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ABSTRACT | A brain–computer interface (BCI) enables a user

to communicate directly with a computer using only the cen-

tral nervous system. An affective BCI (aBCI) monitors and/or

regulates the emotional state of the brain, which could facil-

itate human cognition, communication, decision-making, and

health. The last decade has witnessed rapid progress in aBCI

research and applications, but there does not exist a com-

prehensive and up-to-date tutorial on aBCIs. This tutorial fills

the gap. It introduces first the basic concepts of BCIs and

then, in detail, the individual components in a closed-loop

aBCI system, including signal acquisition, signal processing,

feature extraction, emotion recognition, and brain stimulation.

Next, it describes three representative applications of aBCIs,

i.e., cognitive workload recognition, fatigue estimation, and

depression diagnosis and treatment. Several challenges and

opportunities in aBCI research and applications, including brain

signal acquisition, emotion labeling, diversity and size of aBCI

datasets, algorithm comparison, negative transfer in emotion

recognition, and privacy protection and security of aBCIs, are

also explained.
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I. I N T R O D U C T I O N
Affects, including moods and emotions, are pervasive in
our everyday life and essential in human cognition, com-
munication, and decision-making [1]. They are also very
important in human–machine interactions. For example,
one of the founding fathers of artificial intelligence, Prof.
Alan Minsky [2], argued early in 1988 in his seminal
book The Society of Mind that “the question is not whether
intelligent machines can have any emotions, but whether
machines can be intelligent without any emotions.”

Affective computing, first proposed by Prof. Rosalind
Picard in 1995 [3], is “computing that relates to, arises
from, or influences emotions.” It quickly became an inter-
disciplinary research area of computer science, psychology,
cognitive science, and so on. As shown in Fig. 1, the
biannual International Conference on Affective Computing
and Intelligent Interaction (ACII) was initiated in 2005 and
the affiliated aBCI Workshop in 2009. A dedicated journal,
IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, was established in
2010. The Association for the Advancement of Affective
Computing (AAAC) was founded in 2011. As of April 20,
2023, on Google Scholar, about 1200 researchers choose
affective computing as one of their areas of interest, and
about 82 000 publications included “affective computing”
in their titles or texts.

Humans can recognize and display emotions through
facial expressions [4], speech [5], gestures [6], texts [7],
and their combinations [8]. These are also important
modalities in affective computing. Physiological signals,
e.g., electroencephalogram (EEG), functional magnetic
resonance imaging (fMRI), functional near-infrared spec-
troscopy (fNIRS), electrocardiogram (ECG), eye move-
ment, blood pressure, skin temperature, and respiration,
have also been used in affective computing [9], [10].
Compared with other modalities, physiological signals are
more difficult to disguise and, hence, may reflect more
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Fig. 1. Important events in the history of aBCIs.

authentic emotions. Brain signals, particularly EEG, are
popular in physiological signal-based affective computing,
perhaps because they directly measure the state of the
brain, where emotions originate.

Brain signals are also the input signals in brain–
computer interfaces (BCIs) [11], which enable a user to
communicate directly with a computer using only the
central nervous system. BCIs have found applications in
neural rehabilitation [12], text input [13], gaming [14],
emotion recognition [15], mental fatigue evaluation [16],
vigilance estimation [17], speech synthesis [18], sentence
decoding [19], movement and touch functionality recov-
ery [20], [21], robot control [22], [23], and so on.

According to the input signal source, there are three
types of BCIs [24], [25].

1) Noninvasive BCIs, where brain signals are recorded on
the scalp. EEG is the most popular input to noninva-
sive BCIs due to its safety, low cost, and convenience.

2) Invasive BCIs, which surgically implant sensor arrays
or electrodes into the cortex to record and decode
brain signals, and/or stimulate the brain.

3) Partially invasive BCIs, which surgically place the sen-
sors between the skull and the cortex.

An affective BCI (aBCI) [26] monitors and/or regulates
the emotional state of the brain. It has been attracting
rapidly increasing research interests recently, as demon-
strated in Fig. 2, which shows the number of publications
per year returned by query Emotion OR Affect “brain com-
puter interface” on Google Scholar.

The flowchart of a closed-loop aBCI system is depicted
in Fig. 3. It consists of signal acquisition, signal processing,
feature extraction, emotion recognition, and/or brain stim-
ulation. Most aBCIs so far are noninvasive BCIs, especially
when brain stimulation is not included.

Compared with a traditional motor BCI, in which
Shanechi [27] “uses a mathematical algorithm termed a
“decoder” to estimate the user’s intended movement state
from neural activity, uses the decoded movement to con-
trol an external actuator (prosthetic device), and provides

sensory and reward feedback to the user,” an aBCI has two
important characteristics.

1) Multimodal inputs: In addition to EEG, physiological
signals, such as eye movements, and nonphysiolog-
ical signals, such as facial expressions and speech,
are also frequently used in aBCIs for more accurate
emotion recognition. In contrast, classical noninva-
sive motor imagery-based BCIs [28] usually use solely
EEG signals.

2) More factors to be considered, e.g., the subject’s age,
gender, and/or cultural/education background. Oth-
erwise, it may be difficult to effectively induce the
intended emotions. For example, the video clips used
in aBCI experiments should ideally be different for
teenagers and the elderly. These additional factors are
generally not very important for motor BCIs.

Rapid progress has been made in each aBCI block in
Fig. 3 in the past few decades, but there does not exist
a comprehensive and up-to-date tutorial on them. This
tutorial fills the gap by introducing these individual com-
ponents in detail. Among the three input brain signals
(EEG, fMRI, and fNIRS), fMRI and fNIRS, perhaps due to

Fig. 2. Number of publications per year, returned by query Emotion

OR Affect “brain computer interface” on Google Scholar on April 15,

2023.
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Fig. 3. Flowchart of a closed-loop aBCI system.

their high cost, larger sizes, and shorter history, are used
less frequently than EEG in aBCIs. For example, a Google
Scholar search of “EEG emotion” in the title on April
20, 2023, returned 2260 articles, whereas “fMRI emo-
tion” returned 523 articles, and “fNIRS emotion” returned
28 results. In addition, many studies in the latter two
categories are on the evaluation of brain activities in
different emotional states, instead of emotion recognition.
A Web of Science search on April 20, 2023, revealed
that, among all 733 IEEE TRANSACTIONS ON AFFECTIVE COMPUTING

publications so far, 79 are on EEG, two on fMRI, and none
on fNIRS. Thus, fMRI- and fNIRS-based aBCIs are only
briefly introduced in this tutorial. The focus is on EEG-
based aBCIs.

