] proposed a memetic algorithm
based on a particle swarm optimizer with a ring-shaped topology; later, he
improved his algorithm by partitioning particles in the ring-shaped topol-
ogy structure into several species which can update information in parallel

5

[17]. Chen [18] proposed a two-layer PSO (TLPSO) for unconstrained opti-
mization problems, where each subswarm was made to evolve based on the
original PSO.

Although the original PSO does not use the traditional evolution op-
erators such as crossover and mutation, researchers introduced some other
search techniques including evolutionary operators into PSO to improve its
performance. Evolutionary operators such as crossover, mutation and selec-
tion were used in [19, 20, 21]. In [22], deflection, stretching and repulsion
techniques are used to find as many minima as possible by preventing par-
ticles from moving to a previously discovered minimal region. Cooperative
PSO (CPSO-H)[23] uses one-dimensional swarms to search each dimension
separately. In recent years, many advanced operators have been introduced
to improve PSO’s performance. Ling et al. [24] employed a wavelet-theory-
based mutation operation to enhance PSO in exploring the solution space
more effectively. Zhao [25] proposed a perturbed PSO (pPSO) algorithm
which introduced the perturbed global best to deal with the problem of pre-
mature convergence and diversity maintenance within the swarm. Gao et al.
[26] incorporated the Henon map based mutation operator, which divided
the mutation operator into global and local mutation operators; this enabled
the particles to have a stronger exploration ability and fast convergence rate.

Although many variants of PSO have been proposed, all of which en-
hance the performance of original PSO to some extent, the effectiveness of
these variants in dealing with diverse problems with different characteristics
is still unsatisfying. For example, CLPSO’s performance on ill-conditioned
problems is poor and an algorithm [27] with high convergence speed is prone
to shrink towards local optima. So taking measures including model struc-
ture, velocity updating strategy, and the hybrid operators simultaneously
according to the particles’ behavior to improve its performance may be a
feasible path to get a satisfactory result over diverse numerical optimization
problems.

3. The Proposed Memetic Algorithm

In this section, we introduce the proposed memetic algorithm in detail;
it is based on a hierarchical PSO framework and some search techniques
including a local search strategy called the Latin hypercube sampling method
and a hybrid mutation strategy.

6

3.1. The hierarchical Particle Swarm Optimizer

There are two versions of PSO, global and local, according to the approach
of choosing gbest. In the global version, each particle can be influenced by the
particle with best fitness in the whole swarm, which causes all the particles
to move and converge quickly on one optimum point in the search space. By
contrast, the local version only allows a particle to be influenced by the best
fitness particle from its neighborhood, which makes the algorithm exhibit
a good exploration capacity because the population can slowly converge to
the optimal space. Recently, many algorithms have been proposed to par-
tition the population into several subswarms based on Euclidean distance
[28], fitness value [29] and some other metrics [15, 17]. These subswarms are
different definitions of the neighborhood, and each particle can only interact
with particles in its neighborhood to avoid converging too fast. Obviously,
computing the Euclidean distance is time-consuming when the dimension is
high; individuals with similar fitness values which are prone to be classified
into the same group may be in different niches. And the species formation
method [17] is complicated and partially depends on the distance of particles.

N

M

N N

Bottom layer

Top layer

swarm1 swarmMswarm2

gbest1
gbestMgbest2

Figure 1: The architecture of two-layer hierarchical PSO.

Here, we propose a two-layer hierarchical PSO model. There are M
swarms in the bottom layer with N particles in each swarm and only one
swarm in the top layer. Fig.1 gives the architecture of the hierarchical PSO.
For each swarm in the bottom layer, particles move towards the optimum
based on the comprehensive learning method [13] described below, which is
a typical local version of PSO. After each iteration, M swarms in the bottom
layer will generate M best particles which will stand chances into the top
layer. So in the top layer, the number of particles is identical to the num-
ber of swarms in the bottom layer and they are trained by comprehensive
learning as well.

7

The reasons for the selecting hierarchical PSO can be stated as follows.
First, several swarms evolving in parallel can have a good chance to reach the
global optimum even if some of them stagnate in local optima. Second, the
swarms are generated randomly which saves time in computing the neigh-
borhood based on Euclidean distance. Though simple, this approach might
be effective. For this model, the movement of particles in the bottom layer is
similar to the local search and the movement of particles in the top layer is
similar to the global search. The best particle in the top layer can influence
particles in the bottom layer indirectly so that the speed of convergence will
slow down. So this model can work for both exploitation and exploration
simultaneously.

The comprehensive learning method [13] used to train particles in the hi-
erarchical PSO modal, is specifically designed for complex multimodal prob-
lems. Simply speaking, CLPSO designs a set of exemplars pbsetdfi(d) for each
particle to update its velocity instead of the traditional pbest and gbest, which
enlarges the search scope and enhances the performance of local search. Al-
gorithm 2 gives the flow of the comprehensive learning method.

3.2. Mutation Strategy

Most variants of PSO adopt strategies to update the old velocity vector
based on the particles in neighborhood, so they have difficulty in adapting
quickly to the different optimization stages of ill-conditioned problems. In
this subsection, we propose a new mutation operator, inspired by the muta-
tion operation in Differential Evolution (DE) [30]. It updates the particles’
positions based on the differential information and the pbest. The mutation
operator can be formulated as

Xd
i := c · (Xd

k −Xd
j) + c · (pbestdi −Xd

i); c ∼ N(0.5, 0.2); (5)

where Xd
k and Xd

j are the dth variables of two randomly selected other par-
ticles, N (0.5,0.2) represents the Gaussian distribution with mean 0.5 and
standard deviation 0.2.

We carry out the mutation operation after updating the pbest and gbest in
both the bottom layer and the top layer based on the probability Pm except
the best particle in each swarm. This operator will generate a disturbance
when particles’ position are close to local optima.

8

Algorithm 2 Comprehensive Learning PSO

Initialize the swarm;
Vmax := 0.25 · (Xmax −Xmin); w0 := 0.9, w1 := 0.2;
for k := 1 to Gen do
w(k) := (w0−w1)·(Gen−k)

Gen
;

if Mod(k,10)==1 then
for i := 1 to swarmsize do
rc := randperm(D); ai := zeros(1, D); bi := zeros(1, D);
ai(rc(1 : m)) := 1; bi = ⌈rand(1, D)− 1 + Pc⌉;
fi := ⌈rand(1, D) · swarmsize⌉;

end for
end if
for i := 1 to swarmsize do
for d := 1 to D do
if adi == 1 then
V d
i := wk · V d

i + rand() · (gbestd − V d
i);

else if bdi == 1 then
V d
i := wk · V d

i + rand() · (pbestdfi(d) − V d
i);

else
V d
i := wk · V d

i + rand() · (pbestdi − V d
i);

end if
V d
i := min(V d

max,max(−V d
max, V

d
i));

Xd
i := Xd

i + V d
i ;

end for
if for each d, Xd

i ∈ [Xmin, Xmax] then
Calculate the fitness value of Xi;
Update pbest and gbest;

end if
end for
Stop if the termination condition is met;

end for

3.3. Local Search Based on Latin Sampling

Latin Hypercube Sampling, which was proposed by Mckay [31], is a s-
tratified sampling approach. This paper employs this sampling method to
exploit the excellent subspace which has been found at present. Suppose that
V is a hypercube with dimension n, of which each dimension xi is denoted as

9

[xi
l, x

i
u](i = 1, 2, . . . , n, xi

l and xi
u are the lower bound and the upper bound

of dimension i, respectively.), then the algorithm of generating H samples in
this hypercube V is algorithm 3.

