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Abstract. In this paper, we propose a novel Wasserstein genera-
tive adversarial network domain adaptation (WGANDA) framework
for building cross-subject electroencephalography (EEG)-based emo-
tion recognition models. The proposed framework consists of GANs-like
components and a two-step training procedure with pre-training and
adversarial training. Pre-training is to map source domain and target
domain to a common feature space, and adversarial-training is to narrow
down the gap between the mappings of the source and target domains
on the common feature space. A Wasserstein GAN gradient penalty loss
is applied to adversarial-training to guarantee the stability and conver-
gence of the framework. We evaluate the framework on two public EEG
datasets for emotion recognition, SEED and DEAP. The experimental
results demonstrate that our WGANDA framework successfully handles
the domain shift problem in cross-subject EEG-based emotion recogni-
tion and significantly outperforms the state-of-the-art domain adaptation
methods.
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1 Introduction

With rapid development of affective computing and emotional intelligence, affec-
tive brain-computer interfaces (aBCIs) have recently attracted widespread atten-
tion [13]. aBCIs aim to equip machines with the ability to detect users’ affec-
tive states from neurophysiological signals and provide humanized interactions.
Recently, many researchers have made significant progresses in EEG-based emo-
tion recognition models, especially in subject-specific models [1,8,10,21]. How-
ever, due to domain shift [18] caused by the non-stationary nature of EEG signals
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and structural variability between individuals [12,15], an EEG-based emotion
recognition model trained with data from one specific subject usually does not
generalize well to another. In practical aBCI applications, a cross-subject emo-
tion recognition model which is capable of recognizing the emotions of a new
subject with unlabeled data is required rather than a subject-specific one. To
deal with the domain shift problem caused by inter-subject variability, we focus
on developing cross-subject emotion recognition approach in this work.

A promising solution to the domain shift problem is to take advantage of
the domain adaptation methods. The basic idea of these methods is to transfer
knowledge from source domain to unlabeled target domain. Under the circum-
stance of domain shift, marginal probability distributions of source domain and
target domain are different. Domain adaptation methods are able to handle this
difference by mapping features of both domains into a common feature space,
where the marginal probability distributions of the two mappings are similar.

Various domain adaptation methods have been developed to find the com-
mon feature space for source and target subjects. Most of them aim to minimize
some metrics between two probability distributions, such as maximum mean
discrepancy (MMD) [5]. For example, transfer component analysis (TCA) [14],
a typical domain adaptation method, minimizes MMD between distributions of
source and target domains by constructing kernel matrix. This method, along
with kernel principle component analysis (KPCA) [17] and transductive parame-
ter transfer (TPT) [16], has been successfully used for implementing personalized
EEG-based emotion models [23].

An alternative way of finding the common space is to leverage the trans-
ferability of deep neural networks [9]. One of attractive approaches is to apply
generative adversarial domain adaptation [19], which is closely related to gen-
erative adversarial networks (GANs) [4]. The adversarial training procedure of
GANs can be formulated as a minimax problem. When the game achieves its
equilibrium, the distribution of generated data is approximate to the distribution
of real data. By taking advantage of the generative ability of GANs, generative
adversarial domain adaptation methods have made considerable progresses in
dealing with the domain shift problem in computer vision [19].

In this paper, we adopt the generative adversarial domain adaptation method
to build a cross-subject EEG-based emotion recognition framework. Our work
is based on Wasserstein GAN [2], which is an improved stable version of tra-
ditional GAN. Instead of using the source subject features, we consider their
mappings in a new feature space as the real data distribution, which has been
adopted in Adversarial Discriminative Domain Adaptation (ADDA) as well [19].
The features of the target subjects are mapped to the same feature space, in
which their mappings are considered as the generated distribution. The distance
between marginal probability distributions of the two mappings are reduced
through adversarial training, and then the domain shift problem is fixed.