The remainder of this tutorial is organized as follows.
Sections II–VI describe in detail the individual components
in Fig. 3, i.e., signal acquisition, signal processing, feature
extraction, emotion recognition, and brain stimulation,
respectively. Section VII introduces applications of aBCIs.
Section VIII points out challenges and future research
directions in aBCIs. Finally, Section IX draws conclusions.

II. S I G N A L A C Q U I S I T I O N I N a B C I s
Different brain signals have been used in aBCIs, e.g.,
EEG, fMRI, and fNIRS. They are also frequently recorded
together with other physiological signals, e.g., ECG and
eye movement, and video and speech, for multimodal
and more accurate aBCIs. This section introduces how
typical aBCI experiments are performed, and how the brain
signals are acquired.

A. Emotion Representation

Emotions can be represented using categories, e.g.,
Ekman’s six basic emotions [29] (anger, disgust, fear,
happiness, sadness, and surprise), or continuously in the
2-D space of arousal and pleasure (or valence) [30],
or the 3-D space of arousal, pleasure (or valence), and
dominance [31], as shown in Fig. 4. Both categorical and
continuous emotions have been used in aBCIs.

B. Emotion Elicitation

Most aBCI experiments were performed in controlled
laboratory environments, using deliberately designed

settings to elicit specific emotions of the subjects, and
recording the brain and other physiological signals simul-
taneously. For example, a “happy” movie clip rated by
multiple evaluators is supposed to elicit a happy emotion
from the subject.

Unlike other classical BCI paradigms, e.g., motor
imagery [32], event-related potentials [33], and steady-
state visual evoked potentials [34], aBCI experiments are
more difficult to perform due to the following reasons.

1) Music or videos are frequently used to elicit specific
emotions; thus, the emotions of the music or videos
need to be evaluated first. Since emotion is very
subtle and has large individual differences, multiple
evaluators are needed for each music or video, which
is labor-intensive. For example, in the popular DEAP
dataset [35], 14–16 volunteers were recruited to eval-
uate the arousal, valence, and dominance values of
each music video.

2) It takes some time for music or video to influence the
emotion of a user, so an aBCI data trial is generally
longer than a trial in other BCI paradigms. For exam-
ple, a steady-state visual evoked potential [13] trial
may be less than a second, and motor imagery [32]
or event-related potential [33] trial may take only
a few seconds, whereas an aBCI trial may take a
couple of minutes. Thus, collecting aBCI data is time-
consuming.

3) Usually, aBCI experiments require the subjects to con-
centrate on the emotional media to elicit the intended
emotion, which may quickly result in fatigue. Thus,
an aBCI experiment cannot last too long. As each
aBCI trial may take a couple of minutes, this further
reduces the number of trials per subject in an aBCI
experiment.

C. Input Signals

Different brain signals, e.g., EEG, fMRI, and fNIRS, have
been used in aBCIs, with EEG being the most popular.

EEG signals can be acquired by an EEG headset from the
scalp [36]. A typical EEG headset includes tens of channels
(electrodes), labeled according to the international 10-20
or 10-10 system, as shown in Fig. 5. The letters on a

Fig. 4. Ekman’s six basic emotions in the 3-D space of arousal,

pleasure, and dominance.
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Fig. 5. Electrode labels and locations of an EEG headset according

to the international 10-10 system. Nz: nose; A: ear lobe; F: frontal;

C: central; P: parietal; O: occipital; T: temporal; Fp: frontal polar;

and z: zero.

label indicate the lobe location, and the number (index)
indicates how far away the electrode is from the center of
the brain: the index increases as the electrode moves away
from the central. The odd indices are on the left, and the
even indices are on the right.

The typical amplitude of EEG is between 5 and
300 µV, and the highest useful frequency is usually
below 100 Hz [37]. EEG signals can be partitioned into
different frequency bands, reflecting different emotions or
brain states, as summarized in Table 1.

Not all EEG frequency bands and channels contribute
equally to emotion recognition. Ray and Cole [40] found
that EEG alpha activity reflects attentional demands,
whereas beta activity reflects emotional and cognitive pro-
cesses. Furthermore, the beta activities of the two hemi-
spheres are different in the temporal areas for positive or
negative emotions and in the parietal areas for cognitive
tasks. Zheng et al. [41] found that EEG patterns for emo-
tion recognition are relatively stable over time and cross-
sessions. Particularly, for positive emotions, the lateral
temporal lobes have higher beta and gamma activations;
for neutral emotions, the parietal and occipital lobes have
higher alpha responses; and, for negative emotions, the
parietal and occipital lobes have significantly higher delta
responses, and the prefrontal lobes have higher gamma
responses. Peng et al. [42] proposed an approach to
automatically identify important features, and critical fre-
quency bands and channels, in EEG-based emotion recog-
nition. They found that the gamma band, and prefrontal
and left/right central channels are important. Results from
these studies may be used to select the few most useful
EEG channel locations for specific aBCIs, reducing the cost
and increasing user-friendliness.

Instead of measuring the neural activities by detecting
their electrical signals (as in EEG), fMRI [43] measures the
neural activities by detecting changes associated with the
brain blood flow, and fNIRS [44] uses near-infrared light to
estimate cortical hemodynamic activities associated with
the neural activities. fMRI and fNIRS have also found
applications in aBCIs, as will be introduced in Section V-F.

D. Public aBCI Datasets

Though it is not easy to record aBCI datasets, there have
been more than ten public aBCI datasets in the community,
as summarized in Table 2 and sorted according to the
year the corresponding paper was published. We also list
the number of Google Scholar citations to the papers (as
of April 15, 2023) as an indicator of their popularity.
The three most popular ones are DEAP [35], MAHNOB-
HCI [45], and SEED [46].

The Database for Emotion Analysis using Physiolog-
ical signals (DEAP) [35] includes EEG and peripheral
physiological signals (EOG, EMG, GSR, and so on) of
32 participants, while they were watching 40 1-min-long
music video excerpts. 22 of the 32 participants also had
frontal face video recorded. Each video excerpt was rated
by 14–16 volunteers based on arousal, valence, and dom-
inance, and also by each participant based on arousal,
valence, like/dislike, dominance, and familiarity.