Algorithm 3 Latin Sampling Process in Hypercube

step1: Determine the sampling scale H ;
step2: Partition the interval [xi

l, x
i
u] of each dimension into H+1 equivalent

subintervals, that is

xi
l = xi

0 < xi
1 < xi

2 < . . . < xi
j < xi

j+1 < . . . < xi
H = xi

u (6)

and as a result, the original hypercube is partitioned into Hn small sub
hypercubes.
step3: Generate a H ∗ n matrix (termed the sampling matrix, denoted as
A), each column of which is a random arrangement of array [1, 2, . . . , H];
step4: Each row of the sampling matrix A is a selected hypercube, and the
H samples will be produced randomly from each selected hypercube.

Here, a simple instance is provided to demonstrate the Latin Sampling
Process in detail. If the dimension of the hypercube is two and the sampling
scale is eight, then a satisfactory sampling matrix A is formed.

A =

[
8 3 6 7 5 1 2 4
6 1 5 3 7 2 8 4

]T
(7)

and the corresponding samples in the hypercube is showed in Fig.2.

1 2 3 4 5 6 7 8 9
1

2

3

4

5

6

7

8

9
 Latin Hypercube Sampling in 2 Dimensional Space

Figure 2: Latin Hypercube Sampling in 2 Dimensional Space.

Latin hypercube sampling can be viewed as a space-filling design, which
means that one and only one sample is selected in each row or column of each

10

sub hypercube. So the samples generated by Latin sampling are distributed
uniformly in the hypercube space and this helps maintain the diversity of
population.

3.4. The Proposed Memetic Algorithm

In this section, we introduce the hierarchical PSO with Latin hypercube
sampling based memetic algorithm (MA-HPSOL) as whole. Algorithm 4
gives the overall framework of the proposed algorithm.

Algorithm 4 The Proposed Memetic Algorithm(MA-HPSOL)

Set parameters needed in the algorithm;
Initialize the swarms in the bottom layer;
Update the pbestbottom and gbestbottom in each swarm;
Initialize the swarm in the top layer according to gbestbottom;
Update the pbesttop and gbesttop;
for t := 1 to Gen do
//learning process of the bottom layer
Swarms’ learning based on Comprehensive Learning;
Update the pbestbottom and gbestbottom in each swarm;
Perform mutation operation except for the best particle in each swarm;
//Information passing from bottom layer to top layer
Mix gbestbottomi with particles in the top layer(i := 1 to M);
Select M particles from the mixed groups to form the swarm in the top
layer;
//learning process of the top layer
Swarm’s learning based on Comprehensive Learning;
Update the pbesttop and gbesttop;
Perform mutation operation except the best particle;
//local search
if Mod(t, 10) == 0 then
Perform Latin Hypercube Sampling based local search;
Update gbesttop if any particle is superior to it;

end if
Stop if termination condition is met;
t := t+ 1;

end for

11

From the Algorithm 4, we know that hierarchical PSO is the main frame-
work of the proposed memetic algorithm. Swarms in the framework are
trained by the comprehensive learning method. The Latin Hypercube Sam-
pling based local search is performed every ten iterations. Furthermore, a
differential information based mutation operator is employed to maintain the
diversity of the swarms. To more explicitly describe the proposed algorithm,
the complete flow chat of MA-HPSOL is given in Fig. 3.

Initialize particles, velocities V, pbest and gbest in the

bottom and top layer respectively;

Set parameters for local search and k=1

mod(k,10)==0

k < Gen

end

N

k=k+1

Y

Latin Hypercube Sampling based

local search

Y

N

Swarm1

Comprehensive learning

SwarmM

Comprehensive learning

Swarm2

Comprehensive learning

Mutation Mutation Mutation

Mix M gbests from bottom layer with original M particles in top layer;

Select M excellent particles from the mixture

Comprehensive learning

Mutation

gbest1 gbestM
gbest2

Update gbesttop if necessary

To
p

 l
a

y
e

r
B

o
tt

o
m

 l
a

y
e

r

Figure 3: Flow chat of proposed algorithm (MA-HPSOL).

12

In the next section, a large number of test problems are used to evaluate
the performance of the proposed algorithm. Suppose that the computation
cost of one particle in the CLPSO approach is c, the cost of the mutation op-
erator is cm and the cost of Latin local search is cl, then the total computation
cost of MA-HPSOL for one generation is (M + 1)N(c + cm) + M(cl). But
when solving real-world problems, usually the fitness evaluation accounts
for the most time as the PSO is highly computationally efficient. So the
algorithm-related computation times are not given in this paper.

4. Experimental Study

In this section, we evaluate the performance of MA-HPSOL by solving
16 numerical optimization problems including eight conventional unimodal
and multimodal benchmarks,six rotated benchmarks and two composition
problems. The test problems are scalable to any number of variables, so we
mainly employ the test problems with 10 and 30 variables. We will compare
MA-HPSOL with PSO with inertia weight PSOw [5], UPSO [10], FDR-PSO
[12], CLPSO [13] and TLPSO [18].

4.1. Test functions

In this subsection, we choose 16 function optimization problems to demon-
strate the effectiveness of the proposed MA-HPSOL algorithm. They can
be classified into four types: unimodal, multimodal, rotated and composite
problems. Table 1 tabulates the benchmark test functions with their notable
characteristics. The detailed characteristics of these test functions can be
found in [32].

4.2. Sensitivity in relation to parameters

For the proposed MA-HPSOL algorithm, there are four parameters: M
(the number of swarms in the bottom layer), N (the number of particles in
each swarm), the sampling scale p and the length of each dimension δ of the
hypercube.

Sensitivity in relation to M and N. The experimental results of MA-
HPSOL in optimizing functions 1, 2, 8 and 14 with the number of swarms M
increased from 2 to 10 in steps of 1 and the number of particles N in each
swarm increased from 2 to 10 in steps of 1. The values of other parameters
are as follows: the sampling scale is 10, the length of each dimension δ of the
hypercube is twice the length of the corresponding dimension of the selected

13

Table 1: Benchmark functions used in this study

Function Range Characteristics Optima

f1(x) =
D∑
i=1

x2i [−100, 100] unimodal 0

f2(x) =
D−1∑
i=1

(100(x2i − xi+1)
2 + (xi − 1)2) [-2.048,2.048] unimodal 0

f3(x) = −20exp(−0.2

√
1
D

D∑
i=1

x2i)

−exp(1
D

D∑
i=1

cos(2πxi)) + 20 + e [-32.768,32.768] multimodal 0

f4(x) =
D∑
i=1

x2
i

4000 −
D∏
i=1

cos(xi√
i
) + 1 [-600,600] multimodal 0

f5(x) =
D∑
i=1

{
kmax∑
k=1

[ak cos(2πbk(xi + 0.5))]}

−D
kmax∑
k=1

{ak cos(2πbk · 0.5)}

a = 0.5, b = 3, kmax = 20; [-0.5,0.5] multimodal 0

f6(x) =
D∑
i=1

{x2i − 10 cos(2πxi) + 10} [-5.12,5.12] multimodal 0

f7(x) =
D∑
i=1

{y2i − 10 cos(2πyi) + 10}

yi =

{
xi |xi| < 0.5

round(2xi)
2 |xi| ≥ 0.5

,

i = 1, 2, . . . , D [-5.12,5.12] multimodal 0

f8(x) = 418.9829D −
D∑
i=1

{xi sin(|x|0.5)} [-500,500] multimodal 0

f9(y) = f3(y), y = M ∗ x [-32.768,32.768] rotated 0

f10(y) = f4(y), y = M ∗ x [-600,600] rotated 0

f11(y) = f5(y), y = M ∗ x [-0.5,0.5] rotated 0

f12(y) = f6(y), y = M ∗ x [-5.12,5.12] rotated 0

f13(y) = f7(y), y = M ∗ x [-5.12,5.12] rotated 0

f14(z) = 418.9829D −
D∑
i=1

zi

zi =

{
yi sin(|yi|0.5) |yi| ≤ 500

0.001(|yi| − 500)2 |yi| > 500
,

i = 1, 2, . . . , D; y = M ∗ (x− 420.96) + 420.96 [-500,500] rotated 0

f15 = CF1 [-5,5] composition 0

f16 = CF2 [-5,5] composition 0

particle and the mutation probability is the inverse of dimensionality D (here
only D=10 is taken into consideration). The maximum number of function
evaluations is set at 100,000. The data are statistical average values of the

14

number of function evaluations obtained from 30 independent runs. The
results are shown in Figure 4. From the experimental results of several test
functions (functions 1, 2, 8 and 14) depicted in Figure 4, we can easily find
that small values of M and N are encouraged by MA-HPSOL. Therefore,
the number of swarms M and the number of particles N in each swarm are
both set to 3 in all following experiments.