Our proposed Wasserstein GAN domain adaptation (WGANDA) framework
aims to solve the domain shift problem in EEG-based emotion recognition caused
by inter-subject variability. Compared with subject-specific models, the proposed
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Fig. 1. Illustration of the proposed WGANDA framework, which consists of four parts:
the source and target generators for mapping source domain and target domain to a
common feature space, the discriminator for distinguishing source and target distribu-
tion in the common feature space, and the classifier for recognizing emotional states.

cross-subject framework makes better use of the EEG data collected from differ-
ent subjects. The framework is also able to recognize the emotions of a new sub-
ject with unlabeled data more precisely. The application of Wasserstein GAN in
this work overcomes the gradients vanish and instability problems of traditional
GANs’ training procedure. Besides, the implementation of the gradient-penalty
Wasserstein GAN loss [6] speeds up the convergence process. According to exper-
imental results on two public EEG datasets, the proposed WGANDA framework
significantly outperforms the state-of-the-art domain adaptation methods.

2 Methods

2.1 Notations and Framework Structure

Our proposed framework consists of four components as shown in Fig. 1. Assume
that a labeled dataset Xs is collected from the source subjects, and an unlabeled
dataset Xt is collected from the target subjects:

Xs = {xi
s}m

i=1, Ys = {yi
s}m

i=1, Xt = {xi
t}n

i=1 (1)

where m and n represent the numbers of data samples in source and target
datasets, respectively.

The source generator ψs and the target generator ψt map source data Xs

and target data Xt to a common feature space, respectively:

X ′
s = ψs(Xs), X ′

t = ψt(Xt) (2)

where X ′
s and X ′

t are expected to have the same feature dimensions.
The classifier C takes X ′

s and X ′
t as inputs and outputs emotion predictions,

Ysp and Ytp, as follows:

Ysp = C(X ′
s), and Ytp = C(X ′

t). (3)
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Algorithm 1. The work flow of the proposed WGANDA framework
Input: Source domain dataset Xs = {xi

s}m
i=1, Ys = {yi

s}m
i=1 and target domain dataset

Xt = {xi
t}n

i=1

Output: Predicted target domain dataset labels Ytp

1: Update θs and θc by descending along their gradients:

∇θs,θc

[
− 1

m

m∑
i=1

H∑
h=1

I(yi
s = h)logC(ψs(x

i
s))

]

2: Initialize θt with θs;
3: repeat
4: for critic iterations do
5: Update θd by ascending along its gradient:

∇θd

[
1

m

m∑
i=1

D(ψs(x
i
s)) − 1

n

n∑
i=1

D(ψt(x
i
t)) − λ

q

q∑
i=1

(||∇x̂iD(x̂i)||2 − 1)2
]

6: end for
7: Update θt by descending along its gradient:

∇θt

[
− 1

n

n∑
i=1

D(ψt(x
i
t))

]

8: until convergence
9: Predict target domain dataset labels with the target generator and the classifier:

Ytp = C(ψt(Xt))

10: return Ytp

Then a discriminator D is applied to distinguish X ′
s and X ′

t. Note that all four
components are parameterized by feedforward neural networks. The parameters
of the source generator, the target generator, the classifier, and the discriminator
are represented with θs, θt, θc and θd, respectively.

2.2 Training Procedure

The training procedure of the WGANDA framework consists of the following
two steps:

(i) Pre-training: feed source data Xs through the source generator ψs to the
classifier C, minimize cross-entropy loss with source dataset labels Ys, and
initialize target generator parameters θt with source generator parameters
θs.

(ii) Adversarial-training: train the network through an adversarial way and
update discriminator parameters θd as well as target generator parameters
θt alternatively with source data Xs and target data Xt. Note that in each
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adversarial iteration, the discriminator is updated a certain number of times
denoted with critic, while the target generator is updated only once.

After the two-step training procedure, recognition accuracy can be calculated
by feeding X ′

t to the pre-trained classifier C. The whole work flow of the proposed
WGANDA framework is described in Algorithm 1.

