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a b s t r a c t

Extreme Learning Machine (ELM) as an emergent technology has shown its promising performance in
many applications. This paper proposes a parallelized ELM ensemble based on the Min–Max Modular
network (M3-network) to meet the challenge of the so-called big data. The proposed M3-ELM first
decomposes classification problems into smaller subproblems, then trains an ELM for each subproblem,
and in the end ensembles these ELMs with the M3-network. Twelve data sets including both benchmarks
and real-world applications are employed to test the proposed method. The experimental results show
that M3-ELM not only speeds up the training phrases by 1.6–4.6 times but also reduces the test errors by
0.37–19.51% compared with the normal ELM. The results also indicate that M3-ELM possesses scalability
on large-scale tasks and accuracy improvement on imbalanced tasks.

& 2013 Elsevier B.V. All rights reserved.

1. Introduction

Extreme Learning Machine (ELM) as an emergent technology
has recently attracted the attention from more and more research-
ers. Compared with traditional machine learning methods such as
back propagation [1] and support vector machine [2,3], it provides
better generalization performance at a much faster learning speed
and with least human intervening [4].

The essence of ELM is that, different from the common under-
standing of learning, the hidden layer of a single-hidden layer
feedforward network needs not be tuned [5–7,4]. One of the
typical implementations of ELM is to employ random computa-
tional nodes in the hidden layer, and then resolve the output
weights using the least-square method.

Ensemble methods consist in using multiple models to
obtain better predictive performance than that could be obtained
from any of the constituent models [8,9]. This technique has
been proved very effective in many applications [10–12]. The
ensemble method of Min–Max Modular network (M3-network)
is proposed by Lu and Ito as an approach to complex pattern
classification tasks [13]. It follows the principle of divide-and-

conquer – dividing the whole task into smaller pieces and then
solving them one by one [14,15].

Though ELM has been well researched as a singular classifier,
yet ELM ensembles are less explored for pattern classification
tasks. However, recently such a demand has been raised by the so-
called big data. This term refers to a collection of data sets so large
and complex that it becomes awkward to work with using on-
hand database management tools [16]. Conventional machine
learning methods work poorly on big data. Those big data datasets
are usually too large to be fully loaded into the memories of
computers though this procedure is required by most conventional
methods. In addition, the running time of those methods on big
data datasets is usually extremely long if a massively parallel
computing system is not available.

In this paper, we propose a parallelized ELM ensemble method
based on M3-network, named M3-ELM, to meet the challenge of
big data. In addition to the high efficiency brought by parallelism,
this method also solves imbalanced classification tasks well as its
task decomposition can convert imbalanced ones into balanced
ones. A wide range of classification tasks are employed to test the
accuracy and scalability of the proposed method.

The rest of this paper is organized as follows. Related work is first
reviewed in Section 2. Then ELM and M3-network are introduced in
Section 3 and Section 4, respectively. After that, the proposed M3-
ELM is described and analyzed in Section 5. The experimental results
and analysis are presented in Section 6. In the end, we conclude the
paper with a description of the future work in Section 7.
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2. Related work

ELM ensembles have been less explored compared to the large
volume of papers about ELM, and only a few related researches
have been reported.

An integration of several ELMs is proposed by Sun et al. [17] to
predict the future sales amount. Several ELM networks were
connected in parallel and the average of the ELMs’ outputs was
used as the final predicted sales amount. The resulting ensemble
has better generalization performance.

Heeswijk et al. [18] investigate the adaptive ensemble models
of ELM on the application of one-step ahead prediction. The
ensemble weights are tuned online to adapt to non-stationary
time series. The empirical studies verify that the proposed method
not only achieves a testing error comparable to LS-SVM on
stationary time series, but also possesses adaptivity to non-
stationary time series.

Lan et al. [19] propose an ensemble of online sequential ELMs
(EOS-ELM). An EOS-ELM model comprises multiple online sequen-
tial ELMs (OS-ELM), and takes the average value of their outputs as
the output. The intuition behind is that the nature of randomly
generated parameters makes each OS-ELM network distinct, thus
they may have different adaptive capacity to the new data. The
experimental results show that EOS-ELM is more stable than the
original OS-ELM in most problems.

Heeswijk et al. [20] propose a GPU-accelerated ELM ensemble
for large scale regression applications. The proposed method first
trains multiple ELMs independently through an efficient Leave-
One-Out method (LOO) on the whole training sets, and then
ensembles these ELMs through weighted voting. The LOO method
accomplishes both model training and model structure selection
(determining the number of hidden neurons) for each component
ELM. In addition, the LOO error is employed to calibrate the ensemble
weights.