2
4

6
8

10

2

4

6

8

10
−300

−250

−200

−150

−100

−50

0

 M

 Sensitivity in relation to parameters M and N

 N

 l
o

g
1

0
(F

it
n

e
s

s
 V

a
lu

e
 o

f
fu

n
1

)

2
4

6
8

10

2

4

6

8

10
−4

−3

−2

−1

0

1

 M

 Sensitivity in relation to parameters M and N

 N

 l
o

g
1

0
(F

it
n

e
s

s
 V

a
lu

e
 o

f
fu

n
2

)

2
4

6
8

10

2

4

6

8

10
−10

−8

−6

−4

−2

0

2

 M

 Sensitivity in relation to parameters M and N

 N

 l
o

g
1

0
(F

it
n

e
s

s
 V

a
lu

e
 o

f
fu

n
8

)

2
4

6
8

10

2

4

6

8

10
−10

−8

−6

−4

−2

0

2

 M

 Sensitivity in relation to parameters M and N

 N

 l
o

g
1

0
(F

it
n

e
s

s
 V

a
lu

e
 o

f
fu

n
1

4
)

Figure 4: MA-HPSOL sensitivity in relation to M and N.

Sensitivity to the length of each dimension δ of the hypercube.
How to get a proper neighborhood for exploiting if a particle has been selected
to execute the local search? Because each dimension of the particle may be
different from others’, the length of each dimension δ of the hypercube should
be adaptive to the selected particles. Here, we propose a simple method to
specify δ which shows excellent performance in our experiments. The length
of each dimension δ of the hypercube is twice the length of the corresponding
dimension of the selected particle.

Sensitivity to sampling scale p. It is difficult to choose a proper

15

sampling scale p because if we choose a bigger value, the generations for
evolution will be few and if we choose a smaller value, the neighborhood of a
selected particle may not be exploited sufficiently (if the maximum number
of function evaluations is fixed). So we should get a balance between the
sampling scale p and the generations of evolution. The experimental results
of MA-HPSOL in optimizing functions 8 and 14 with the sampling scale p
from 5 to 30 in steps of 5 are shown in Figure 5. Both the number of swarms
M and the number of particles N are set to 3, and other parameters are the
same as mentioned above. From the experimental results of functions 8 and
16 depicted in Figure 5, it is obvious that MA-HPSOL gets better results
when the sampling scale is set to 5, 10 and 15. Therefore, the sampling scale
p in all following experiments is set to 10.

0 5 10 15 20 25 30 35
−1

0

1

2

3

4

5
x 10

−5

 Value of sampling scale p

 F
it

n
e

s
s

 v
a

lu
e

 o
f

fu
n

8

 Sensitivity in relation to sampling scale p

0 5 10 15 20 25 30 35
−5

0

5

10

15

20
x 10

−9

 Value of sampling scale p

 F
it

n
e

s
s

 v
a

lu
e

 o
f

fu
n

1
4

 Sensitivity in relation to sampling scale p

Figure 5: MA-HPSOL sensitivity in relation to sampling scale p.

So all the parameters for MA-HPSOL are shown in Table 2, where δ
is set to 2 means that The length of each dimension δ of the hypercube is
two times the length of the corresponding dimension of the selected parti-
cle and MAXFES stands for the maximum number of function evaluations
(dimension× 10, 000).

4.3. Experimental results of MA-HPSOL on test functions

In this section, we will give the experimental results obtained by MA-
HPSOL in optimizing above-mentioned 16 functions with 10 and 30 variables.
Based on the parameter sensitivity analysis, the parameters are set as shown
in Table 2.

Table 3 shows the statistical results of MA-HPSOL in optimizing the
16 functions with ten variables (10-D functions) based on 30 independent