In the pre-training step, our goal is to minimize the cross-entropy loss by
optimizing θs and θc:

min
θs,θc

LC(Xs, Ys) = −E(xs,ys)∼(Xs,Ys)

[ H∑
h=1

I(ys = h)logC(ψs(xs))
]

(4)

where H is the number of emotion states. Then θs is fixed through the following
adversarial-training step, and θc is fixed for the final target emotion prediction.

We initialize θt with θs when LC is minimized. Without this target generator
parameter initialization step, the discriminator can easily distinguish samples
from X ′

s and samples from X ′
t, which makes it hard to optimize target generator.

Initializing θt with θs ensures the distribution of Xt is relatively close to Xs. The
discriminator will thus not be able to distinguish the two distributions too easily,
and target generator can be optimized faster.

In the adversarial-training step, the network is trained to narrow down the
gap between marginal distributions P (Xs) and P (Xt). With fixed θs and θc,
the framework can be treated as a typical GAN model. However, the tradi-
tional training procedure of GANs is prone to fall into model collapse, and it
is troubled with gradients vanish as well. To prevent these two drawbacks, we
implement Wasserstein GAN loss with gradient-penalty rather than traditional
GANs’ adversarial loss, which is applied in ADDA.

The training procedure of traditional GANs can be viewed as minimizing
the Jensen-Shannon divergence between the real and generated distributions.
As a metric for the distance of two distributions, Jensen-Shannon divergence is
discontinuous, which makes it difficult to provide useful gradients for optimizing
the generator. It is also the main reason of the GANs’ instability. The Wasser-
stein GAN adopts Earth-Mover distance (EMD, also called Wasserstein-1) to
eliminate the instability problem [2]. The EMD between two distributions is:

W (Xr,Xg) = inf
γ∼Π(Xr,Xg)

E(xr,xg)∼γ [||xr − xg||] (5)

where Π(Xr,Xg) denotes all possible joint distributions of real distribution
Xr and generated distribution Xg defined in traditional GANs. The EMD is
almost continuous and differentiable almost everywhere, and thus overcomes
the instability problem. Since the infimum of Eq. (5) is computationally highly
intractable, its Kantorovich-Rubinstein duality form is usually utilized [20]:

W (Xr,Xg) =
1
K

sup
||f ||L≤K

Exr∼Xr
[f(xr)] − Exg∼Xg

[f(xg)] (6)
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where f denotes the set of 1-Lipschitz functions. In realistic implementations, f
is replaced by discriminator D and ||f ||L ≤ K is replaced by ||D||L ≤ 1. The
loss function of Wasserstein GAN is then formulated by:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[(D(xr))] − Exg∼Xg

[(D(xg))] (7)

where θD and θG represent the parameters of discriminator and generator in
traditional GANs, respectively. The discriminator realizes 1-Lipschitz function
by clipping the weights and constraining them within a bounded range.

Gulrajani et al. enforced Lipschitz constraint with gradient penalty instead
of weight clipping to directly constrain the gradient norm [6], which makes the
training procedure more stable and make convergence faster. An extra penalty
term is appended to the loss function in their approach:

min
θG

max
θD

L(Xr,Xg) = Exr∼Xr
[(D(xr))] − Exg∼Xg

[(D(xg))]

− λEx̂∼X̂ [(||∇x̂D(x̂)||2 − 1)2]
(8)

where λ is a hyperparameter controlling the trade-off between original objective
and gradient penalty, and x̂ denotes the data points sampled from the straight
line between real distribution Xr and generator distribution Xg:

x̂ = αx + (1 − α)x̃, α ∼ U [0, 1], x ∼ Xr, x̃ ∼ Xg (9)

In Algorithm 1, the number of sampled data points is denoted with q.
Our WGANDA framework can be treated as a Wasserstein GAN when the

source generator is fixed. In this case, X ′
s and X ′

t correspond to the real data
Xr and the generated data Xg in traditional GANs, respectively. We present
our adversarial loss in Wasserstein GAN gradient penalty form as follows. First,
the discriminator is trained by maximizing the discriminator loss (D-Loss) with
target generator fixed:

max
θd

LD(Xs,Xt) = Exs∼Xs
[D(ψs(xs))] − Ext∼Xt

[D(ψt(xt))]

