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ABSTRACT
Electroencephalogram (EEG) has been applied in emotion
recognition due to excellent temporal resolution with less
competitive spatial resolution. This leads to the consequence
that the majority of EEG-based emotion recognition models
emphasize on exploiting temporal features while ignoring
the efficient information provided by spatial resolution. To
extract more informative representations, we propose an
elastic Graph Transformer network for emotion recognition
(EmoGT) inspired by the advantages of Transformer in time-
series analysis and the superior performance of graph con-
volutional networks in topological analysis. Moreover, it is
able to be flexibly expanded to cope with multimodal inputs
by employing specially designed structures. Experimental
results on 3 public datasets demonstrate that our models out-
perform the state-of-the-art results by 3% on average in both
single and multimodal cases, indicating the effectiveness of
utilizing temporal and spatial information simultaneously.

Index Terms— EEG, eye movements, emotion recogni-
tion, graph transformer

1. INTRODUCTION

Emotion recognition (ER) is the salient milestone in realiza-
tion of emotion intelligence of AI. It serves as the foundation
for a wide range of potential applications in everyday life,
such as medical diagnosis, intelligent education, entertain-
ment, etc. [1]. Many physiological signals are adopted as
inputs to measure emotions, including speech, facial expres-
sion, eye movements, and EEG signals. Among all these
modalities, the noninvasive EEG-based ER has gained in-
creasing attention due to the efficacy of the brain in emotion
processing from the evidence of cognitive neuroscience [2].
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Previous studies evaluate brain imaging techniques on two
dimensions, i.e., the spatial and temporal resolutions [3]. Un-
der these criteria, EEG is considered to have a high temporal
resolution in milliseconds but a relatively low spatial resolu-
tion in centimeters. Because of the excellent performance in
temporal resolution, researchers usually take advantage of its
merit and therefore extract EEG features from the temporal
domain [4] and build temporal models.

There is considerable literature on EEG-based ER tasks
using temporal models. The deep learning methods, ranging
from convolutional neural networks (CNN) [5], recurrent neu-
ral networks (RNN) [6], to long short-term memory networks
(LSTM) [7, 8], have made great strides in their performances
on EEG-based ER. Though these models have yielded good
results, they lack parallelization with low efficacy. To address
this issue, therefore, we leverage Transformer [9] structure to
capture the temporal information of EEG signals, which re-
duces complexity and computational cost by avoiding recur-
sion and ingesting long sequential inputs once as a whole.

Since most studies are devoted to research in the temporal
domain, the spatial information conveyed by EEG signals has
not been fully utilized. Several studies applied CNN to extract
the spatial connections. Nevertheless, CNN can only capture
local information based on Euclidean distance, resulting in
the unsatisfactory performance. It is the essence of emotion
processing in brain that inspires us to think from its neurolog-
ical support in model design. It has been proved that the con-
nections between different regions in the circuits level, rather
than local activity patterns, vary between different emotions
and contribute to emotion detection [10]. The emerging graph
convolutional networks (GCN) are able to flexibly process
graph-structured data like EEG by taking each electrode as
a node of the graph. Some variants of GCN have been ap-
plied on EEG to explore the inter-channel information, tak-
ing the regularized graph neural network proposed by Zhong
et al. [11], Song et al. [12], and Li et al. [13] as examples.
However, how to simultaneously extract spatial and temporal
information in GCN has not been fully explored.

To fully exploit both spatial and temporal information of
EEG in ER, we propose an elastic Graph Transformer frame-
work (EmoGT) by integrating the GCN with Transformer,
considering its potentials in time-series classification. Be-IC
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Fig. 1. (a) Illustration of EmoGT. (b) The simplified structure
of EmoGTs. (c) The details of the Cross-modal Attention
Layer in the Cross-modal Tansformer Unit.

sides, EmoGT can be used as individual building blocks for
multimodal ER with two specially designed structures, which
increase its robustness in real-world applications. Note that
in computer vision, Zheng et al. [14] combined GCN and
Transformer for whole slide image classification. They used
GCN to propagate and aggregate information through image
patches and used Transformer to learn the attention of dif-
ferent patches. Those two modules are operated in the same
dimension (image patch-wise) which differs from our work.