16

Table 2: Parameters setting for MA-HPSOL

```````````̀Parameters

Dimension
10D 30D

M,N {3,3} {3,3}
p 10 10

δ 2 2

MAXFES 10000*10 10000*30

runs, which includes the maximum, minimum, mean and standard deviation.
The termination criterion in this experiment is to run MA-HPSOL until the
number of function evaluations reaches the maximum value 100,000.

Table 3: Statistical results of MA-HPSOL in optimizing 10-D functions.

Functions Max Min Mean Std

f1 0 0 0 0

f2 1.3825e-003 3.6072e-010 2.3089e-004 3.8665e-004

f3 0 0 0 0

f4 0 0 0 0

f5 0 0 0 0

f6 0 0 0 0

f7 0 0 0 0

f8 2.4559e-007 1.0914e-011 1.1462e-008 4.5219e-008

f9 0 0 0 0

f10 0 0 0 0

f11 0 0 0 0

f12 0 0 0 0

f13 0 0 0 0

f14 2.3173e-008 2.7285e-012 1.4677e-009 4.3905e-009

f15 2.3587e-009 6.2578e-013 3.0186e-010 2.3079e-010

f16 5.1823e+000 1.8756e+000 3.4610e+000 2.8459e+000

Obviously MA-HPSOL performs very well on most of the 16 functions.
For functions 1, 3, 4, 5, 6, 7, 9, 10, 11, 12 and 13, the maximum, minimum
and mean values of the 30 runs are all equal to the optimal values. The
performance of MA-HPSOL is stable enough because the diversity is kept
on a higher level to avoid premature convergence. But when solving the
functions 2, 8, 14, 15 and 16, MA-HPSOL does not get accurate optimal
results. Due to the ill-conditional nature of function 2 (Rosenbrock problem)
and function 8 (Schwefel problem), which has optimal values at (1,1,. . . ,1)
and (420.96,420.96,. . . ,420.96), it is hard to adapt quickly to the different

17



optimization stages. Also, function 14 is the rotational version of function
8, so there is some distance between the local optimum found (1.4677e-009)
and the global optimum 0.

For the two composition functions, most of the solutions are obvious-
ly worse than the optimal values. The reason for the poor performance is
that both functions are more challenging problems with a randomly located
global optimum and several randomly located deep local optima. They are
asymmetrical multimodal problems, with different properties in different ar-
eas. Due to the complex shape of the composition functions, it is difficult to
get the same accurate results as the benchmark functions. However, we find
that MA-HPSOL gets relatively good results of these two composite func-
tions when compared with some state-of-the-art algorithms, which will be
shown in the following part.

The experimental results for MA-HPSOL in optimizing the 16 functions
with 30 variables (30-D functions) are shown in Table 4. The maximum
number of function evaluations is set at 300,000. The other parameters are
the same as those for 10-D functions. The statistical results in Table 4 are
obtained from 30 independent runs.

Table 4: Statistical results of MA-HPSOL in optimizing 30-D functions.

Functions Max Min Mean Std

f1 3.9525e-318 2.9644e-323 1.3562e-319 0

f2 8.3908e-005 1.1101e-015 5.3122e-006 1.7546e-005

f3 3.5527e-015 0 1.8948e-015 1.8027e-015

f4 0 0 0 0

f5 0 0 0 0

f6 0 0 0 0

f7 0 0 0 0

f8 4.7294e-011 0 9.2162e-012 9.1629e-012

f9 0 0 0 0

f10 0 0 0 0

f11 0 0 0 0

f12 0 0 0 0

f13 0 0 0 0

f14 2.5466e-011 0 5.0932e-012 5.7601e-012

f15 4.2483e-016 8.4579e-018 8.9180e-017 4.6175e-017

f16 1.2781e+001 1.2472e+000 4.5891e+000 3.4578e+000

As shown in Table 4, when solving the functions 4, 5, 6, 7, 9, 10, 11, 12 and
13, the statistical results including the maximum, minimum and mean values

18



for the 30 runs are all equal to the optimal values. The results of functions
1 and 3 are not so good as the results obtained in the 10-D experiment. The
main reason accounting for this phenomenon may be the lack of a sufficient
number of particles for exploring the feasible space. We use the same pair of
{M,N }={3,3} for both 10-D and 30-D experiments, which means the total
particles in the population is 9. This number of particles is proper for 10-D
experiments, and MA-HPSOL obtains promising results as do some other
algorithms [13]. But the landscape of test 30-D functions is so complex
that it is difficult to explore such a high dimensional feasible space (D=30)
with so few particles. As the results of functions 2, 8, 14, 15 and 16 show,
MA-HPSOL can get values which are very close to the optima. Also, the
standard are very small for all of these functions, which means that MA-
HPSOL exhibits excellent stability over all 30 runs.

4.4. Comparisons with state-of-the-art algorithms

In order to further verify the effectiveness of MA-HPSOL, we use ex-
periments to evaluate the performance of MA-HPSOL by comparing it with
five existing algorithms, PSOw [5], UPSO [10], FDR-PSO [12], CLPSO [13]
and TLPSO [18]. For easy comparison with state-of-the-art algorithms, the
population size for all six algorithms is set to 9. Any specific parameters
are set exactly the same as in the original work. The termination criteria is
to run the algorithms until the number of function evaluations reaches the
maximum value 100,000. All the results given in Table 5 are based on 30
independent runs.

Furthermore, a distance function Index (D) for describing the mean dis-
tance between the optimal solution and the obtained best solution is defined
as follows [33].

Index(D) = |fopt(D)− fbest(D)|/D. (8)

where fopt(D) and fbest(D) are the optimal solution and the obtained best
solution, respectively. This metric is usually used to compare the decreasing
velocities of the differences between the solutions obtained by all kinds of
evolutionary algorithms and the target solution. In this paper, the optima
for all the test functions are 0 and the obtained best solutions are usually very
close to 0, so we use the log10 (fbest(D)) instead of fbest(D) for narrowing the
interval of metric. But the abs(log) function is not monotonic so we modify
the Index (D) to Dist(D) as follows so that we can easily visualize the results

19



of each algorithm.

Dist(D) = (log10(fbest(D))− fopt(D))/D (9)

Figure 6 presents the Dist(D) values in terms of the best fitness value of
the median run of each algorithm for each test function(D=10). We record
the best solutions every 5,000 function evaluations for each test problem
with total function evaluations 100,000. So the interval for the horizontal
coordinate is [1,20] and the vertical coordinate shows the Dist(D).