− λEx̂∼X̂ [(||∇x̂D(x̂)||2 − 1)2]
(10)

Then the target generator is trained by minimizing the generator loss (G-Loss)
with discriminator fixed:

min
θt

LG(Xt) = −Ext∼Xt
[D(ψt(xt))] (11)

The two losses are optimized in an alternating procedure, and the parameters
of different components are updated in an interleaved manner. Note that in
Wasserstein GANs, the discriminator aims to fit the 1-Lipschitz function. In
each adversarial training iteration, the discriminator is fully trained to its opti-
mization. Thus θd is updated for critic times and θt is updated only once in each
adversarial training iteration. When the discriminator is fully trained, D-Loss
represents the EMD between the marginal distribution of X ′

s and X ′
t. In our

experiments, D-Loss is used as an indicator of training process.
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The assumption of most domain adaptation methods is that, the conditional
probability distributions of source domain and target domain equal when the
marginal probability distributions of source domain and target domain are the
same. When D-Loss converges, the marginal distribution of X ′

s is approximate
to the marginal distribution of X ′

t:

P (X ′
s) ≈ P (X ′

t) (12)

According to the assumption mentioned above, the conditional distribution of
X ′

s and the conditional distribution of X ′
t are also similar:

P (Y ′
s |X ′

s) ≈ P (Y ′
t |X ′

t) (13)

where Y ′
t denotes the true labels of the dataset collected from target subject.

Under this circumstance, the classifier pre-trained with X ′
s is able to recognize

the emotions of the target subject from X ′
t. Thus after the adversarial-training

procedure, we feed Xt to the pre-trained classifier and compare the output Ytp

with its true label to get the recognition accuracy.

3 Experiment Settings

3.1 EEG Datasets

We evaluate our framework on two public EEG datasets, SEED1 [22] and DEAP2

[7]. The SEED dataset consists of 15 participants. Each of them was required
to watch 15 emotional film clips to elicit three emotions: positive, neutral, and
negative. The EEG signals were recorded at a sampling rate of 1000 Hz with ESI
NeuroScan System, which had a 62 electrode cap. The data in DEAP are formed
with 8-channel peripheral physiological signals and 32-channel EEG signals. 32
participants watched 40 music videos and their EEG signals were collected by
an international 10–20 system. The level of each video was rated 1–9 by the
participants in terms of arousal, valence, like, and dislike.

The EEG signals of both datasets are preprocessed before feeding to the
framework. Differential entropy (DE) features are extracted per second from
five frequency bands for SEED dataset: δ: 1–3 Hz, θ: 4–7 Hz, α: 8–13 Hz, β: 14–
30 Hz, and γ: 31–50 Hz [3,22]. The feature dimension is 310 (62 channels × 5
frequency bands) and the number of samples for each subject is 3394. For DEAP
dataset, the DE features are extracted per second except for δ frequency since
the low frequency band is filtered in this dataset. The feature dimension is 128
(32 channels × 4 frequency bands) and the number of samples for each subject is
2400. Valence model (high valence: level > 5, low valence: level ≤ 5) and arousal
model (high arousal: level > 5, low arousal: level ≤ 5) are adopted in this work.

1 http://bcmi.sjtu.edu.cn/∼seed/index.html.
2 http://www.eecs.qmul.ac.uk/mmv/datasets/deap/.

http://bcmi.sjtu.edu.cn/~seed/index.html
http://www.eecs.qmul.ac.uk/mmv/datasets/deap/
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Fig. 2. Discriminator loss (D-Loss) (a), MMD (b) and accuracy (c) tendency along
with training steps of SEED dataset.

3.2 Evaluation Details

To demonstrate the effectiveness of the proposed framework, a leave-one-subject-
out cross validation is conducted. We chose one subject as the target subject and
leave the others (14 for SEED, and 31 for DEAP) as source subjects.