MAHNOB-HCI [45] is one of the three databases in
the MAHNOB family (laughter, HCI-tagging, and MHI-
mimicry). It includes video, audio, eye tracking, and phys-
iological signals (EEG, ECG, RSP, and ST) of 30 partici-
pants, while they were watching 20 emotional movie clips.
Each participant self-reported his/her ratings of valence,
arousal, dominance, and predictability, and also emotional
keywords (anger, anxiety, fear, sadness, disgust, neutrality,
surprise, amusement, and joy).

The Shanghai Jiao Tong University Emotion EEG dataset
(SEED) [46], collected and released by the second author
of this tutorial, has been developed into a family of
datasets.

1) SEED: It includes both EEG (62-channel ESI Neu-
roScan System) and eye movement (SMI eye-tracking
glasses) data of 12 subjects and EEG data only of
another three subjects. Data were collected when the

Table 1 EEG Frequency Bands and Emotions [26], [38], [39]
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Table 2 Public aBCI Datasets

subjects were watching film clips, carefully selected
to elicit different emotions (positive, negative, and
neutral).

2) SEED-IV: As an evolution of SEED, the number of
emotion categories in SEED-IV changes to four:
happy, sad, fear, and neutral. EEG and eye movement
data are provided.

3) SEED-V: As an evolution of SEED-IV, the number of
emotion categories in SEED-V increases to five: happy,
sad, fear, disgust, and neutral. EEG and eye move-
ment data are provided.

4) SEED-FRA: This dataset contains EEG and eye move-
ment data of eight French subjects with positive,
negative, and neutral emotions.

5) SEED-GER: This dataset contains EEG and eye move-
ment data of eight German subjects with positive,
negative, and neutral emotions.

6) SEED-VIG: Different from the above five emotion
datasets, SEED-VIG targets vigilance estimation. Sub-
jects played a driving game in a virtual driving system,
with an enormous screen placed in front of a real
car. Their EEG and EOG data were collected, and the
vigilance level was labeled with the PERCLOS [57]
indicator by an eye tracker.

III. S I G N A L P R O C E S S I N G I N a B C I s
EEG signals are very weak (typical magnitude: 5–300 µV)
and easily contaminated by artifacts (such as eye blinks
and muscle movements) and noise. Thus, it is very impor-
tant to perform signal processing to increase their signal-
to-noise ratio.

Signal processing in aBCIs typically includes sequen-
tially temporal filtering, rereferencing, artifact removal,
resampling, and epoching.
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A. Temporal Filtering

Not all frequencies in EEG are useful for emotion recog-
nition, e.g., the very low frequencies may be dc drifts,
and very high frequencies may be noise. Thus, usually,
EEG signals need to be bandpass filtered. A commonly
used passband is 4–45 Hz [58]. However, recent research
has shown that the delta band (0.5–4 Hz) power may
be very useful in characterizing negative emotions [41],
and high-pass filtering EEG at 1 Hz was recommended for
independent component analysis (ICA) [59]; thus, a better
passband choice may be 1–45 Hz.

In addition, notch filtering may be used to remove the
50-/60-Hz powerline interference.

B. Rereferencing

EEG records the voltages with respect to a specific
reference. Typical reference electrodes [60] include one
mastoid (e.g., TP10), linked mastoids, the vertex electrode
(Cz), single or linked earlobes, or the nose tip. Headsets
with active electrodes may record EEG reference-free.
Rereferencing is usually performed after data recoding and
filtering to increase the signal-to-noise ratio; particularly,
rereferencing post hoc can remove 40-dB unnecessary
noise of active headsets [60].

The most frequently used rereferencing approach is
the common average reference [58], which removes the
mean of all channels from each individual channel. Special
attention should be paid when the original EEG signals
were recorded with reference [60]

1) If the data were recorded with reference to the nose
tip or ear lobe, then these reference electrodes should
be excluded from computing the average reference.

2) If N -channel EEG data were recorded with reference
to a particular electrode, e.g., TP10, then the signal of
TP10 can be recovered from the N -channel data first,
i.e., TP10 = (Sum of N electrode activities)/(N + 1).
Now, there are N + 1 electrodes, and their average
can be computed and removed from each individual
electrode.

C. Artifact Removal

The next step is usually artifact (e.g., eye blinks and
muscle movements) removal. Many researchers remove
artifacts manually, but semiautomatic approaches, such
as ICA [61], blind source separation [62], and principal
component analysis (PCA), are also popular. They aim
to find some spatial filters to transform the original EEG
channels into some (usually fewer) “virtual channels,”
some of which may be artifacts/noise and, hence, could
be removed.

Due to volume conduction effects [63], each EEG chan-
nel may measure the compound from multiple underlying
primary sources in the brain. ICA is one of the most popular
approaches to separate these sources. It identifies multiple
independent component filters to produce maximally tem-
porally independent signal sources available in the original

data. A certain signal source may be eye blinks and, hence,
can be removed.

ICA has two main differences from PCA [64].
1) Each successive PCA component accounts for as much

as possible of the remaining activity not accounted
for by previous PCA components, so different PCA
components may have dramatically different con-
tributions, with the first the maximum (could be
more than 50%). ICA components have much more
homogeneous contributions, ranging from roughly
5% down to ∼0%, because ICA tries to identify maxi-
mally independent activity sources.

2) PCA components of EEG data are spatially or tem-
porally orthogonal, depending on which dimension
PCA is applied to. ICA components are maximally
temporally independent, but there are no spatial con-
straints.

Recently, end-to-end deep learning approaches [65]
have also been proposed for EEG artifact removal.

D. Resampling

EEG signals are typically recorded at a much higher
sampling rate (e.g., 1024 Hz) than the useful frequencies
in emotion recognition, so usually downsampling is used to
reduce the memory and computational cost. Many studies
downsampled EEG data to 128 Hz [58].

E. Epoching

EEG signals are usually recorded continuously for each
stimulus, which may last several minutes. Each such piece
of EEG data may be viewed as a block, and usually,
each block is further partitioned into many overlapping or
nonoverlapping shorter (e.g., 10 s) epochs to increase the
number of trials in analysis.

F. Signal Processing for fMRI-/fNIRS-Based aBCIs

An fMRI image consists of multiple sequentially sam-
pled slices. Its processing typically involves the following
steps [66].

1) Slice timing correction, which interpolates the slices so
that they can be viewed as being sampled at exactly
the same time [67].

2) Realignment, which performs motion correction to
eliminate the effect of head movements [68].