From the results in Table 5 and Figure 6, we observe that MA-HPSOL
surpasses all other algorithms on all functions except function 8. The perfor-
mance of CLPSO in optimizing function 8 is superior to MA-HPSOL. How-
ever, when we run both CLPSO and MA-HPSOL 50 independent times we
find that CLPSO holds a very small probability (3/50) to trap in local optima
118.4383 and 236.8767 while MA-HPSOL still obtain results with precision
10−8. The convergence characteristic of MA-HPSOL is very promising in
optimizing unimodal, multimodal, rotated multimodal and composite prob-
lems. For UPSO, it just performs well on unimodal function 1 and also other
algorithms get good results. PSOw shows good convergence characteristics
on functions 1, 3 and 9 while FDR-PSO has a relatively good convergence for
functions 2, 3 and 9. This is a reasonable phenomenon because function 9 is
just the rotational version of function 3. TLPSO shows good convergence in
optimizing functions 1, 3, 5, 6, 7, 9 and 10. Because particles in MA-HPSOL
are trained with the comprehensive learning method, MA-HPSOL and CLP-
SO share some similar convergence characteristics in optimizing functions 1,
3, 4, 8, 9, 15 and 16 with the difference that MA-HPSOL converges faster
than CLPSO. Especially for functions 3, 4, 5, 6, 7, 9, 10, 11, 12 and 13,
MA-HPSOL converges to the global optimum in less than 20,000 function
evaluations on the whole. This is mainly caused by multi-swarms in the
hierarchical architecture and the local search strategy.

Table 6 gives the means and standard deviations of the 30 runs of the
six algorithms on the sixteen test functions with D=30. As the convergence
graphs are similar to the 10-D problems, they are not presented here. It
is a acid test for these algorithms holding a population with just 9 parti-
cles. From the results in Table 6, we can observe that the performance of
almost all algorithms except MA-HPSOL degrade dramatically in optimizing
high-dimensional problems with a small population size. Taking CLPSO for
example, it can attain the precision of 10−12 with population size 40, but it
only 103 with population size 9.

20



T
ab

le
5:

R
es
u
lt
s
o
f
S
ix

A
lg
o
ri
th

m
s
fo
r
1
0
-D

re
su

lt
s.

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 1
f 2

f 3
f 4

P
S
O
w

1
.1
9
1
1
e-
2
2
2
±
0
.0
0
0
0
e-
0
0
0

6
.7
3
0
0
e-
0
0
1
±
1
.2
2
8
0
e-
0
0
0

2
.3
5
6
6
e-
0
1
4
±
4
.3
1
3
5
e-
0
1
4

8
.9
2
2
6
e-
0
0
2
±
4
.1
6
7
5
e-
0
0
2

U
P
S
O

0
±
0

9
.1
1
5
8
e-
0
0
1
±
1
.6
8
3
2
e-
0
0
0

1
.7
9
4
1
e+

0
0
0
±
1
.8
7
2
6
e+

0
0
0

1
.0
7
6
9
e-
0
0
1
±
1
.2
1
1
2
e-
0
0
1

F
D
R
-P

S
O

2
.3
7
1
1
e-
2
9
2
±
0
.0
0
0
0
e-
0
0
0

5
.3
1
6
7
e-
0
0
1
±
1
.3
7
8
5
e-
0
0
0

1
.1
8
4
2
e-
0
1
4
±
9
.2
0
4
6
e-
0
1
5

1
.1
0
2
0
e-
0
0
1
±
4
.7
3
5
8
e-
0
0
2

C
L
P
S
O

1
.0
6
6
1
e-
1
2
1
±
5
.8
3
6
4
e-
1
2
1

2
.4
1
3
1
e+

0
0
0
±
1
.7
2
4
2
e+

0
0
0

3
.5
5
2
7
e-
0
1
5
±
0
.0
0
0
0
e-
0
0
0

2
.5
4
4
9
e-
0
0
3
±
5
.2
2
7
5
e-
0
0
3

T
L
P
S
O

7
.4
7
9
6
e-
1
4
9
±
4
.0
9
6
7
e-
1
4
8

5
.1
6
1
1
e+

0
0
0
±
1
.2
9
3
3
e+

0
0
0

3
.5
2
9
0
e-
0
1
4
±
6
.8
5
5
4
e-
0
1
4

2
.0
8
5
6
e-
0
0
2
±
2
.7
7
5
9
e-
0
0
2

M
A
-H

P
S
O
L

0
±
0

2
.3
0
8
9
e-
0
0
4
±
3
.8
6
6
5
e-
0
0
4

0
±
0

0
±
0

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 5
f 6

f 7
f 8

P
S
O
w

8
.0
0
2
0
e-
0
0
4
±
1
.7
2
8
7
e-
0
0
3

5
.3
3
9
6
e+

0
0
0
±
3
.1
8
3
9
e+

0
0
0

3
.4
6
6
7
e+

0
0
0
±
2
.0
9
6
5
e+

0
0
0

5
.4
0
8
7
e+

0
0
2
±
2
.0
2
8
1
e+

0
0
2

U
P
S
O

1
.1
9
4
6
e-
0
0
0
±
8
.3
5
2
3
e-
0
0
1

1
.1
6
1
3
e+

0
0
1
±
6
.8
2
4
1
e+

0
0
0

1
.0
3
3
3
e+

0
0
0
±
1
.2
3
8
9
e+

0
0
0

9
.9
2
4
5
e+

0
0
2
±
2
.8
1
6
2
e+

0
0
2

F
D
R
-P

S
O

2
.5
2
7
8
e-
0
0
3
±
1
.0
5
8
5
e-
0
0
2

3
.7
1
4
5
e+

0
0
0
±
2
.7
3
9
6
e+

0
0
0

1
.0
0
0
0
e+

0
0
0
±
1
.5
3
1
3
e+

0
0
0

6
.9
4
1
8
e+

0
0
2
±
1
.9
9
5
0
e+

0
0
2

C
L
P
S
O

0
±
0

0
±
0

0
±
0

2
.4
3
5
8
e-
0
0
5
±
8
.5
6
9
7
e-
0
0
5

T
L
P
S
O

2
.2
9
9
8
e-
0
1
3
±
1
.2
5
0
3
e-
0
1
2

1
.7
9
6
2
e+

0
0
0
±
4
.8
0
3
5
e+

0
0
0

1
.6
6
6
7
e-
0
0
1
±
9
.1
2
8
7
e-
0
0
1

1
.5
1
9
3
e+

0
0
3
±
3
.2
7
1
4
e+

0
0
2

M
A
-H

P
S
O
L

0
±
0

0
±
0

0
±
0

1
.1
4
6
2
e-
0
0
8
±
4
.5
2
1
9
e-
0
0
8

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 9
f 1

0
f 1

1
f 1

2

P
S
O
w

2
.0
8
9
9
e-
0
0
1
±
4
.8
2
0
4
e-
0
0
1

1
.4
7
0
5
e-
0
0
1
±
7
.8
5
4
9
e-
0
0
2

5
.5
2
8
1
e-
0
0
1
±
7
.0
3
1
0
e-
0
0
1

9
.4
1
8
9
e+

0
0
0
±
4
.1
1
2
6
e+

0
0
0

U
P
S
O

1
.3
9
2
9
e+

0
0
0
±
1
.2
3
8
9
e+

0
0
0

1
.0
1
0
7
e-
0
0
1
±
7
.2
3
3
1
e-
0
0
2

2
.3
7
3
2
e+

0
0
0
±
1
.2
7
0
9
e+

0
0
0

1
.5
5
3
1
e+

0
0
1
±
5
.8
4
0
9
e+

0
0
0

F
D
R
-P

S
O

1
.5
4
0
2
e-
0
0
1
±
3
.9
9
.9
e-
0
0
1

1
.6
6
4
2
e-
0
0
1
±
5
.6
4
9
4
e-
0
0
2

3
.4
9
5
1
e-
0
0
1
±
4
.3
2
3
1
e-
0
0
1

1
.1
0
7
7
e+

0
0
1
±
4
.9
9
6
9
e+

0
0
0

C
L
P
S
O

5
.7
0
4
8
e-
0
0
6
±
1
.4
8
3
1
e-
0
0
5

2
.5
0
7
7
e-
0
0
4
±
1
.3
4
9
9
e-
0
0
3

5
.2
0
1
0
e-
0
0
4
±
2
.8
5
7
1
e-
0
0
4

4
.1
5
1
6
e+

0
0
0
±
1
.8
6
1
7
e+

0
0
0

T
L
P
S
O

1
.3
5
3
6
e-
0
1
3
±
5
.9
6
5
3
e-
0
1
3

3
.5
5
4
8
e-
0
0
2
±
4
.6
7
6
3
e-
0
0
2

9
.0
0
3
5
e-
0
0
1
±
1
.0
9
4
1
e-
0
0
0

1
.7
9
9
3
e+

0
0
1
±
6
.5
5
4
2
e+

0
0
0

M
A
-H

P
S
O
L

0
±
0

0
±
0

0
±
0

0
±
0

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 1
3

f 1
4

f 1
5

f 1
6

P
S
O
w

8
.7
3
3
3
e+

0
0
0
±
2
.6
7
7
3
e+

0
0
0

7
.9
3
8
5
e+

0
0
2
±
3
.2
4
2
3
e+

0
0
2

1
.2
3
3
3
e+

0
0
2
±
1
.3
0
4
7
e+

0
0
2

1
.5
2
8
5
e+

0
0
2
±
2
.1
4
8
1
e+

0
0
2

U
P
S
O

1
.3
1
7
1
e+

0
0
1
±
6
.4
2
4
0
e+

0
0
0

1
.0
9
3
3
e+

0
0
3
±
3
.9
5
0
5
e+

0
0
2

6
.6
6
6
7
e+

0
0
1
±
7
.5
8
1
0
e+

0
0
1

1
.3
1
8
3
e+

0
0
2
±
1
.4
3
8
8
e+

0
0
2

F
D
R
-P

S
O

1
.0
2
6
7
e+

0
0
1
±
3
.6
1
9
2
e+

0
0
0

1
.0
5
8
8
e+

0
0
3
±
3
.7
4
6
8
e+

0
0
2

1
.1
3
3
3
e+

0
0
2
±
1
.1
9
5
8
e+

0
0
2

1
.4
4
1
2
e+

0
0
2
±
1
.9
2
0
2
e+

0
0
2

C
L
P
S
O

3
.9
9
4
3
e+

0
0
0
±
1
.1
3
3
3
e+

0
0
0

2
.3
3
7
8
e+

0
0
2
±
1
.8
3
7
3
e+

0
0
2

9
.4
6
3
4
e+

0
0
0
±
2
.8
5
9
4
e+

0
0
1

4
.9
8
0
2
e+

0
0
0
±
2
.5
5
1
8
e+

0
0
0

T
L
P
S
O

1
.0
5
0
2
e+

0
0
1
±
5
.3
4
8
8
e+

0
0
0

1
.5
3
5
5
e+

0
0
3
±
3
.8
4
3
9
e+

0
0
2

5
.3
4
0
4
e+

0
0
1
±
8
.5
9
9
2
e+

0
0
1

6
.6
4
1
0
e+

0
0
1
±
1
.0
8
1
0
e+

0
0
2

M
A
-H

P
S
O
L

0
±
0

1
.4
6