Escandell-Montero et al. [21] propose an ensemble of ELMs
using a regularized committee for regression problems. A regular-
ized version of least squares fitting is employed to calculate the
combining weights. The experiments on real-world regression
data sets demonstrate that their method generally outperforms
the conventional ELM.

This paper employs the M3-network to ensemble ELM to
improve its scalability on large-scale classification problems,
which has not been addressed before. In addition, the ensemble
methods in the related work are mainly combining the outputs of
component ELMs linearly, while the proposed method leverages
the M3-network to derive the prediction instead.

3. ELM

ELM, proposed by Huang et al. [4–7,22–24], is a single-hidden
layer feedforward network. The output function of ELM can be
formulated as follows:

f ðxÞ ¼ ∑
L

i ¼ 1
βigðx;wi; biÞ; ð1Þ

where L is the number of hidden nodes, βi is the output weight
vector that connects the i-th hidden node and output nodes, g is
the activation function, wi is the input weight vector that connects
the i-th hidden node and input nodes, and bi is the bias of the i-th
hidden node.

Two kinds of hidden nodes are usually employed in ELM [4,25].
One is additive hidden nodes whose activation function can be
formulated as

gðx;wi; biÞ ¼ gðxTwiþbiÞ: ð2Þ

The other is Radial Basis Function (RBF) hidden nodes whose
activation function can be formulated as,

gðx;wi; biÞ ¼ g
Jx�wi J

bi

� �
: ð3Þ

ELM adopts a training method that is quite different from
ordinary single-hidden layer feedforward networks [5,6]. The
input weights wi and biases bi are chosen randomly and the
output weights βi are calculated analytically. For a training set
ðxk; ykÞLk ¼ 1, the training of ELM can be formulated as follows:

arg min
β

ð‖Y�Hβ‖2Þ; ð4Þ

where,

X ¼
xT1
⋮
xTN

0
B@

1
CA; Y ¼

yT1
⋮
yTN

0
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βT
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⋮
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L
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The parameter β is determined by

β̂ ¼H†Y ¼ ðHTHÞ�1HTY ð5Þ
where H† is the Moore–Penrose generalized inverse of H.

Regularized ELM is proposed to increase the stability of the
trained model especially when the number of hidden neurons is
large [26,4]. It achieves better generalization performance than
the basic one in real-world applications [24,27]. The training of
L2-regularized ELM can be formulated as follows:

arg min
β

ðC‖Y�Hβ‖2þ‖β‖2Þ; ð6Þ

where C is the trade-off between the training error and the
regularization. The corresponding solution of β is

β̂ ¼ HTHþ I
C

� ��1

HTY : ð7Þ

ELM achieves high classification accuracy in many applications.
In theory, Huang et al. prove that ELM can approximate any
continuous target function on any compact input sets [5,6].

4. M3-network

This section introduces the ensemble method of M3-network
which is used in Section 5 to scale ELMs to big data. M3-network is
proposed by Lu and Ito to solve complex classification problems in
1997 [13,14]. Its work flow consists of task decomposition, training
component classifiers and module combination.

4.1. Task decomposition

Let X denote the training samples for a K-class classification
problem:

X ¼ [K
i ¼ 1 X i ¼ [K

i ¼ 1 fxilg
Li

l ¼ 1 ð8Þ
where X i is the training sample set of the class Ci, xli is the l-th
sample, and Li is the number of samples in the class Ci.

This K-class classification problem can be divided into
KðK�1Þ=2 smaller binary subproblems through the one-versus-
one (OVO) strategy as follows:

T ij ¼ fðxil; þ1ÞgLi

l ¼ 1 [ fðxjl; �1ÞgLj

l ¼ 1

for i; j¼ 1;…;K and ia j ð9Þ
where the classes Ci and Cj are taken as positive and negative
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classes, respectively. Alternatively, a K-class classification problem
can also be divided into K binary subproblems through the
one-versus-all (OVA) strategy as follows:

T i ¼ fðxil; þ1ÞgLi

l ¼ 1 [ ð[K
j ¼ 1;ja ifðxjl; �1ÞgLj

l ¼ 1Þ
for i¼ 1;…;K ð10Þ

Note that multi-labeled classification problems can only employ
the OVA strategy. The reason is that a sample can have more than
one class labels in multi-labeled problems [28], and a sample
might belong to both the positive and negative classes in some
binary tasks derived by OVO.