To optimize the network structure, we perform grid search on the number of
network layers. The numbers of layers are searched from 3 to 6 for both generator
and discriminator. Each hidden layer of both the source generator network and
the target generator network has 512 nodes for SEED dataset and 256 nodes
for DEAP dataset. The outputs of the two generators have the same dimension
as the input data, which is 310 for SEED dataset and 128 for DEAP dataset.
Each hidden layer of discriminator network has the same number of nodes as the
hidden layers of the generators, and the output has only one dimension. For the
classifier, the numbers of network layers are searched from 1 to 3. The output
dimension is 3 and 2 for SEED and DEAP datasets, respectively. Each hidden
layer of the classifier network has 64 nodes. The ReLU activation function is
used for all hidden layers.

In our experiments, we observe that the loss of discriminator is fluctuating
with less discriminator training iterations in each round. And the discriminator
should be fully optimized to ensure the convergence in each adversarial training
iteration according to the theory of Wasserstein GANs. So the critic value is set
to 20 to ensure the convergence and training speed. It means that we update
discriminator 20 times and update target generator once in each adversarial-
training iteration. Besides, Adam optimizer is more likely to cause fluctuation
than RMSProp optimizer. Thus we use RMSProp optimizer during adversarial-
training and Adam optimizer during pre-training. To speed up the training pro-
cedure, we use mini-batch instead of full batch shown in Algorithm 1. The size
of mini-batch is set to 256. And the hyperparameter λ is set to 10.

MMD is frequently used as a measurement of the distance between two dis-
tributions [9,14], thus we adopt it in this work to evaluate the distance between
the probability distributions of X ′

s and X ′
t, and demonstrate the effectiveness of

our framework.
We use the recognition results before adversarial-training as baseline to show

the ability of adversarial domain adaptation. In order to evaluate the effective-
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Fig. 3. Accuracy comparison between the strategy using adversarial-training and the
baseline without using adversarial-training on SEED dataset.

ness of our framework, we compare it with the state-of-the-art methods including
KPCA, TCA and TPT on SEED dataset [23]. We also implement these methods
and evaluate their performances on DEAP dataset. All the hyperparameters are
adjusted following the strategies used in [23].

4 Experimental Results

In this section, we demonstrate the effectiveness of our proposed WGANDA
framework. Figure 2 depicts the training process of the adversarial-training pro-
cedure. The discriminator loss (D-loss) converges to a small value along with
the training epoch as illustrated in Fig. 2(a). As the EMD between the distribu-
tions of source and target mappings, D-Loss converging to a small value demon-
strates that the two marginal distributions are approximate to each other. The
MMD curve in Fig. 2(b) has a similar converged tendency with D-Loss, which
also implies that adversarial-training has reduced the distance between the two
mapping distributions. Moreover, the recognition accuracy shown in Fig. 2(c)
increases while MMD decreases. This phenomenon confirms the domain adap-
tation assumption. Since the classifier is optimized according to the conditional
distribution of X ′

s, only when the two conditional distributions are similar, X ′
t

can achieve high recognition accuracy with the same classifier.
We first compare our proposed framework with its baseline. Figure 3 shows

the accuracy comparison of using adversarial-training (WGANDA-Adv.) and
without using adversarial-training (WGANDA-Bas.) on SEED dataset. The
recognition accuracy of the baseline WGANDA-Bas. is calculated with the
target mappings X ′

t directly fed into the classifier after target generator ini-
tialization. WGANDA-Bas. performs poorly due to the fact that domain shift
exists when neglecting inter-subject variability. Without adversarial-training, the
source mappings and the target mappings share no common marginal distribu-
tions as well as conditional distributions. The classifier trained with X ′

s hence can
not predict the emotion states of the target subject precisely according to X ′

t. By
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Table 1. Performance of different domain adaptation methods

Methods SEED DEAP-Arousal DEAP-Valence

Mean Std. Mean Std. Mean Std.