7
7
e-
0
0
9
±
4
.3
9
0
5
e-
0
0
9

3
.0
1
8
6
e-
0
1
0
±
2
.3
0
7
9
e-
0
0
9

3
.4
6
1
0
e+

0
0
0
±
2
.8
4
5
9
e+

0
0
0

21



0 5 10 15 20
−35

−30

−25

−20

−15

−10

−5

0

5

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)
 Function 1

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 2

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 3

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 4

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 5

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 6

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 7

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 8

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

Figure 6: The median dist(D) values of 10-D test functions.

22



0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)
 Function 9

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 10

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 11

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 12

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 13

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 14

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
−1

−0.5

0

0.5

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 15

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

 Function evaluations

 In
d

ex
: 

D
IS

T
(D

=
10

)

 Function 16

 

 

PSOw
UPSO
FDR−PSO
CLPSO
TLPSO
MA−HPSOL

Figure 6: (continued)The median dist(D) values of 10-D test functions.

23



T
ab

le
6:

R
es
u
lt
s
o
f
S
ix

A
lg
o
ri
th

m
s
fo
r
3
0
-D

re
su

lt
s.

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 1
f 2

f 3
f 4

P
S
O
w

5
.4
0
0
3
e-
0
1
4
±
2
.7
9
4
6
e-
0
1
3

2
.0
2
2
0
e+

0
0
1
±
2
.7
3
3
1
e+

0
0
0

1
.2
9
0
1
e-
0
0
0
±
7
.9
6
4
3
e-
0
0
1

3
.0
2
5
5
e-
0
0
2
±
3
.0
1
3
6
e-
0
0
2

U
P
S
O

5
.7
5
4
3
e-
0
4
8
±
1
.8
6
3
7
e-
0
4
7

1
.7
6
1
9
e+

0
0
1
±
2
.8
3
4
3
e+

0
0
0

9
.3
9
0
4
e+

0
0
0
±
3
.2
2
0
6
e+

0
0
0

4
.6
6
6
1
e-
0
0
1
±
1
.0
9
9
7
e-
0
0
0

F
D
R
-P

S
O

4
.1
3
5
2
e-
0
3
7
±
1
.3
2
9
9
e-
0
3
6

1
.8
4
3
1
e+

0
0
1
±
2
.0
0
0
6
e+

0
0
0

1
.9
8
3
6
e-
0
0
1
±
4
.6
9
2
0
e-
0
0
1

2
.0
9
5
5
e-
0
0
2
±
2
.5
5
7
0
e-
0
0
2

C
L
P
S
O

4
.2
8
1
1
e-
1
0
0
±
2
.3
4
4
8
e-
0
9
9

1
.9
1
0
2
e+

0
0
1
±
5
.9
7
3
7
e+

0
0
0

1
.0
1
8
4
e-
0
1
4
±
3
.7
0
0
7
e-
0
1
5

0
±
0

T
L
P
S
O

5
.5
8
4
4
e-
0
0
0
±
1
.7
4
8
2
e-
0
0
0

3
.4
2
2
0
e+

0
0
1
±
2
.3
2
5
6
e+

0
0
1

4
.3
9
1
2
e+

0
0
0
±
6
.7
5
6
3
e+

0
0
0

3
.7
5
4
1
e+

0
0
0
±
1
.3
2
8
9
e+

0
0
1

M
A
-H

P
S
O
L

1
.3
5
6
2
e-
3
1
9
±
0

5
.3
1
2
2
e-
0
0
6
±
1
.7
5
4
6
e-
0
0
5

1
.8
9
4
8
e-
0
1
5
±
1
.8
0
2
7
e-
0
1
5

0
±
0

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 5
f 6

f 7
f 8

P
S
O
w

2
.4
5
4
9
e+

0
0
0
±
1
.7
1
9
4
e+

0
0
0

5
.4
3
9
1
e+

0
0
1
±
1
.8
4
9
5
e+

0
0
1

4
.7
0
6
7
e+

0
0
1
±
1
.0
7
4
8
e+

0
0
1

3
.3
4
6
0
e+

0
0
3
±
5
.3
6
0
9
e+

0
0
2

U
P
S
O

1
.7
6
5
8
e+

0
0
1
±
3
.7
1
3
6
e+

0
0
0

8
.8
2
0
7
e+

0
0
1
±
2
.4
2
4
6
e+

0
0
1

6
.8
6
0
8
e+

0
0
1
±
3
.6
0
8
2
e+

0
0
1

5
.1
0
1
2
e+

0
0
3
±
8
.0
6
2
1
e+

0
0
2

F
D
R
-P

S
O

1
.4
5
8
9
e+

0
0
0
±
1
.3
0
1
5
e+

0
0
0

4
.8
6
5
3
e+

0
0
1
±
7
.9
5
2
6
e+

0
0
0

2
.0
4
6
7
e+

0
0
1
±
1
.1
8
3
4
e+

0
0
1

3
.8
7
1
0
e+

0
0
3
±
4
.6
7
3
8
e+

0
0
2

C
L
P
S
O

0
±
0

9
.2
8
6
3
e-
0
0
1
±
8
.2
3
5
1
e-
0
0
1

3
.5
3
3
3
e+

0
0
0
±
1
.8
1
4
4
e+

0
0
0

3
.2
3
7
3
e+

0
0
2
±
1
.7
0
1
7
e+

0
0
2

T
L
P
S
O

8
.6
3
3
4
e+

0
0
0
±
6
.2
1
9
0
e+

0
0
0

1
.2
3
3
4
e+

0
0
2
±
3
.7
2
8
7
e+

0
0
1

9
.3
4
0
3
e+

0
0
1
±
3
.0
2
4
1
e+

0
0
1

6
.9
2
8
9
e+

0
0
3
±
7
.3
8
9
1
e+

0
0
2

M
A
-H

P
S
O
L

0
±
0

0
±
0

0
±
0

9
.2
1
6
2
e-
0
1
2
±
9
.1
6
2
9
e-
0
1
2

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 9
f 1

0
f 1

1
f 1

2

P
S
O
w

2
.3
4
4
7
e-
0
0
0
±
7
.2
2
3
5
e-
0
0
1

2
.5
0
2
6
e-
0
0
2
±
2
.4
6
7
5
e-
0
0
2

8
.3
9
7
7
e+

0
0
0
±
2
.8
2
4
6
e+

0
0
0

6
.9
8
4
6
e+

0
0
1
±
1
.8
0
3
0
e+

0
0
1

U
P
S
O

9
.9
5
3
4
e+

0
0
0
±
2
.2
6
5
5
e+

0
0
0

1
.2
3
3
3
e-
0
0
1
±
2
.4
6
7
1
e-
0
0
1

2
.3
6
3
4
e+

0
0
1
±
2
.7
3
1
9
e+

0
0
0

1
.0
2
9
9
e+

0
0
2
±
2
.9
6
7
2
e+

0
0
1

F
D
R
-P

S
O

1
.7
4
5
1
e+

0
0
0
±
5
.9
4
3
0
e-
0
0
1

1
.9
9
0
6
e-
0
0
2
±
2
.4
3
3
6
e-
0
0
2

6
.0
2
7
2
e+

0
0
0
±
1
.7
9
1
0
e+

0
0
0

6
.0
8
9
1
e+

0
0
1
±
1
.3
8
4
2
e+

0
0
1

C
L
P
S
O

2
.1
2
1
9
e-
0
0
5
±
1
.0
2
2
6
e-
0
0
4

2
.4
7
1
0
e-
0
0
4
±
1
.3
5
0
2
e-
0
0
3

3
.0
5
1
9
e+

0
0
0
±
2
.0
9
7
3
e+

0
0
0

3
.9
8
5
6
e+

0
0
1
±
8
.7
6
2
7
e+

0
0
0

T
L
P
S
O

4
.7
0
1
3
e+

0
0
0
±
7
.3
3
7
2
e+

0
0
0

2
.9
8
7
3
e-
0
0
2
±
1
.2
6
3
9
e-
0
0
1

1
.6
2
2
0
e+

0
0
1
±
7
.8
0
6
8
e+

0
0
0

1
.3
4
2
4
e+

0
0
2
±
3
.1
7
1
4
e+

0
0
1

M
A
-H

P
S
O
L

0
±
0

0
±
0

0
±
0

0
±
0

P
P
P

P
P
P
P

P
S
O
s

F
u
n
c

f 1
3

f 1
4

f 1
5

f 1
6

P
S
O
w

7
.9
9
0
0
e+

0
0
1
±
2
.2
2
8
7
e+

0
0
1

4
.4
9
2
4
e+

0
0
3
±
7
.9
1
9
1
e+

0
0
2

3
.0
0
0
0
e+

0
0
1
±
7
.0
2
2
1
e+

0
0
1

4
.2
0
1
8
e+

0
0
1
±
8
.9
0
5
7
e+

0
0
1

U
P
S
O

1
.1
6
8
4
e+

0
0
2
±
2
.7
4
2
8
e+

0
0
1

5
.9
8
4
1
e+

0
0
3
±
8
.5
6
7
7
e+

0
0
2

9
.3
3
3
3
e+

0
0
1
±
1
.4
6
0
6
e+

0
0
2

1
.4
7
9
9
e+

0
0
2
±
1
.0
0
2
2
e+

0
0
2

F
D
R
-P

S
O

6
.3
6
7
5
e+

0
0
1
±
1
.6
9
2
6
e+

0
0
1

4
.6
0
2
4
e+

0
0
3
±
8
.3
4
3
9
e+

0
0
2

3
.6
6
6
7
e+

0
0
1
±
7
.6
4
8
9
e+

0
0
1

6
.4
3
8
5
e+

0
0
1
±
1
.3
7
6
7
e+

0
0
2

C
L
P
S
O

3
.8
0
8
8
e+

0
0
1
±
8
.5
9
5
8
e+

0
0
0

2
.8
0
5
1
e+

0
0
3
±
5
.7
5
8
3
e+

0
0
2

4
.3
5
2
0
e-
0
0
3
±
2
.3
7
9
1
e-
0
0
2

2
.1
5
6
0
e+

0
0
1
±
7
.2
0
3
2
e+

0
0
1

T
L
P
S
O

1
.1
1
4
2
e+

0
0
2
±
3
.3
8
2
0
e+

0
0
1

7
.7
9
9
8
e+

0
0
3
±
7
.3
4
9
4
e+

0
0
2

5
.4
6
1
9
e+

0
0
1
±
3
.5
0
7
0
e+

0
0
1

3
.9
2
8
3
e+

0
0
2
±
3
.5
4
9
1
e+

0
0
2

M
A
-H

P
S
O
L

0
±
0

5
.0
9
3
2
e-
0
1
2
±
5
.7
6
0
1
e-
0
1
2

8
.9
1
8
0
e-
0
1
7
±
4
.6
1
7
5
e-
0
1
7

4
.5
8
9
1
e+

0
0
0
±
3
.4
5
7
8
e+

0
0
0

24



4.5. Cylindricity Error Evaluation Based on MA-HPSOL

In the past few years, many kinds of evolutionary algorithms have con-
tributed to optimize a wide range of manufacturing process [34, 35, 36], whose
demands to be more robust, more flexible, more complex are ever increasing.
Cylindrical features have become one of the most important features in me-