These binary subproblems defined by Eqs. (9) and (10) can be
further divided. Assume that the sample set X i is partitioned into
N i subsets in the form

X ðμÞ
i ¼ fxði;μÞl gL

ðμÞ
i

l ¼ 1

for i¼ 1;…;K and μ¼ 1;…;N i; ð11Þ

where X ðμÞ
i is the a-th subset of X i, x

ði;μÞ
l is the l-th sample, LðμÞ

i is
the number of the samples, and [N i

μ ¼ 1X
ðμÞ
i ¼X i.

After the partition of the sample sets defined by Eq. (11) , each
binary subproblem T ij is divided as follows:

T ðμ;νÞ
ij ¼ fðxði;μÞl ; þ1ÞgL

ðμÞ
i

l ¼ 1 [ fðxðj;νÞl ; �1ÞgL
ðνÞ
j

l ¼ 1

for i; j¼ 1;…;K ; and ia j

μ¼ 1;…;N i; ν¼ 1;…;N j; ð12Þ

where the sample sets X ðμÞ
i and X ðνÞ

j are taken as positive and
negative sets, respectively.

A wide range of decomposition strategies have been proposed,
including random strategy, hyperplane strategy, machine learning
based strategy and knowledge-based strategy. The random strat-
egy randomly divides a training set into several subsets [13] (see
Fig. 1b). This strategy is straightforward and easy to apply, but it
does not make use of any statistical properties or the prior
knowledge of the training data. The hyperplane strategy utilizes
the geometry information of the training samples in the feature
space [29]. It employs a group of parallel hyperplanes to divide the
sample sets (see Fig. 1c). The machine learning based strategy
adopts conventional machine learning methods into decomposi-
tion methods, such as clustering-based decomposition [30] (see
Fig. 1d) and perceptron-based decompositions [31]. The knowledge-
based strategy leverages the prior knowledge about the training
samples. For example, to recognize gender from facial images, the
training set is decomposed through the age of the persons [32]; to
classify patent documents, the training set is decomposed through
the published date and the subclasses [33,34]; to predict the protein
subcellular location, the training set is decomposed through the
gene ontology [35].

4.2. Training component classifiers

After task decomposition, learning the binary subproblems
defined by Eq. (12) is independent and non-communicating tasks.
Therefore, they can be solved simultaneously. Assume that the
classifier learned from the subproblem T ðμ;νÞ

ij is noted as Mðμ;νÞ
ij .

The subproblems can be learned through identical classifiers or
different kinds of classifiers. In previous researches, various
classifiers such as multilayer neural networks [14], k-nearest
neighbor algorithm [36] and support vector machines [37] have
been employed.

4.3. Module combination

After all the binary subproblems defined by Eq. (12) have been
learned, the trained classifiers are integrated through the M3-
network (Fig. 2). The principles behind are the minimization
principle and the maximization principle [14].

Theorem 4.1 (Minimization Principle). The classifiers Mðμ0 ;νÞ
ij ðν¼

1;…;N jÞ, which are trained by the data sets that have the same
positive training samples X ðμ0Þ

i as defined by Eq. (11), should be
integrated through minimization.

Proof. The resultant network can be proved to correctly classify
all the training samples as follows. Suppose that the training
sample x is positive, that is, xAX ðμ0Þ

i . As all the base classifiers have
learned x as a positive sample, they all output high scores. Thus

Fig. 1. Illustration of M3 task decomposition strategies. Here 12 samples at the same class are divided into three subsets. (a) Original sample set; (b) random strategy
(the shapes represent different subsets); (c) hyperplane strategy (the dotted lines represent the hyperplanes); (d) clustering-based strategy (the dotted ellipses represent
the clusters).

Fig. 2. Module combination of M3 on the binary problem T ij. The MIN and MAX
units represents the minimization function (output the minimum from the inputs)
and themaximization function (output the maximum from the inputs), respectively.
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the minimization also outputs a high score, which makes the
network predict positive. Conversely, suppose that the training
sample x is negative. Then there exists ν0 ð1rν0rN jÞ, xAX ðν0Þ

j . As
the base classifier Mðμ0 ;ν0Þ

ij has learned x as negative, it outputs a
low score. Thus the minimization also outputs a low score, which
makes the network predict negative. □

Theorem 4.2 (Maximization Principle). The classifiers Mðμ;ν0Þ
ij ðμ¼

1;…;N iÞ, which are trained by the data sets that have the same
negative training samples X ðν0Þ

j as defined by Eq. (11), should be
integrated by maximization.

proof. The resultant network can be proved to correctly classify
all the training samples, similar to the proof of the Minimization
Principle. For each positive training sample xAX ðμ0Þ

i ð1rμ0rN iÞ,
the base classifier Mðμ0 ;ν0Þ

ij has learned it as positive, so it outputs a
high score. Thus the maximization outputs a high score. Conver-
sely, for each negative training sample xAX ðν0Þ

j , all the base
classifiers have learned it as negative, so they all output low
scores. Thus the maximization outputs a low score. □