2. METHODS

2.1. EmoGT

The overall architecture of EmoGT is shown in Figure 1(a).
The backbone of EmoGT has N EmoGT blocks. Each block
consists of two basic units, which are GCN Unit and Trans-
former Unit. The GCN Unit aims to fully learn the spatial
relationship among electrodes while the Transformer Unit uti-
lizes the temporal information of EEG.
GCN Unit A number of existing approaches have verified
the effectiveness of GCN in EEG-based ER since GCN can
model the electrodes on the scalp and catch the relationships
of them by aggregating the information from their neighbors.
We construct the EEG signals as a graph G = {V,E}, where
V denotes the set of vertices and E denotes the set of edges.
The adjacency matrix A ∈ RN×N represents E, which im-
plies the connections between EEG channels, and N is the
number of EEG channels i.e. N = |V |. The input EEG

features is denoted by X = (X1, X2, ..., XT ) ∈ RT×N×C ,
where T is the number of samples in time series, and C is the
dimension of each channel.

Kipf et al. [15] proposed the GCN model as follows

H l
g = D̂− 1

2 ÂD̂− 1
2H lW l, (1)

where Â = A+ I , and I is the identity matrix. D̂ denotes the
degree matrix which is diagonal and D̂ii =

∑
j Âij . H l rep-

resents the input features of l-th layer while W l is the weight
matrix, H l ∈ RT×N×Cin , W l ∈ RCin×Cout . The output of
l-th GCN layer is H l

g ∈ RT×N×Cout . Note that H0 = X .
The adjacency matrix A is essential for learning the graph

representation as it describes the topology of EEG signals.
We want the model to learn the topological structure from the
data, so each entry of Aij which shows the weight of connec-
tion between channel i and channel j is set learnable. Further-
more, A is defined as a symmetric matrix to avoid overfitting.
For all GCN layers, we use the same shared adjacency matrix.

After the GCN layer, we add a skip connection from the
input. The layer normalization is applied then and we choose
ReLU as the activation function followed by a dropout layer.
Transformer Unit Transformer has achieved a great suc-
cess in nature language processing, computer vison and other
different areas. Before the Transformer Unit, the output
of the GCN Unit H l

g ∈ RT×N×Cout is first reshaped to
H l

t ∈ RT×NCout . The self-attention layer is similar with
the original multi-head attention proposed by [9]. The input
feature H l

t is transformed to queries Qi, keys Ki and values
Vi:

Qi = H l
tW

Q
i ,Ki = H l

tW
K
i , Vi = H l

tW
V
i , (2)

where WQ
i ,WK

i ,WV
i ∈ RNCout×d and Qi,Ki, Vi ∈ RT×d.

The self-attention can be calculated as

Attention(Qi,Ki, Vi) = softmax(
QiK

T
i√
d

)Vi. (3)

We employ h heads self-attention here, and each head can be
denoted by headi = Attention(Qi,Ki, Vi). The output of
multi-head attention is

H l+1
t = Concat(head1, head2, ..., headh)W

O, (4)

where WO ∈ Rdh×NCout and H l+1
t ∈ RT×NCout .

The same as the GCN Unit, there is a layer normalization
after the self-attention layer followed by ReLU and dropout.
The skip connection is adopted later.
Class Token and Position Embedding For better classifica-
tion, we prepend a class token to the input. It is learnable and
with the same shape as the input EEG feature. The role of the
class token is similar with the one in BERT. At the end of all
EmoGT blocks, we apply a linear layer and a softmax layer
to the class token for classification. Since the input EEG fea-
tures are a continuous time sequence, we add learnable posi-
tion embeddings to the input sequence to enable the sequence
to carry temporal information.
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2.2. EmoGTs

The main differences between EmoGT and EmoGTs are the
Cross-modal Transformer Unit and Attention Fusion when
the other modules remain the same, as illustrated in Figure
1(b). Besides EEG, the other modality we employ is eye
movements. Similar to EEG, the input eye movement fea-
tures can be denoted as X ′ = (X ′

1, X
′
2, ..., X

′
T ) ∈ RT×N ′×1,

where T is the number of samples in time series which is the
same as EEG sequence, and N ′ is the dimension of eye move-
ment features. Eye movements are also modeled as a graph
since there are dependencies among them, such as the fact
that blinks affect the central programming of saccades [16].
Cross-modal Transformer Unit Inspired by the work in
[17], we propose the Cross-modal Transformer Unit to fuse
modalities so that the model is able to make use of the com-
plementary properties of different modalities. The core of the
Cross-modal Transformer Unit is that the self-attention layer
is replaced by the cross-modal attention layer as depicted in
Figure 1(c).