3) Coregistration, which registers low spatial resolution
fMRI images to a high-resolution structural MRI
image of the same subject [69].

4) Normalization, which registers a subject’s anatomical
structure to a standardized stereotaxic template [70].

Currently, there is no standard fNIRS signal processing
procedure. Some studies [71], [72] included the following
steps, among others:

1) artifact removal, which identifies and removes noisy
channels and incorrect trials, and removes/corrects
motion artifacts;
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Table 3 Representative EEG Features in aBCIs

2) filtering, which uses a finite impulse response band-
pass filter to remove both very-low-frequency and
high-frequency noises;

3) epoching, which partitions the fNIRS signal into short
trials.

IV. F E AT U R E E X T R A C T I O N I N a B C I s
EEG is multichannel time series, so time-domain,
frequency-domain, time–frequency-domain, and brain
connectivity features [73], [74] could be extracted for
aBCIs, as summarized in Table 3.

A. Time-Domain Features
Let x(t) ∈ RT be the time series of a single EEG channel,

where T is the number of time samples. Time-domain
features could include [73]:

1) Mean: µx = (1/T )
∑T

t=1 x(t).
2) Standard deviation: σx = ((1/T )

∑T
t=1(x(t) −

µx)2)1/2.
3) Power: Px = (1/T )

∑T
t=1 x

2(t).
4) First difference [9] that approximates the gradient:

δx = (1/T − 1)
∑T−1

t=1 |x(t + 1)− x(t)|.
5) Normalized first difference [9] or normalized length

density [75] that captures self-similarities of the time
series: δ̄x = δx/σx.

6) Second difference [9]: γx = (1/T−2)
∑T−2

t=1 |x(t+2)−
x(t)|.

7) Normalized second difference [9]: γ̄x = γx/σx.
8) Hjorth’s activity [76] that is the variance or mean

power of the EEG signal: Ax = σ2
x.

9) Hjorth’s mobility [76] that may be considered as a
mean frequency: Mx = σẋ/σx, where ẋ is the first
derivative of x.

10) Hjorth’s complexity [76] that measures more details of
the EEG signal with reference to the sine wave: Cx =

Mẋ/Mx.
11) Normalized nonstationarity index (NSI) [77] that uses

the variation of the local average over time to represent
the signal complexity: x(t) is first normalized by the
standard deviation and then divided into multiple
small segments. The mean of each segment is com-
puted, and the NSI is the standard deviation of these
means.

12) Fractal dimension [78] that is also a measure of sig-
nal complexity: First, rewrite x(t) as {x(m),x(m +

k), . . . ,x(m + k⌊(T − m/k)⌋)}, where k is the time
interval, m ∈ {1, . . . , k} is the initial time, and ⌊·⌋ is
the floor operation. Then, compute

Lm(k) =

∑⌊T−m
k

⌋
k=1 |x(m + ik)− x(m + (i− 1)k)|

T−1

k2⌊T−m
k

⌋

.

The fractal dimension is finally computed as the neg-
ative slope of the log-log plot of (1/k)

∑k
m=1 Lm(k)

against k.
13) Higher order crossings (HOCs) [79] that captures the

EEG oscillatory pattern: Apply k different high-pass
filters to a zero-mean time series to obtain k filtered
time series, and extract the k HOC features as the
number of zero-crossings of them.

The first seven time-domain features are generic, i.e.,
they can be computed for any time series, not necessarily
specific to EEG. Hjorth’s three measures were specifically
proposed for EEG signal analysis.

B. Frequency-Domain Features
Different EEG frequency bands may reflect different

emotions, as shown in Table 1. Thus, frequency-domain
features [73] usually include band power derivatives (e.g.,
mean, minimum, maximum, variance, ratio of mean pow-
ers of different bands, and differential entropy (DE) [80])
and higher order spectra (e.g., bispectra and bicoherence
magnitudes [81]).

An effective and popular frequency-domain feature in
EEG-based emotion recognition is DE [80]

DEx = −
∫ +∞

−∞

e
− (x−µx)2

2σ2
x

√
2πσ2

x

log

(
1√

2πσ2
x

e
− (x−µx)2

2σ2
x

)
dx

=
1

2
log
(
2πeσ2

x

)
.

For a fixed-length EEG sequence, DE is equivalent to
the logarithmic energy spectrum in a certain frequency
band [82].

Differential asymmetry (DASM) and rational asymmetry
(RASM), which are the difference and ratio between the
DEs of a pair of hemispherically symmetric electrodes (e.g.,
O1 and O2 in Fig. 5, denoted as xleft and xright), respec-
tively, can further be extracted to describe the hemispheric
asymmetry [80]

DASM = DExleft −DExright

RASM =
DExleft

DExright

.

Similar differential spectral asymmetry features, DLAT
and DCAU, were also proposed in [83]. DLAT consists
of the differential spectral band powers (delta, theta,
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alpha, beta, and gamma) for 12 left-right electrode pairs,
e.g., Fp1-Fp2 and F7-F8. The latter consists of those
for 12 fronto-posterior electrode pairs, e.g., Fp1-O1 and
F7-P7.

The bispectrum Bis is the Fourier transform of the
third-order moment of x(t), i.e., [73], [81]

Bis(f1, f2) = E [FT(f1) · FT(f2) · FT∗(f1 + f2)]

where E is expectation, FT is the Fourier transform of x(t),
and ∗ is the complex conjugate.

Bicoherence Bic is the normalized Bis [73], [81]

Bic(f1, f2) =
Bis(f1, f2)√

P (f1) · P (f2) · P (f1 + f2)

where P (f) = E[FT(f) · FT∗(f)] is the power spectrum.
Several other entropy features, e.g., approximate

entropy [84], sample entropy [84], permutation entropy
[85], and dispersion entropy [86], have also been pro-
posed and used in EEG-based emotion recognition [87].

Giannakakis et al. [88] gave a review on biosignal-based
psychological stress detection and concluded that EEG
alpha asymmetry index (e.g., the natural logarithm of
the Alpha power of F3 minus that of F4) is consistently
reduced under stress.

C. Time–Frequency-Domain Features

Time–frequency-domain features are usually 2-D spec-
tral representations of EEG signals in simultaneously time
and frequency domains [89], including short-time Fourier
transform (STFT), spectrograms computed from STFT
[89], discrete wavelet transform [90], Cohen’s class [91],
Zhao–Atlas–Marks (ZAM) transform [92], empirical mode
decomposition (also known as Hilbert–Huang spectrum
(HHS) [93], [94]), and so on.