The module combination for the task decomposition defined by
Eq. (12) can be formulated as

gijðxÞ ¼ max
Ni

μ ¼ 1
min
Nj

ν ¼ 1
hðμ;νÞij ðxÞ ð13Þ

where x is a sample, gij(x) is the discriminant function of the binary
problem T ij, and hðμ;νÞij is the output of the module Mðμ;νÞ

ij .
In addition to the above standard combination strategy, several

other strategies have also been proposed. The symmetric strategy
avoids the predictive bias of the standard combination strategy
[38]. Fig. 3 illustrates the two combination strategies. Suppose the
sample sets of the positive and negative classes are both decom-
posed into 5 subsets, which yields 25 modules; their outputs on a
test sample are presented (1 for positive and 0 for negative). The
standard combination strategy first performs minimization along
each row, then performs maximization on the results of each rows
(Fig. 3a). Its output can be formulated as

Output ¼ 1 if there exists a row of all 1
0 otherwise

�
ð14Þ

The symmetric combination strategy starts from the top left cell,
steps right if a cell is 1 and step down otherwise recursively
(Fig. 3a). The output is 1 if it ends in the left boundary, or 0 if it
ends in the bottom boundary. Its output can be formulated as

Output ¼
1 if there exists a row of all 1
0 if there exists a column of all 0
1 or 0ðnot ensuredÞ otherwise

8><
>:

ð15Þ

According to Eqs. (14) and (15), the standard strategy has a bias
towards 1 while the symmetric strategy has no such a bias.
Another advantage of the symmetric strategy is lower computa-
tional complexity, as it calls at most N iþN j modules for each test
sample. In addition to the symmetric strategy, an meta-learning
based strategy which employs a decision tree algorithm to
combine the modules has been explored recently [39].

5. M3-ELM

Big data problems are usually extremely large thus the con-
ventional ELM might become intractable. First, the training data
sets are possibly too large to be fully loaded into the memories of
the computation nodes in a parallel computation environment,
thus the ELM models cannot be successfully learned. Second, the
training procedure of ELM is not natively parallel, so it is quite
time-consuming. M3-network is a general and parallelized
machine learning framework which can employ any kind of
classifiers. Therefore, this paper incorporates ELM into the frame-
work of M3-network.

Fig. 4 illustrates the working flow of M3-ELM. The original
problem T is a binary problem where the circles and rectangles
represent the positive and negative samples respectively, and the
dotted line represents the oracle discriminant plane. The first step
is to employ M3 decomposition strategies to decompose this
problem. Both the positive and negative samples are divided into
two subsets, thus four subproblems are formed noted as T 00–T 11.
The second step is to utilize ELM to learn each subproblem. The
trained ELM models are noted as E00–E11. The third step is to
employ the M3 module combination strategy to combine the
learned ELM models. The resultant network first applies MIN to
ðE00; E01Þ and ðE10; E11Þ, and then applies MAX to the outputs of
the MIN units. This network is just the solution to the original
problem T .

A potential benefit of applying M3-ELM to big data problems is
that the prior knowledge and domain knowledge about the
problems can be utilized. The previous researches on M3-network
have employed the prior knowledge and domain knowledge to
partition the sample sets. Experimental results show that this
method not only reduces the overall training time costs, but also
raises the classification accuracies. Those researches include
employing the information of public date and subclass to decom-
pose the set of patent documents for patent classification [40,34],
employing gene ontology to decompose the set of protein samples
for protein subcellular localization [35], and employing the age
information to decompose the set of facial images for gender
recognition [32].

Fig. 3. Illustration of module combination strategies: (a) standard combination strategy; (b) symmetric combination strategy.
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5.1. Complexity analysis

The training procedure of ELM is formulated by Eq. (5), whose
complexity can be expressed as

QELM
train ¼ QHþQH† þQH†Y

¼OðNMLÞþOð2NL2þL3ÞþOðNLÞ

¼OðLðMþ2Lþ1ÞNþL3Þ ð16Þ

where QH, QH† and QH†Y are the complexity of producing H, the
Moore–Penrose generalized inverse and the matrix multiplication
respectively; N, L and M are the numbers of training samples,
hidden neurons and features respectively. The test procedure of
ELM is formulated by Eq. (1), whose complexity will be

QELM
test ¼OðMLÞ ð17Þ

M3-ELM is a parallel method, and each component ELM is
independent thus they are trained in parallel. The time cost of
training M3-ELM is equal to the longest time of training a
component ELM, so the training time complexity is

QM3 �ELM
train ¼OðLðMþ2Lþ1ÞNη þL3Þ ð18Þ

where the number of training samples for each component ELM is
assumed η times smaller than the whole training set. Therefore,
the speedup will be between 1 and η, affected by L. If L is small,
M3-ELM can achieve a speed up close to η. Conversely, If L is very
large, L3 will dominate the time cost of training, and the speed up
will be close to 1.