SVM 0.5673 0.1629 0.4922 0.1571 0.5036 0.1125

KPCA 0.6128 0.1462 0.5891 0.1521 0.5658 0.0980

TCA 0.6364 0.1488 0.5193 0.1539 0.5516 0.1069

TPT 0.7631 0.1589 0.5577 0.1496 0.5564 0.1221

WGANDA-Bas. 0.5260 0.1831 0.5183 0.1406 0.5164 0.0929

WGANDA-Adv. 0.8707 0.0714 0.6685 0.0552 0.6799 0.0656

(a) (b) (c)

source negative
source neutral
source positive
target negative
target neutral
target positive

Fig. 4. Two-dimension visualization of source and target domain distributions in dif-
ferent training stages: (a) original distribution; (b) distribution after pre-training pro-
cedure; and (c) distribution after adversarial-training procedure. Small circles represent
source data samples of three classes and small triangles represent target data samples
of three classes.

using adversarial-training, the accuracy of WGANDA-Adv. shows a significant
improvement for each subject compared with the baseline result.

Next, we compare our proposed framework with three state-of-the-art domain
adaptation methods. Table 1 presents mean accuracies and standard deviations
of our proposed framework WGANDA-Adv., the baseline WGANDA-Bas., and
other three domain adaptation methods, KPCA, TCA, and TPT. The experi-
mental results of KPCA, TCA and TPT on SEED dataset are referenced from
[23]. From Table 1, we see that domain adaptation methods are effective when
handling domain shift problem in EEG-based emotion recognition. Our frame-
work significantly outperforms the state-of-the-art methods with mean accu-
racy of 87.07% and standard deviation of 0.0714 on SEED dataset. On DEAP
dataset, our framework achieves mean accuracies of 66.85% and 67.99% and
standard deviations of 0.0552 and 0.0656 on arousal and valence classifications,
respectively, which is also superior to other methods.

In order to have a better view of the effectiveness of our proposed framework,
the source and target data from SEED dataset at different training stages are
visualized in a 2-dimension way by t-SNE [11] as shown in Fig. 4. To illustrate the
influence of adversarial-training on marginal and conditional distributions more
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intuitively, samples from different subjects and emotion categories are visualized
with different markers. However, in both pre-training and adversarial-training
procedures, target labels are unknown to the framework.

Figure 4(a) depicts the distributions of the original data from the source
subjects and the target subjects, which have diverse distributions due to inter-
subject variability. From Fig. 4(a), we see that there is no any overlapping
between the source subjects samples (small circles) and the target subjects sam-
ples (small triangles). This means that the original data from the source subjects
and target subjects have diverse distributions due to inter-subject variability.
Figure 4(b) depicts the distributions of X ′

s and X ′
t before adversarial-training

procedure, which are the mappings of the original data from source and target
subjects after target generator initialization. Note that although the samples
from three emotion categories have been successfully clustered, the marginal
distributions are not the same. Under this circumstance, the pre-trained clas-
sifier can only recognize the three emotions of the source subject. Figure 4(c)
depicts the distributions of X ′

s and X ′
t after the adversarial training procedure.

Now the marginal distributions of the source mappings are approximate to the
target mappings, while the conditional distributions are similar as well. Thus the
pre-trained classifier can recognize different emotions on target subject correctly.

5 Conclusion

In this paper, we have proposed a novel Wasserstein GAN domain adaptation
framework for building cross-subject EEG-based emotion recognition models.
The framework adopts adversarial strategy by using Wasserstein GAN gradient
penalty version. The performance of our framework has been evaluated by con-
ducting a leave-one-subject-out cross validation on two public EEG datasets for
emotion recognition. By narrowing down the gap between probability distribu-
tion of different subjects, this adversarial domain adaptation method success-
fully handles inter-subject variability and domain shift problems of cross-subject
EEG-based emotion recognition. By taking advantages of adversarial training,
the proposed framework significantly outperforms the state-of-the-art methods
with a mean accuracy of 87.07% on SEED dataset, and reaches 66.85% and
67.99% on DEAP dataset for arousal and valence classifications, respectively.
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