Hadjidimitriou and Hadjileontiadis [89] compared
STFT, ZAM, and HHS features in music like/dislike classifi-
cation and found that, generally, ZAM features performed
the best due to their high resolution in both time and
frequency domains.

D. Brain Connectivity

Connectivities between different brain regions (elec-
trodes) have also been used as features in emotion recogni-
tion. Frequently used brain connectivity measures [95] are
the Pearson correlation coefficient (PCC), phase-locking
value (PLV) [96], and phase lag index (PLI) [97].

The PCC measures the linear correlation between two
time series x(t) and y(t)

PCCx,y =
cov(x,y)

σxσy

where cov(x,y) is the covariance. PCC has a range of
[−1, 1], and a PCC of zero means that there is no linear
relationship between x(t) and y(t).

Define z(t) = x(t) + jx̃(t), where j =
√
−1, and

x̃(t) =
PV
π

∫ ∞

−∞

x(τ)

t− τ
dτ

is the Hilbert transform of x(t), in which PV is the Cauchy
principal value. The instantaneous phase ϕ(t) of x(t) is
then

ϕ(t) = arctan
x̃(t)

x(t)
.

The PLV [96] computes the phase synchronization between
Channels i and k, by taking the absolute average of phase
differences over temporal windows

PLV(i, k) =

∣∣∣∣∣ 1T
T∑

t=1

ej(ϕi(t)−ϕk(t))

∣∣∣∣∣ .
The PLI [97] is another way to compute the phase synchro-
nization between channels i and k

PLI(i, k) =

∣∣∣∣∣ 1T
T∑

t=1

sign (ϕi(t)− ϕk(t))

∣∣∣∣∣ .
Both PLV and PLI take values in [0, 1]. A larger value
indicates better phase locking, and a value of zero means
of two channels are independent.

Moon et al. [95] performed binary arousal classifica-
tion on DEAP and found that the PCC and PLV features
always outperformed power spectrum density (PSD) fea-
tures when fed into convolutional neural networks, and
PLV always outperformed PLI.

E. Feature Combinations

Different feature extraction approaches could also be
assembled into a pipeline to extract new features.

A frequently used approach is to extract more fea-
tures from different frequency bands. Hadjidimitriou and
Hadjileontiadis [89] computed the spectrograms of STFT,
ZAM transform, and Hilbert–Huang spectrum in both beta
(13–30 Hz) and gamma (31–49 Hz) bands and then con-
catenated them as features for music appraisal responses
(like and dislike) classification. Zheng et al. [41] used PSD,
DE, DASM, RASM, and so on in five different frequency
bands for emotion classification on DEAP and SEED.

Another idea is to extract more features from different
intrinsic mode functions in empirical mode decomposition.
Liu et al. [98] first performed empirical mode decomposi-
tion of the original EEG signals to obtain five intrinsic mode
functions and then computed the DE for each intrinsic
mode function and each channel. The dynamic DE features
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were then used by a convolutional neural network for
emotion classification.

Kroupi et al. [75] extracted power ratio features
from theta, alpha, low beta (13–16 Hz), middle beta
(17–20 Hz), high beta (21–29 Hz), and low gamma
(30-47 Hz) bands, by dividing a subject-specific baseline
power from the trial powers. Additional features included
the Wasserstein distance between trial and baseline pow-
ers, and the normalized length density index.

F. Feature Extraction for fMRI-/fNIRS-Based aBCIs

Functional connectivities between brain regions of inter-
est (ROIs) are common fMRI features in aBCIs [99],
[100]. The ROIs could be defined according to the atlas
of automated anatomical labeling [101], dense individu-
alized and common connectivity-based cortical landmarks
(DICCCOLs) [102], and so on. Then, measures such as
small-world parameters [103], network efficiency [104],
and nodal centrality metrics [105] could be computed.

For fNIRS feature extraction [106], the raw fNIRS light
intensities could be converted to relative changes in hemo-
dynamic responses in terms of oxy-hemoglobin (Hbo)
and deoxy-hemoglobin (Hbr), and then, Hbo + Hbr and
Hbo-Hbr, which estimate the total blood volume and the
oxygenation change, can be calculated for each optode.
Finally, their statistics such as mean, median, standard
deviation, maximum, minimum, and maximum–minimum
could be extracted as features.

V. E M O T I O N R E C O G N I T I O N I N a B C I s
Once the features are extracted, traditional machine learn-
ing algorithms, e.g., k-nearest neighbors [107], decision
tree [107], and support vector machine (SVM) [108],
can be used for emotion recognition. When deep learn-
ing [109] is used, feature extraction and classifica-
tion/regression can be integrated into a single end-to-end
neural network, so manual feature extraction may not be
necessary.

A. Within-Subject Emotion Recognition

Many aBCI studies performed within-subject emotion
recognition, where each subject is considered individually.
Both traditional machine learning approaches [110] and
deep learning have been considered.

For example, Huang et al. [15] performed within-
subject EEG-based binary (positive/negative) emotion
classification for both healthy subjects and disorder-of-
consciousness patients, using manually extracted PSD fea-
tures and an SVM classifier. The ten healthy subjects
achieved on average over 90% classification accuracy,
and some disorder-of-consciousness patients also achieved
about 70% accuracy. Liu et al. [111] proposed a 3-D
convolution attention neural network for both within-
and cross-subject EEG emotion classifications on SEED.
In within-subject classification, it outperformed a deep
convolutional neural network using electrode-frequency

distribution map features [112], a deep canonical corre-
lation analysis model fusing EEG functional connectivity
network features and eye movement features [113], and a
spiking neural network model [114].

We should note that, for within-subject emotion recog-
nition, it is very important to perform cross-block data
partition and evaluations.

For example, SEED includes 15 4-min film clips for each
subject. Each 4-min EEG data recording for a film clip can
be viewed as a block, and each block can be partitioned
into multiple shorter nonoverlapping trials (e.g., 10 s) to
increase the number of training and test samples. Thus,
each block consists of 24 trials with the same emotion
label, and there are a total of 24 × 15 = 360 trials.