The test procedure of M3-ELM consists of calling component
ELMs and the min–max network, whose time complexity is

QM3 �ELM
test ¼ QELM

test þQminþQmax

¼OðMLÞþOð1ÞþOð1Þ
�OðMLÞ: ð19Þ

Note that the time complexity of minimization and maximization is
1 in parallel computation environment. Therefore, the test com-
plexity of M3-ELM is approximately equal to that of ELM.

5.2. Scalability analysis

In real-world applications, M3-ELM can improve the scalability
of the conventional ELM so as to provide us with an efficient
approach to dealing with big data problems.

M3-ELM can manipulate the size of the subproblems to fit into
the memory capacity of the computation nodes in a parallel
computation environment. The normal training procedure of
ELM models commonly requires all the samples to be loaded into
the memory. However, big data problems are usually as large as
several tera or peta bytes, thus they are impossible to be fully
loaded. In contrast, M3-ELM can decompose the sample set of each
class into proper size to meet the memory limits.

M3-ELM can also manipulate the number of subproblems to fit
into the number of computation nodes. The number of resultant
subproblems produced by the M3-ELM decomposition strategy is
predictable. Suppose the positive and negative sample sets of a
binary classification problem are divided into Ni and Nj subsets
respectively, then the number of resultant subproblems will be
Ni � Nj.

6. Experiments

The proposed M3-ELM is investigated through experiments in
this section. The experimental settings are first described. Then
the accuracies and training time costs of the conventional ELM and
M3-ELM are compared. In the end, the effects of the ELM related
parameters are analyzed.

6.1. Experimental setting

6.1.1. Experimental data sets
The experimental data sets consist of a synthetic one, four

relatively large benchmarks from UCI Machine Learning Repository
[41], and a text categorization task derived from International Patent
Classification (IPC). In this paper, we handle binary problems. Multi-
class problems can be converted to binary ones through the one-
versus-all or one-versus-one framework. Table 1 presents their
sizes.

MIN

MIN

MAX

Problem
decomposition

Training 
component
ELMs

Module
combination

Solution

Fig. 4. Working flow of M3-ELM. First decompose the original problem T into subproblems; second train a component ELM for each subproblem; third combine the ELMs
through a M3-network. The result will be a solution for the original problem.
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The synthetic data set of two-spiral problem has been chosen
as a benchmark in many machine learning studies [42,14,43]. This
2-D data set enables the working mechanism of M3-ELM to be
visualized. Fig. 6(a) presents the ground truth separating boundary
of this problem. The training set of this data set is downloaded
from 〈http://www.cs.swarthmore.edu/�meeden/cs81/s06/lab02.
html〉. The test set is made by picking 200�200 uniformly
distributed grid points from the region of [0,1]� [0,1] and assign-
ing them the label of the nearest training sample.

The four UCI benchmarks used in this paper are Adult [44],
Bank Marketing [45], Chess (King-Rook vs. King-Knight) [46] and
Internet Advertisements [47]. They are selected from the UCI
repository because they are relatively large. These data sets except
the last one provide no train/test split, so the whole samples are
randomly divided into training and test sets according to a widely
adopted ratio of 2:1.

Patent classification is a real-world application of text categor-
ization [48–50]. IPC is a hierarchical patent classification taxo-
nomy created under the Strasbourg Agreement in 1971 and
then administered by World Intellectual Property Organization.
When patent application documents are submitted to patent
offices, they are categorized into IPC classes to facilitate issuing
and retrieval.

The experimental data sets are made from the Japanese patent
corpus released by the project of NII Test Collection for IR Systems
(NTCIR).1 This corpus is publicly available for academic research.
The experimental data sets are built by randomly picking up
patent documents from the sections G (Physics) and H (Electricity)
of IPC. According to our previous study, these two classes are quite
difficult to distinguish [33]. The data sets with the different ratios
between positive and negative samples are built to test the effects
on imbalanced problems. The data sets with large number of
training samples are built to test the scalability.