chanical designs. They contribute significantly to fundamental mechanical
products such as transmission systems, revolving devices and injection mold-
s, to achieve the intended functionalities. Therefore, evaluating cylindricity
error precisely is very important in high precision manufacturing. Many
attempts have been made for evaluating the cylindricity error[37, 38].

The definition of cylindricity error can be stated as follows [39]. Fig.7

A

n

Q P

F

E

D

C

B

Figure 7: Definition of cylindricity error.

illustrates the cross section of a cylinder with axis direction n(l,m,1) and
a radius R. The projection of a measured point P onto the cylinder is F.
Assuming the axis passes the point Q(x0, y0, 0), then the axis function can
be expressed as (x − x0)/l = (y − y0)/m = z. The distance from Pi(i =
1, 2, . . . , N) to the axis is

ei = |EPi| =
|Q⃗Pi × n|

|n|
=

∣∣∣∣∣∣
i⃗ j⃗ k⃗

xi − x0 yi − y0 zi
l m 1

∣∣∣∣∣∣
√
l2 +m2 + 1

, (10)

where | · | means the length of a vector in the Euclidean space. Mathemati-
cally, the cylindricity error evaluation can be formulated as an optimization
problem with parameter vector (x0, y0, l,m). Hence, the fitness function of
evaluating cylindricity error under minimum zone cylinder(MZC) criterion is
aiming at minimizing the objective function:

f(x0, y0, l,m) = max(ei)−min(ei). (11)

25



Here we will evaluate the cylindricity error by the above proposed MA-
HPSOL algorithm and related parameters are set as follows: 1) The MA-
HPSOL dependent parameters are set as shown in Table 2; 2) Dimension
of particles is 4, which is the length of parameter vector (x0, y0, l,m); 3)
Terminal condition: maximum generations 100. The remaining parameters
are the same as [13]. The measurement data sets are introduced from Ref[38]
and [40]. All parameters are initialized in [-1,1]. The evaluating results are
given in Table 7 and Table 8.

Table 7: Results of data set 1 cylindricity error evaluation.

Parameter Improved GA[37] PSO[38] MA-HPSOL

x0 0.0009250 0.003315 0.0020284

y0 -0.0002253 0.002814 0.0000496

z0 0.0014643 0 0

l 0.0000435 -0.00052 0.0000591

m 0.0000162 0.000609 0.0000214

n 0.9996235 1 1

Cylindricity 0.0105976 0.025368 0.0104864

Table 8: Results of data set 2 cylindricity error evaluation.

Parameter Improved GA[41] PSO-DE[39] MA-HPSOL

x0 0.011853 0.010650 0.0106429

y0 0.047689 0.046918 0.0469181

z0 0 0 0

l -0.000674 -0.000619 -0.000619

m 0.002960 -0.002915 -0.002915

n 1 1 1

Cylindricity 0.184274 0.18397196 0.1839592

As shown in Table 7 and Table 8, the proposed MA-HPSOL algorithm
is a competitive approach in cylindricity error evaluation, which is obviously
a complicated optimization problem. When comparing with other types of
evolutionary algorithms(Improved GA[37, 41], PSO[38], PSO-DE[39]), the
results obtained by MA-HPSOL are better than that listed in existing liter-
atures.

5. Conclusion and future work

This paper presents a high performance memetic algorithm (MA-HPSOL)
to deal with complex numerical optimization problems. Within the frame-

26



work of the proposed algorithm, there are three main components: an hierar-
chical particle swarm optimizer for exploration, a local search method based
on Latin Hypercube Sampling for exploitation and a mutation operator using
differential information.

Concretely, the hierarchical PSO is composed of two layers: the bottom
layer and the top layer. Particles in each swarm of the bottom layer evolve
independently, which means each swarm is a niche with no influence on other
swarms. Global best position in each swarm of the bottom layer becomes the
candidate of the particle in the top layer, so the global best position in the
swarm of the top layer steers the particles in each swarm of the bottom layer
indirectly. The local search strategy, Latin Hypercube Sampling, aims at
exploiting the best solutions found so far uniformly. Both such exploration
and the exploitation operators can help keep the diversity of whole population
on a higher level to avoid particles’ trapping into local optima. Even if
particles in one swarm are trapped in local optima, other swarms are also
likely to reach the global optima. Furthermore, a mutation operator, aiming
at modifying the particles’ positions based on differential information, is
used. According to the experimental results on 16 functions, the proposed
memetic algorithm (MA-HPSOL) has excellent performance to find global
optimal solutions. MA-HPSOL is used to evaluate the cylindricity error and
the experimental results show that it can obtain competitive performance as
well.

For our future work, two aspects, quantitatively depicting the diversity
of the whole population and imposing mutual communication among swarms
in the bottom layer, will be investigated in depth.

Acknowledgments.

This work was partially supported by the National Basic Research Pro-
gram of China (Grant No.2009CB320901) and the European Union Sev-
enth Framework Program (Grant No.247619). We would like to thank Prof.
P.N.Suganthan for providing the source code of “CLPSO” .

References

[1] H. Azamathulla, F. Wu, Support vector machine approach for longitu-
dinal dispersion coefficients in natural streams, Applied Soft Computing
11 (2) (2011) 2902–2905.

27



[2] H. Azamathulla, A. Ghani, C. Chang, Z. Hasan, N. Zakaria, Machine
learning approach to predict sediment load–a case study, CLEAN–Soil,
Air, Water 38 (10) (2010) 969–976.

[3] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings
of IEEE International Conference on Neural Networks, vol. 4, 1942–
1948, 1995.

[4] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory,
in: Proceedings of the Sixth International Symposium on Micro Machine
and Human Science, 39–43, 1995.

[5] Y. Shi, R. Eberhart, A modified particle swarm optimizer, in: Proceed-
ings of IEEE International Conference on Evolutionary Computation,
69–73, 1998.

[6] J. Kennedy, Small worlds and mega-minds: effects of neighborhood
topology on particle swarm performance, in: Proceedings of IEEE
Congress on Evolutionary Computation, vol. 3, 1999.

[7] J. Kennedy, R. Mendes, Population structure and particle swarm per-
formance, in: Proceedings of IEEE Congress on Evolutionary Compu-
tation, vol. 2, IEEE, 1671–1676, 2002.

[8] P. Suganthan, Particle swarm optimiser with neighbourhood operator,