For within-subject emotion recognition, each subject is
considered individually. It is very important that the train-
ing and test sets should come from different blocks, e.g.,
Blocks 1–12 for training and Blocks 13–15 for test. If we
mix the 360 trials altogether and randomly select 80%
of them for training and the remaining 20% for testing,
then there is a block-design pitfall [115]: “the block design
leads to the classification of arbitrary brain states based on
block-level temporal correlations that are known to exist in
all EEG data, rather than stimulus-related activity. Because
every trial in their test sets comes from the same block
as many trials in the corresponding training sets, their
block design, thus, leads to classifying arbitrary temporal
artifacts of the data instead of a stimulus-related activity.”

The block-design pitfall becomes more significant if each
4-min EEG block is partitioned into multiple overlapping
trials. For example, if the [0, 10] second trial in a certain
block is used in training, and the subsequent [5], [15]
second trial from the same block is used in the test, then
there is data leakage since part of the test data have
been seen in training, and hence, the test results will be
overoptimistic.

B. Transfer Learning for Cross-Subject/
Cross-Session Emotion Recognition

A machine learning model may work well when there
are adequate training data, and the training and test
data have the same distribution. Unfortunately, these two
assumptions are not always satisfied in aBCIs: 1) for fast
calibration to improve system utility and user-friendliness,
it is desirable to collect as few calibration trials from a
new subject as possible, i.e., the subject-specific training
data is usually not enough and 2) due to large individual
differences (data distributions from different subjects are
usually significantly different), generally, it is not feasible
to use data from existing subjects directly for the calibra-
tion of a new subject.

Transfer learning [116] has been widely used in
BCIs [117], including aBCIs, to reduce the subject-specific
calibration effort. Transfer learning uses data or knowledge
from some source domains (existing subjects) to facilitate
the model training in a target domain (a new subject).
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To reduce the domain discrepancy and, hence, overcome
negative transfer [118], transfer learning may weigh the
source domain samples so that their distribution is more
similar to that of the target domain (instance transfer) or
perform feature transformations so that the feature distri-
butions of the source and target domains are more similar
in the new feature space (feature transfer) or use the
source models to regularize the target model (parameter
transfer) and so on.

For instance transfer, Zhang et al. [119] proposed indi-
vidual similarity-guided transfer learning for EEG-based
emotion recognition. They used first maximum mean dis-
crepancy (MMD) to quantify the similarities between the
source subjects and the target subject, then TrAdaBoost
to further weight the trials from the top few most similar
source subjects to make the axillary data distribution more
resemble the target distribution, and, finally, an SVM for
classification. Lin [120] first used the Riemannian dis-
tances of MESH features (concatenation of DLAT, DCAU,
and PSD features) [83] between multiple source sessions
and the target session to select the most similar few source
sessions and then augmented their data with the target
session data for cross-session transfer. Particularly, matrix
factorization of robust PCA was further used to reweight
the samples for instance transfer.

For feature transfer, Zheng et al. [121] demonstrated
the promising performance of two classical feature dimen-
sionality reduction approaches, transfer component analy-
sis [122], and kernel principal analysis [123] in EEG-based
emotion classification on SEED. Both aim to learn a
set of common transferrable components between the
source and target domains in a latent feature space.
Chai et al. [124] proposed adaptive subspace feature
matching, which uses first PCA in the source and tar-
get domains, respectively, to map the DE features into
lower dimensional subspaces, then a linear transformation
matrix to match their marginal distributions, and, finally,
conditional distribution adaptation to further reduce the
distribution discrepancy.

EEG data alignment approaches, e.g., Riemannian align-
ment [125] and Euclidean alignment [126], may also
be used to transform the EEG data from different sub-
jects so that their distributions are more consistent (and
hence to facilitate transfer learning); thus, they may also
be viewed as feature transfer approaches. For example,
Wang et al. [127] demonstrated the effectiveness of the
Riemannian Alignment-Minimum Distance to Riemannian
Mean (RA-MDRM) [125] on DEAP, and Jiang et al. [128]
demonstrated the effectiveness of Euclidean alignment on
both DEAP and SEED.

For parameter transfer, Zheng and Lu [129] used source
domain data to train multiple SVM classifiers, one for each
domain, and then learned a regression function to describe
the relationship between the feature distribution and SVM
parameters. The parameters of the target domain SVM
classifier were then computed by applying such a function
to the unlabeled target data.

Li et al. [130] reviewed transfer learning for EEG-based
emotion recognition and observed that the research inter-
est is gradually shifting from instance transfer, to fea-
ture transfer, and then to parameter transfer (their
Table 2 summarizes about 20 representative transfer learn-
ing approaches in aBCIs). So far, feature transfer has
the most investigations. They also gave a summary of
the performance of some representative transfer learn-
ing approaches, in cross-session, cross-subject, and cross-
database transfers. The state-of-the-art cross-subject trans-
fer learning classification accuracies on SEED are around
90% for three-class valence classification [112], [131].

C. Deep Transfer Learning

Deep learning [132], which has achieved great success
in many other domains, has also been gaining popularity
in aBCIs. In deep learning [109], feature extraction and
classification/regression are integrated into a single neural
network and simultaneously optimized.

Deep learning-based transfer learning, or deep transfer
learning, can be achieved in different ways. The most
popular and straightforward approach [112] is parameter
transfer, i.e., to train a deep learning model using data
from multiple auxiliary subjects and then adapt it to the
new subject by fixing the first few feature extraction layers
and then using the subject-specific data to fine-tune the last
few classification layers. Another idea is to use adversarial
learning to bring the data distributions of the auxiliary and
new subjects closer. For example, Luo et al. [133] proposed
the Wasserstein generative adversarial network domain
adaptation to achieve an 87% cross-subject emotion classi-
fication accuracy on SEED. It uses first pretraining to map
source and target domains to common latent feature space
and then adversarial training to bring the source and target
domain latent features together.

D. Multimodal Learning

Multimodal signals, e.g., EEG, ECG, eye movement, and
facial expressions, may be used together for more reliable
emotion recognition. An important question is how to
effectively fuse the information from different modalities.

Generally, there are two popular fusion strategies in
multimodal emotion recognition.

1) Feature-level fusion, where features of each modal-
ity are extracted individually and independently,
and then concatenated into a single larger feature
vector for classification or regression. For exam-
ple, Wu et al. [108] concatenated features from
four physiology signals (EEG, ECG, skin conductance
level, and respiration) and then used an SVM for
subject-dependent classification of three arousal lev-
els, reaching an average accuracy of 96.5% on 18 sub-
jects. Cai et al. [107] performed feature-level fusion
for multimodal depression recognition. They collected
EEG signals, while the subjects were listening to
audio with different emotions (neutral, negative, and
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positive), each emotion being viewed as a modality.
For each subject, EEG features from each modality
were computed, and features from the three modal-
ities were linearly combined to form a new feature
vector, which was used to classify if the subject had
depression or not.