The Japanese texts in the data set are tokenized and stemmed
by ChaSen [51,52],2 and then function words are removed. Then
the feature selection criterion of χ2 is used to pick out the top-
5000 most useful words [53,33]. In the end, the remaining words
are indexed by Term Frequency-Inverse Document Frequency (TF-
IDF) [53,54]. The following TFIDF formula is chosen as it achieves
slightly higher classification accuracy than other variants accord-
ing to our experiments:

TFIDFðt; dÞ ¼ nðt; dÞlog jT j
nT ðtÞ

where t denotes a term, d denotes a document, T denotes the
training corpus; nðt; dÞ denotes the times that t occurs in d, namely
term frequency; nT(t) denotes the number of documents where t
occurs, named document frequency. The L2-norm of representa-
tion vectors is unified to 1.

6.1.2. Parameter settings
In this paper, the L2-regularized ELM is taken as the baseline

method and the component classifier of M3-ELM. The L2-
regularized ELM has two parameters – the trade-off between
training error and regularization noted as C, and the number of
hidden neurons noted as L. The M3-ELM has five parameters – C
and L for component ELMs, the decomposition strategy D, the
number of decomposed subproblems and the combination strat-
egy C. This paper adopts 5-fold cross-validation on the training set
and greedy algorithm to decide these parameters (except the
number of the decomposed subproblems). The algorithm for
M3-ELM is presented in Fig. 5; the algorithm for ELM is a
simplification of it without tuning the decomposition and combi-
nation strategies.

The knowledge-based decomposition strategy of M3-ELM
depends on the practical applications, and here it is performed
only on the patent classification problems. Real-word big data
problems usually have some extra information such as when,
where and how the data is collected. The knowledge-based
decomposition strategy is to put the samples of similar extra
attributes into the same subset. For the patent classification task,
each sample has subclass labels [55,49], thus the knowledge-based
decomposition strategy picks up the samples that belong to the
same subclass to form subsets [33,40].

Table 1
Experimental data sets.

Problem # Train # Test # Positive # Negative # Features

Two-spiral 194 40,000 20,097 20,097 2
Adult 30,162 15,060 11,208 34,014 22
Bank 30,141 15,070 5289 39,922 16
Chess 2131 1065 1669 1527 36
Internet Ads. 2186 1093 459 2820 1558
Patent(balanced) 20,000 10,000 15,000 15,000 5000
Patent(1:3a) 20,000 10,000 7500 22,500 5000
Patent(1:9a) 20,000 10,000 3000 27,000 5000
Patent(30,000b) 30,000 10,000 20,000 20,000 5000
Patent(40,000b) 40,000 10,000 25,000 25,000 5000
Patent(50,000b) 50,000 10,000 30,000 30,000 5000
Patent(60,000b) 60,000 10,000 35,000 35,000 5000

a The ratio of the positive samples versus the negative ones.
b The size of training sets.

Fig. 5. Tune the parameters of M3-ELM through cross-validation and greedy search.
Each cross-validation is performed 20 times given the random nature of ELM.

Table 2
Parameters of ELM and M3-ELM.

Data set ELM M3-ELM

C L C L Split Combine # Modules

Two-spirals 210 210 210 210 Hyperplane Standard 3�3
Adult 2�5 210 2�5 210 Cluster Standard 1�3
Bank marketing 2�5 210 2�4 210 Cluster Symmetric 1�7
Chess 20 210 20 210 Hyperplane Standard 2�2
Internet Ads. 2�3 210 2�4 210 Hyperplane Standard 1�6

Patent(balanced) 2�7 210 2�5 210 Knowledge Symmetric 2�2
Patent(1:3) 2�4 210 2�4 210 Knowledge Standard 1�3
Patent(1:9) 20 210 2�5 210 Knowledge Standard 1�9

Patent(30,000) 2�6 210 2�5 210 Knowledge Standard 3�3
Patent(40,000) 2�6 210 2�5 210 Knowledge Standard 4�4
Patent(50,000) 2�6 210 2�6 210 Knowledge Standard 5�5
Patent(60,000) –a – 2�4 210 Knowledge Standard 6�6

a Run out of memory.

1 http://research.nii.ac.jp/ntcir/index-en.html
2 http://chasen.naist.jp/hiki/ChaSen/
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The number of the decomposed subproblems for M3-ELM in
real-world applications should satisfy the following three points:

� The size of each subproblem should be small enough to be
loaded into the memory of each computation node in a parallel
computation environment.

� The size of each subproblem should not be too small either,
which will make the number of subproblems too large.

� The positive and negative samples in each subproblem should be
balanced in number so as to achieve high classification accuracy.