We describe the Cross-modal Attention Layer here. Con-
sidering two modalities α and β, we denote the input of cross-
modal attention layer as Hα ∈ RT×Cα and Hβ ∈ RT×Cβ ,
respectively. The queries, keys, values can be calculated by

Qβ = HβW
Q
β ,Kα = HαW

K
α , Vα = HαW

V
α , (5)

where WQ
β ∈ RCβ×d, WK

α ∈ RCα×d and WV
α ∈ RCα×d.

The cross-modal attention from α to β is defined as

CMAα:β(Hα, Hβ) = softmax(
QβK

T
α√

d
)Vα. (6)

In the same way, the cross-modal attention from β to α can
be calculated by CMAβ:α(Hβ , Hα). Different modalities in-
teract with each other through this way to learn the comple-
mentary information. Note that we also employ multi-head
attention in Cross-modal Transformer Unit.
Attention Fusion We use Oα and Oβ to represent the
class token of CMAα:β and CMAβ:α which is the out-
put of modality α and β after all EmoGTs Blocks, where
Oα ∈ Rdα , Oβ ∈ Rdβ . We first transform Oα and Oβ to the
same dimension:

Ôα = OαWα, Ôβ = OβWβ , (7)

where Wα ∈ Rdα×d and Wβ ∈ Rdβ×d. Then we compute
the attention weights µα and µβ by

µ̂α = ⟨Ôα,W
A⟩, µ̂β = ⟨Ôβ ,W

A⟩, (8)
µα, µβ = softmax(µ̂α, µ̂β), (9)

where WA ∈ Rd and ⟨, ⟩ means dot product. Thus, the fused
features are extracted by

O = µαÔα + µβÔβ . (10)

The above methods we talk about are using two modal-
ities. It is worth mentioning that it can be easily extended
to three or more modalities by adding extra streams of cross-
modal attention between all pairs of modalities.

3. EXPERIMENTS

3.1. Datasets and Implementation Details

We test our models on three public datasets for ER, includ-
ing SEED, SEED-IV, and SEED-V [18–20] , to thoroughly
verify their performance. For EEG, differential entropy [21]
is extracted within a nonoverlapping 1s time window from 5
frequency bands of every sample. For the eye movements, 33
features (e.g. pupil diameter, dispersion, fixation duration) are
extracted as described in [7]. The input features are obtained
by sliding an overlapping window with the size of T = 5
which is the same as the existing method [13] to make results
more comparable. The batch size is 32 and the dropout rate is
0.5. The number of blocks is 4 and the learning rate is ranging
from 3e-5 to 1e-3. The number of heads h and embedding di-
mension Cout are tuned from {2, 4} and {16, 32, 64}, respec-
tively. We choose cross entropy as the loss function and use
Adam to optimize the parameters. For data division, we use
the first 9 trials as training data and the remaining 6 trials as
testing data in SEED. As for SEED-IV, the first 16 trials are
training data while the remaining 8 trials are testing data. For
SEED-V, however, we adopt 3-fold cross-validation.

3.2. Experimental Results

Comparison with Single Modal Methods To validate the
efficiency of EmoGT, we compare it with other representa-
tive models, ranging from the baseline method DGCNN to

Table 1. Performances (Avg./Std.) on 3 datasets.

Method SEED SEED-IV SEED-V

DGCNN [12] 90.40/08.49 69.88/16.29 -
BiDANN [22] 92.38/07.04 70.29/12.63 -
BiHDM [23] 93.12/06.06 74.35/14.09 -
RGNN [11] 94.24/05.95 79.37/10.54 -
MD-AGCN [13] 94.81/04.52 87.63/05.77 80.77/06.61
Transformer 92.35/07.55 86.40/11.45 77.32/08.19
G+LSTM 92.25/07.40 85.73/13.51 77.65/08.23
EmoGT 95.02/05.99 91.20/09.60 82.73/07.21

Fuzzy [24] 87.59/19.90 73.60/16.70 73.20/08.70
BDAE [20] 91.01/08.91 85.10/11.80 79.70/04.76
DCCA [20] 94.60/06.20 87.50/09.20 85.30/05.60
E-CMA 97.20/05.90 92.83/08.93 85.48/08.22
EmoGTs 97.74/05.43 94.04/08.69 87.58/08.62

* G+LSTM: replace Transformer Unit of EmoGT with LSTM.
* E-CMA: EmoGTs without Cross-modal Attention Layer.
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(a)                                             (b)                                             (c)

Fig. 2. Confusion matrices of EmoGT on three datasets. (a)
SEED. (b) SEED-IV. (c) SEED-V. The vertical axis represents
true labels; the horizontal axis predicted labels.

the state-of-the-art method MD-AGCN as reported in the first
part of Table 1. In all, EmoGT outperforms all other models.
For the existing best results gained by MD-AGCN, our model
still improves by 1.5% on average for all three datasets. No-
ticeably, in SEED-IV, EmoGT greatly surpasses the current
best result by about 3.5% and even reaches 91.2%, which is
quite a high accuracy in four-labeled classification. The num-
bers undoubtedly demonstrate the powerful information ex-
traction and processing ability of EmoGT.