2) Decision-level fusion, which builds a classifier for
each modality and then aggregates their results. Usu-
ally, the outputs of each classifier are the classification
confidence of different classes, and there are differ-
ent approaches to aggregate this confidence [134],
e.g., (weighted) summation, product, Dempster–
Shafer, and Bayesian belief integration. For example,
Huang et al. [135] used neural networks to classify
four emotions (happiness, neutral, sadness, and fear)
from facial expressions, and two SVMs to classify
these four emotions and three intensities (strong,
ordinary, and weak) from EEG, respectively. Sum-
mation and product decision-level fusion approaches
were then used for multimodal emotion detection,
both outperforming single-modal detection.

There is no universal conclusion on which fusion
approach is better. Zheng et al. [136] compared both
fusion strategies in EEG and eye-tracking data-based emo-
tion classification on SEED and found that, on aver-
age, feature-level fusion outperformed two decision-level
fusion approaches (73.59% versus 72.98% and 68.90%).
Soleymani et al. [137] used EEG, pupil diameter, eye
blinks, and gaze distance for subject-independent classifi-
cation of three arousal levels (calm, medium aroused, and
activated) and three valence classes (unpleasant, neutral,
and pleasant). They found that decision-level fusion out-
performed feature-level fusion, reaching 68.5% and 76.4%
average classification accuracies on arousal and valence,
respectively, on 24 subjects.

E. Cross-Modal Learning

In real-world applications of aBCIs, maybe not all input
signals used in training are available in the test, e.g.,
both EEG and eye movement signals are used in training,
whereas only eye movement signals are available in the
test. In this case, using all available modalities in training
may still be more beneficial than using only one of them.

Zheng et al. [138] considered modality deficiency in
heterogeneous transfer learning, i.e., the source subjects
have both EEG and eye movement signals, whereas the tar-
get subject has only eye movement signals. They showed
that with only eye tracking data for the target subject,
TL can still make use of the discriminative information
in EEG from the source subjects, achieving comparable
performance with the model based on EEG data in emotion
recognition. This greatly extends the application scenarios
of aBCIs, as eye trackers may be easier to wear, and eye
tracking data may be less subjective to body movement
artifacts.

Yan et al. [139] investigated the same problem using a
different approach. They first used EEG and eye movement
features to train a multimodal fusion network and an emo-
tion classifier and then trained a conditional generative
adversarial network to learn the relationship between eye
movements and the multimodal features. In the test phase,
eye movement features were used to regress multimodal
features for emotion classification.

Eye movements should not play a role in some
BCI paradigms, e.g., motor imagery; thus, they are
called artifacts there and should be removed. How-
ever, multiple studies [137], [138], [139] verified that
they could be very useful in aBCIs. For example,
Soleymani et al. [137] showed that eye gaze features out-
performed EEG in video-elicited emotion classification,
and their decision-level fusion performed the best. This
should not diminish the usefulness of EEG in aBCIs, as,
in real-world applications, vision is not the only input to
elicit emotions; other emotional inputs, such as sound and
smell, may be reflected by EEG but not eye movements.

F. fMRI-/fNIRS-Based Emotion Recognition

In addition to EEG, fMRI and fNIRS have also been used
in emotion recognition.

Han et al. [100] combined fMRI-derived features (func-
tional connectivities between ROIs, computed by the
wavelet transform coherence) and low-level audio–visual
features (lighting key, color energy, visual excitement, Mel-
frequency cepstral coefficients, and so on) for binary video
arousal classification (low and high), and showed that
fMRI-derived features can increase the subject-dependent
classification accuracy by more than 10%. fMRI-derived
features themselves achieved over 92% cross-subject clas-
sification accuracies on three subjects.

Wang et al. [140] studied intersession instability in
fNIRS-based emotion recognition and found a 22.2% aver-
age deterioration of binary emotion classification (negative
and neutral) accuracy between two sessions with three-
week apart. As the change of the distributions of fNIRS
features may be the cause of the performance decline,
they proposed a feature selection approach that considers
both the feature separability and their stability over time,
which gave a 5% accuracy improvement in cross-session
classification.

Sun et al. [106] showed that using EEG and fNIRS
simultaneously for positive/negative arousal classification
outperformed every single modality. The logarithmic PSD
for theta, slow alpha (8–10 Hz), alpha, and beta bands
was extracted from each electrode as EEG features. The
mean, median, standard deviation, maximum, minimum,
and maximum–minimum of Hbo + Hbr and Hbo-Hbr
from each optode were extracted as fNIRS features.
In addition, brain activity asymmetry features, i.e., the
difference between the spectral powers of symmetrical
EEG electrode pairs on the two hemispheres, were also
extracted.
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VI. B R A I N S T I M U L AT I O N
Brain stimulation in aBCI is used to achieve emotion regu-
lation [141], which “refers broadly to implementation of a
conscious or nonconscious goal to start, stop, or otherwise
modulate the trajectory of an emotion.” Proper emotion
regulation is important in mental and physical health, and
social interactions [142].

Multiple EEG-based emotion biomarkers have been
proposed in the literature. For example, Hardt and
Kamiya [143] found that, for high anxiety subjects,
increasing EEG Alpha activity reduced anxiety and vice
versa. Thus, they suggested that long-term alpha feed-
back training (>5 h) may be useful in anxiety therapy.
The asymmetry in frontal alpha power also indicates dif-
ferent emotions [144]: greater right-lobe alpha activity
than left-lobe activity is associated with negative emo-
tions and vice versa. These findings have been used to
guide the design of EEG-based neurofeedback training
to regulate [142] “single-frequency band EEG activity in
specific brain regions or EEG power differences between
hemispheres.” Huang et al. [142] further developed an
EEG-based BCI for emotion regulation, which uses video
clips to regulate the user’s emotion directly to a certain
state (positive, neutral, and negative), instead of regulat-
ing the activity of a certain EEG frequency band.

Similar noninvasive emotion regulation studies have
also been performed using fMRI [145] and fNIRS [146].
However, instead of regulating the activity of a certain EEG
frequency band, they regulate the activity of a certain ROI,
e.g., amygdala or dorsolateral prefrontal cortex.