Therefore this paper sets the number of decomposed subproblems by
first computing the ratio between the positive and negative training
samples, e.g. 1:3.4; then rounding the numbers into integers which
leads to 1:3 for this example; after that trying them as the number of
decomposed subproblems, that is, decompose the positive samples
into one subset (which is equivalent to do nothing) and decompose
the negative samples into three subsets. If the size of the decomposed
subproblems is larger than the memory capacity of the computational
nodes, increasingly multiply the numbers, that is, trying the 2�6,
3�9, etc. The experiments of this paper are simulated on a six-cored
computer with 16 G memory, thus we assume that each computation
node has 2.5 G memory. The decomposition of the two-spiral problem
is an exception, whose number of decomposed subproblems is set
3�3 to demonstrate the effect of M3-ELM.

Table 2 presents the parameter setting of ELM and M3-ELM. The
optimal Cs verify for different data sets, while the optimal Cs of the
two methods are equal or close. Large Ls are adopted on all the
data sets for both methods. As for the settings related to M3-ELM,
the hyperplane decomposition strategy performs best on Two-
spirals, Chess and Internet advertisements, while the cluster
strategy performs best on Adult and Bank marketing. The
knowledge-based strategy outperforms the others on the patent
data sets. The symmetric combination strategy is adopted on Bank
marketing and Patent(balanced), while the standard combination
strategy is adopted on the rest of the data sets.

6.1.3. Other settings
The experiments are carried out in MATLAB 7.10.0 environment

running in an AMD six-cored 3.00-GHZ CPU with 16-GB RAM. The
MATLAB code for ELM is downloaded from [24].3 The code for
M3-ELM is implemented also in the language of MATLAB by us.

6.2. Performance comparison

The classification accuracy and training time costs of ELM
and M3-ELM are compared. Each experiment is performed 50
times given the random nature of ELM. Table 3 presents the
results. The measurement of error reduction is computed as
follows [56]:

ErrorReduction¼ 1�1�Accnew
1�Accold

ð20Þ

where Accold and Accnew are the old and new accuracies, respec-
tively. The experimental results show that M3-ELM outperforms
ELM on all the data sets. It reduces the test error by 0.37–19.51%
and speeds up the training phrases by 1.6–4.6 times.

According to the analysis in Section 5.1, the speed up of training
is roughly proportional to the size ratio of the original problems
against the subproblems, noted as η at Eq. (18). For example, the
data set of Patent(30,000) is decomposed into 3�3 subproblems,
that is, both the positive and negative samples are split into
3 subsets and then be paired into 9 binary subproblems. Therefore
each subproblem is 3 times smaller than the original problem, so
the speed up should be close to 3. Most results presented in Table
3 are proportional to η while those of Two-spirals, Chess and
Patent(1:9) slightly violate the relation. This is because the actually
measured speed up is affected by the number of hidden neurons,
and the working characteristic of the computation system.

The two-spiral problem is on a 2-D space, so it can be
visualized. Fig. 6(a) presents the ground truth, and (b)–(f) presents
the separating boundaries of the learned ELM and M3-ELM
models. The result that M3-ELM models are more accurate than
the ELM model can be visually verified as the area of (c), (d) and
(f) matching the ground truth (a) is larger than that of (b).
However, the separating boundaries of M3-ELM have a few spikes.

In addition, Fig. 7 illustrates the derivation of the M3-ELM
model that adopts the hyperplane decomposition and standard
combination strategies. The separating boundary is derived
through first applying 3 MIN units to 9 component ELMs and then
applying an MAX unit to the results of the MIN units.

M3-ELM has an advantage on imbalanced problems as indi-
cated by the results on the three patent data sets that have
different positive-negative ratios. As mentioned before, M3-ELM
can transform imbalanced problems into balanced ones through
the task decomposition. Table 3 shows that, as the imbalance
between the numbers of positive and negative samples grows

Table 3
Classification accuracies and training time costs on experimental data sets.

Data set Accuracy Training time (s) Comparison

ELM M3-ELM ELM M3-ELM Error red. (%) Speed up.

Two-spirals 0.9380 70.0016a 0.9394 70.0012 0.56 0.35 2.26 1.6
Adult 0.8357 70.0007 0.8363 70.0009 18.43 9.94 0.37 1.9
Bank marketing 0.8963 70.0006 0.8986 70.0008 17.95 6.13 2.22 2.9
Chess 0.9918 70.0024 0.9934 70.0023 5.15 1.22 19.51 4.2
Internet ads. 0.9758 70.0021 0.9766 70.0014 2.57 1.20 3.31 2.1

Patent(balanced) 0.8397 70.0037 0.8540 70.0028 33.42 17.03 8.92 2.0
Patent(1:3) 0.8640 70.0029 0.8767 70.0019 33.10 17.18 9.34 1.9
Patent(1:9) 0.9211 70.0015 0.9315 70.0013 33.15 8.31 13.18 4.0

Patent(30,000) 0.8460 70.0017 0.8694 70.0014 49.78 16.80 15.19 3.0
Patent(40,000) 0.8464 70.0025 0.8715 70.0018 65.82 17.52 16.34 3.8
Patent(50,000) 0.8467 70.0026 0.8759 70.0021 97.68 21.35 19.05 4.6
Patent(60,000) –b 0.8794 70.0022 – 18.36 – –

a Average7standard derivation. Each experiment is performed 10 times.
b Run out of memory.