in: Proceedings of IEEE Congress on Evolutionary Computation, vol. 3,
1999.

[9] W. Jian, Y. Xue, J. Qian, Improved particle swarm optimization algo-
rithms study based on the neighborhoods topologies, in: Proceedings of
IEEE Annual Conference of Industrial Electronics Society, vol. 3, 2192–
2196, 2004.

[10] K. Parsopoulos, M. Vrahatis, UPSO: A unified particle swarm optimiza-
tion scheme, Lecture Series on Computer and Computational Sciences
1 (2004) 868–873.

[11] R. Mendes, J. Kennedy, J. Neves, The fully informed particle swarm:
simpler, maybe better, IEEE Transactions on Evolutionary Computa-
tion 8 (3) (2004) 204–210.

28



[12] T. Peram, K. Veeramachaneni, C. Mohan, Fitness-distance-ratio based
particle swarm optimization, in: Proceedings of IEEE Symposium on
Swarm Intelligence, 174–181, 2003.

[13] J. Liang, A. Qin, P. Suganthan, S. Baskar, Comprehensive learning par-
ticle swarm optimizer for global optimization of multimodal functions,
IEEE Transactions on Evolutionary Computation 10 (3) (2006) 281–295.

[14] Y. Jiang, T. Hu, C. Huang, X. Wu, An improved particle swarm op-
timization algorithm, Applied Mathematics and Computation 193 (1)
(2007) 231–239.

[15] S. Yang, C. Li, A clustering particle swarm optimizer for locating and
tracking multiple optima in dynamic environments, IEEE Transactions
on Evolutionary Computation 14 (6) (2010) 959–974.

[16] H. Wang, S. Yang, W. Ip, D. Wang, A particle swarm optimization
based memetic algorithm for dynamic optimization problems, Natural
Computing 9 (3) (2010) 703–725.

[17] H. Wang, S. Yang, W. Ip, D. Wang, A memetic particle swarm optimisa-
tion algorithm for dynamic multi-modal optimisation problems, Interna-
tional Journal of Systems Science doi:\bibinfo{doi}{10.1080/00207721.
2011.605966}.

[18] C. Chen, Two-layer particle swarm optimization for unconstrained op-
timization problems, Applied soft computing 11 (1) (2011) 295–304.

[19] P. Angeline, Using selection to improve particle swarm optimization, in:
Proceedings of IEEE International Conference on Evolutionary Compu-
tation, 84–89, 1998.

[20] M. Lovbjerg, T. Rasmussen, T. Krink, Hybrid particle swarm optimiser
with breeding and subpopulations, in: Proceedings of the third Genet-
ic and Evolutionary computation conference, vol. 1, Citeseer, 469–476,
2001.

[21] V. Miranda, N. Fonseca, EPSO-evolutionary particle swarm optimiza-
tion, a new algorithm with applications in power systems, in: Trans-
mission and Distribution Conference and Exhibition: Asia Pacific.
IEEE/PES, vol. 2, 745–750, 2002.

29



[22] K. Parsopoulos, M. Vrahatis, On the computation of all global minimiz-
ers through particle swarm optimization, IEEE Transactions on Evolu-
tionary Computation 8 (3) (2004) 211–224.

[23] F. Van den Bergh, A. Engelbrecht, A cooperative approach to particle
swarm optimization, IEEE Transactions on Evolutionary Computation
8 (3) (2004) 225–239.

[24] S. Ling, H. Iu, K. Chan, H. Lam, B. Yeung, F. Leung, Hybrid particle
swarm optimization with wavelet mutation and its industrial applica-
tions, IEEE Transactions on Systems, Man, and Cybernetics, Part B:
38 (3) (2008) 743–763.

[25] Z. Xinchao, A perturbed particle swarm algorithm for numerical opti-
mization, Applied Soft Computing 10 (1) (2010) 119–124.

[26] H. Gao, W. Xu, Particle swarm algorithm with hybrid mutation strategy,
Applied Soft Computing 11 (8) (2011) 5129–5142.

[27] S. Hsieh, T. Sun, C. Liu, S. Tsai, Efficient population utilization strategy
for particle swarm optimizer, IEEE Transactions on Systems, Man, and
Cybernetics, Part B: 39 (2) (2009) 444–456.

[28] R. Brits, A. Engelbrecht, F. Van den Bergh, Solving systems of uncon-
strained equations using particle swarm optimization, in: Proceedings
of IEEE International Conference on Systems, Man and Cybernetics,
vol. 3, 102–107, 2002.

[29] N. Huy, O. Soon, L. Hiot, N. Krasnogor, Adaptive cellular memetic
algorithms, Evolutionary Computation 17 (2) (2009) 231–256.

[30] A. Qin, V. Huang, P. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Transac-
tions on Evolutionary Computation 13 (2) (2009) 398–417.

[31] M. McKay, R. Beckman, W. Conover, A comparison of three methods
for selecting values of input variables in the analysis of output from a
computer code, Technometrics (1979) 239–245.

[32] J. Liang, P. Suganthan, K. Deb, Novel composition test functions for
numerical global optimization, in: Proceedings of IEEE Symposium on
Swarm Intelligence, 68–75, 2005.

30



[33] S. Ho, L. Shu, J. Chen, Intelligent evolutionary algorithms for large
parameter optimization problems, IEEE Transactions on Evolutionary
Computation 8 (6) (2004) 522–541.

[34] K. Chan, C. Kwong, Y. Tsim, A genetic programming based fuzzy re-
gression approach to modelling manufacturing processes, International
Journal of Production Research 48 (7) (2010) 1967–1982.

[35] K. Chan, C. Kwong, Y. Tsim, Modelling and optimization of fluid dis-
pensing for electronic packaging using neural fuzzy networks and genet-
ic algorithms, Engineering Applications of Artificial Intelligence 23 (1)
(2010) 18–26.

[36] K. Chan, C. Kwong, H. Jiang, M. Aydin, T. Fogarty, A new orthogonal
array based crossover, with analysis of gene interactions, for evolutionary
algorithms and its application to car door design, Expert Systems with
Applications 37 (5) (2010) 3853–3862.

[37] H. Lin, Y. Peng, Evaluation of cylindricity error based on an improved
GA with uniform initial population, in: Proceedings of IITA Interna-
tional Conference on Control, Automation and Systems Engineering,
IEEE, 311–314, 2009.

[38] J. Mao, Y. Cao, J. Yang, Implementation uncertainty evaluation of
cylindricity errors based on geometrical product specification (GPS),
Measurement 42 (5) (2009) 742–747.

[39] X. Zhang, X. Jiang, P. Scott, A reliable method of minimum zone eval-
uation of cylindricity and conicity from coordinate measurement data,
Precision Engineering 35 (3) (2011) 484–489.

[40] K. Carr, P. Ferreira, Verification of form tolerances part II: cylindricity
and straightness of a median line, Precision Engineering 17 (2) (1995)
144–156.

[41] X. Wen, A. Song, An improved genetic algorithm for planar and spatial
straightness error evaluation, International Journal of Machine Tools
and Manufacture 43 (11) (2003) 1157–1162.

31