The confusion matrices of EmoGT in Figure 2 depict how
well it can distinguish between emotions on different datasets.
For SEED and SEED-IV, our model is comparatively good
at recognizing the neutral states and it does not behave well
with positive emotions. Interestingly, in SEED-V, the disgust
turns out to be the biggest obstacle for EmoGT to classify
with only 72.22%. To sum up, EmoGT is likely to misclassify
the positive emotions and the disgust emotions, which is of
the same trend as other models.
Comparison with Multimodal Methods We pick up three
most advanced methods in ER to compare with EmoGTs. The
other modality we choose is eye movements, the combination
of which with EEG signals has been proven to be a promis-
ing approach with high interpretability [24]. Results on three
datasets are presented in the second part of Table 1. Though
the latest best results achieved by DCCA are excellent, the
EmoGTs still outshines them on all datasets. Remarkably, on
the four-label classification task, our model has an amazing
accuracy at 94% which surpasses the state-of-the-art perfor-
mance by about 6.5%. Besides, EmoGTs also exceeds DCCA
by 2% on the five-class task. The accuracy is even compet-
itive in multi-class classification. Moreover, the decent stan-
dard deviations prove that the model has a relatively stable
performance. In summary, EmoGTs represents the best level
in multimodal ER, and these satisfying results inspire similar
multimodal classification tasks with EmoGTs’s solution.
Ablation Study As shown in italic lines in Table 1. The aver-
age performance gap reaches more than 5% with better stabil-
ity. The effectiveness of extracting temporal information with
Transformer has been proved by the comparison of LSTM-
based variant G+LSTM and EmoGT. The latter behaves much
better than the former with 3% to 5% higher accuracies. The

(a) SEED (b) SEED-IV (c) SEED-V

Fig. 3. Top 10 connections in the learned adjacency ma-
trix. The darker the line, the higher the edge weight, and the
stronger the connections between brain regions.

gap between E-CMA and EmoGTs confirms that the cross-
modal attention mechanism we introduce is very useful for
multimodal learning, and it indeed employs the complemen-
tary properties of different modalities to achieve better perfor-
mance.
Visualization of the Learned Spatial Connections In Fig-
ure 3, we present the brain connections when emotions
elicit among EEG channels for all three datasets learned by
EmoGT. The 10 strongest connections of SEED and SEED-
IV are similar to each other while the one of SEED-V differs
a lot. From the figure, we can see that the connections mainly
concentrate at the temporal lobes on both sides of the brain
together with the frontal lobe in SEED and SEED-IV, demon-
strating by connections such as FT8 to T8 and FP1 to AF3,
which is consistent with previous studies [18, 25]. However,
the lines in the plot of the SEED-V illustrate the strong con-
nections between the central areas and the temporal lobes,
e.g. CZ to T8, as well as within the central areas of the brain
like CP1 to CPZ and CZ to CPZ. One plausible explana-
tion from cognitive neuroscience perspective is that because
emotional processes with more emotion categories involve
highly distributed neural circuits in the brain. As the number
of emotions increases, more brain regions are activated to
respond [26], resulting in global inter-channel connections.

4. CONCLUSIONS

In this paper, we have developed an elastic emotion recogni-
tion framework EmoGT to better exploit the EEG informa-
tion from both temporal and spatial domain concurrently. It
is achieved by integrating the GCN, for spatial relation ex-
traction, with Transformer, for time-series information pro-
cessing. With a cross-modal attention mechanism activated,
EmoGT can be used as building block for individual modal-
ities to tackle multimodal inputs. Our models outperform
all state-of-the-art results by a large margin. The proposed
framework sheds light on the EEG-based emotion recogni-
tion task by leveraging both spatial and temporal dynamics in
EEG. Our future work will focus on generalization ability of
EmoGT by adapting more diverse inputs.
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