3 http://www.ntu.edu.sg/home/egbhuang/
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from 1:1 to 1:9, the error reduction against the conventional ELM
correspondingly rises from 8.92% to 13.18%.

M3-ELM also has an advantage on large-scale data sets. Fig. 8
compares the classification accuracies and training time costs of

the two methods on the Patent data sets. ELM runs out of memory
when the number of training samples sets reaches 60,000. On the
contrary, the memory requirement of M3-ELM is manageable
because it decomposes large classification problems into smaller

Subproblems
Separating Boundaries
of Component ELMs

MIN

MIN

MAXMIN

Fig. 7. Derivation of M3-ELM model on the two-spiral problem. (a) Decompose the problem into 9 subproblems by the hyperplane decomposition strategy; (b) Learn one
ELM for each subproblem and combine them by the M3-network. The white color of the separating boundaries represents positive output while the black color represents
negative output. Thus MIN shrinks white regions while MAX expands them.

Fig. 6. Separating boundaries of the two-spiral problem: (a) ground truth; (b) ELM model (acc.: 0.9375); (c)–(e) M3-ELM models of standard combination with hyperplane
decomposition (acc.: 0.9397), clustering decomposition (acc.: 0.9383) and random decomposition (acc.: 0.9262), respectively; (f) M3-ELM model of symmetric combination
with hyperplane decomposition (acc.: 0.9396).
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ones. The training time of M3-ELM is determined by the longest
time to train one component ELM.4 Though the Patent data sets
grow larger, yet the size of the subproblems is unchanged. There-
fore the training time of M3-ELM is almost of no growth.

6.3. Parameter analysis

ELM and M3-ELM have two common parameters – the trade-off
between training error and regularization noted as C, and the
number of hidden neurons noted as L. This subsection investigates
their relation with the classification accuracy. Similar to [24], Fig. 9
presents the test accuracies of different Cs and Ls on the two-spiral
task. The experiments for each tuple (C, L) are performed 20 times,
and the averaged accuracies are taken as the results.

The accuracies of ELM and M3-ELM under different Cs are similar.
They both can achieve high classification accuracy when Cs are larger
than 20. Their accuracies both gradually drop when Cs decrease from
20 to 2�7, and hit the bottom when Cs are smaller than 2�7.

However, the accuracies of ELM and M3-ELM under different Ls
are different. M3-ELM can achieve high classification accuracy
using smaller Ls. It reaches the accuracy plateau when L exceeds
25 while ELM does not reach that until L exceeds 29. The reason
behind is that each subproblem of M3-ELM has fewer samples
than the original problem, thus they are easier to learn. As a result,
fewer hidden neurons are required.

7. Conclusions

In this paper, a parallelized ELM ensemble based on M3-
network is explored. The proposed M3-ELM first decomposes

classification problems into smaller subproblems, and then trains
a component ELM for each subproblem, and in the end ensembles
these ELMs with the M3-network.

M3-ELM improves the scalability of the conventional ELM to
better solve big data problems. It can efficiently leverage the power
of parallel computation environments through decomposing the
original classification problems into subproblems. Both the size and
the number of these subproblems are manageable thus they can fit
the memory capacity and the number of the computation nodes in
the parallel computation environments. In addition, the task decom-
position can convert imbalanced problems into balanced ones.

The experimental results show that M3-ELM not only reduces
the training time costs but also raises the classification accuracy
compared with the conventional ELM. The accuracy improvement
becomes larger when the imbalance between the positive and
negative samples increases. In addition, the analysis on parameter
settings indicates that M3-ELM needs less hidden nodes to achieve
high classification accuracy than the conventional ELM does.

The future work of this paper is two-fold. First, we plan to release
a high-performance toolkit of M3-ELM. Our current implement is
based on the MATLAB package of ELM. The new toolkit will be built
on a new C/Cþþ package of ELM that will be released by Huang
et al. soon. Second, we will test M3-ELM in a wide range of large-
scale tasks that our lab is currently working on, including text
categorization, facial image-based gender classification and so on.
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thousands of computation nodes, so here we assume that there are enough
computation nodes and component ELMs are trained in parallel.
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