Brain stimulation using electroconvulsive therapy
(ECT), transcranial magnetic stimulation (TMS), vagal
nerve stimulation (VNS), and deep brain stimulation
(DBS) have also been used in treatment-resistant depres-
sion (TRD) therapies. Cusin and Dougherty [147] sum-
marized their efficacy, contraindications, and side effects:
“ECT is widely available and its effects are relatively
rapid in severe TRD, but its cognitive adverse effects may
be cumbersome. TMS is safe and well tolerated, and it
has been approved by FDA for adults who have failed
to respond to one antidepressant, but its use in TRD
is still controversial as it is not supported by rigorous
double-blind randomized clinical trials. The options requir-
ing a surgical approach are VNS and DBS. VNS has been
FDA-approved for TRD; however, it is not indicated for
the management of acute illness. DBS for TRD is still
an experimental area of investigation, and double-blind
clinical trials are underway.”

VII. a B C I A P P L I C AT I O N S
aBCIs have found applications in education [148], enter-
tainment [149], healthcare [15], and so on. Some repre-
sentative ones are introduced next.

A. Cognitive Workload Recognition

Cognitive workload may be defined as [150] “the rela-
tion between the function relating the mental resources

demanded by a task and those resources available to be
supplied by the human.” Maintaining an appropriate work-
load helps improve the operator’s safety and efficiency.
For example, using a Virtual Reality Stroop Task with
three difficulty levels and the user’s reaction time as the
performance measure, Wu et al. [108] empirically verified
the Yerkes–Dodson law [151], which states that the per-
formance in mental tasks is a nonmonotonic function of
arousal (stress or workload): as arousal increases from low
to high, the performance first increases and then decreases.

There may be associations between workload and EEG
frequency band power. For example, the increasing work-
load may lead to alpha band power decrease and theta
band power increase [152], [153]. As a result, EEG-based
cognitive workload recognition has been used in many dif-
ferent working environments [154], e.g., education [148],
air traffic control [155], and autism intervention [156].
Zhou et al. [154] presented a comprehensive review on
EEG-based cognitive workload recognition, focusing on
machine learning approaches. Both traditional machine
learning and deep learning approaches have been exten-
sively used.

B. Fatigue Estimation

Fatigue (drowsiness) is an important contributor to
many accidents, particularly traffic accidents. The U.S.
National Highway Traffic Safety Administration [157]
estimated that, in 2017, drowsy driving resulted in
91 000 police-reported crashes, 50 000 injuries, and nearly
800 deaths. These numbers may be underestimated.

Different strategies, e.g., computer vision-based [158]
and driving behavior-based [159], have been used
for driver fatigue estimation. EEG-based driver fatigue
(drowsiness) estimation, which is less dependent on overt
behavior and less susceptible to deception [26], belongs to
the latter. Another advantage of EEG-based driver fatigue
estimation is that fatigue may be detected from EEG signals
earlier than from other modalities like facial expressions,
as fatigue originates deep in the brain.

Many different approaches, particularly transfer learn-
ing, have been used in EEG-based driver drowsiness esti-
mation [159], [160], [161]. Commercial products, e.g.,
SmartCap,1 have also been developed.

C. Depression Diagnosis and Treatment

As indicated by the World Health Organization [162],
“depression is a common mental disorder. Globally, it is
estimated that 5% of adults suffer from depression.
Depression is a leading cause of disability worldwide and
is a major contributor to the overall global burden of
disease.”

Many studies have investigated the use of aBCIs in
depression diagnosis, and multiple EEG-based biomarkers
were proposed. For example, Allen et al. [163] found that

1https://www.smartcaptech.com
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prefrontal cortex EEG Alpha asymmetry may be a good
indicator of depression. Putnam and McSweeney [164]
further found that specific depression symptoms are
uniquely associated with prefrontal cortex EEG alpha activ-
ity patterns: lower bilateral prefrontal cortex alpha activity
for higher levels of rumination and lower right bilateral
prefrontal cortex alpha activity for higher levels of self-
esteem. Li et al. [165] found that major depression disor-
der patients have lower N2 amplitudes for all stimuli and
reduced anterior cingulate cortex activation for incongru-
ent stimuli. de Aguiar Neto and Rosa [166] gave a review
on EEG-based depression biomarkers.

aBCIs have also been extensively used in TRD ther-
apies [147]. One of the latest progress is DBS [167],
which implants electrodes within certain areas of the
brain to generate electrical impulses to regulate emo-
tion. Using multisite intracranial electrodes implanted
in a severely depressed patient, Scangos et al. [168]
found “an elaborate repertoire of distinctive emotional
responses that were rapid in onset, reproducible, and
context and state-dependent” to focal electrical neuromod-
ulation. Rao et al. [169] showed that lateral orbitofrontal
cortex stimulation-induced neural features associated with
positive mood states and, hence, improved mood state in
depression subjects. These pilot studies provided proof of
concept for personalized and effective DBS-based treat-
ment of emotion disorders, e.g., severe depression.

VIII. C H A L L E N G E S A N D
O P P O R T U N I T I E S I N a B C I s
Though we have witnessed rapid progress in aBCI research
and applications in the last few decades, multiple chal-
lenges still need to be overcome before their broad real-
world applications.

A. Brain Signal Acquisition

Common brain signals used in aBCIs include EEG, fMRI,
and fNIRS. The latter two require more expensive equip-
ment to acquire, so EEG is currently the most popular aBCI
input signal.

There are three types of EEG electrodes: gel-based,
water-based, and dry.

Gel-based electrodes use conductive gel to increase
the conductivity between the scalp and the electrodes,
and hence, the EEG signal quality is usually much bet-
ter than that of dry electrodes. However, gel injection is
time-consuming and user-unfriendly, which may hinder
the acceptance of gel-based EEG electrode-based aBCIs to
consumers.

Dry electrodes, which do not need conductive gel, are
much more convenient to use. Unfortunately, their sig-
nal quality still needs improvements [170]. For broad
real-world applications, it is very important to develop
cheap, convenient, and high-fidelity brain signal acquisi-
tion devices.

Water-based electrodes, or semidry electrodes, use
tap/saline water or slow-releasing electrolyte liquid to

increase the conductivity between the scalp and the elec-
trodes. They seem to be a good compromise between
gel-based electrodes and dry electrodes in terms of signal
quality and convenience.

B. Emotion Labeling

Unlike videos or music, whose emotions can be labeled
by human evaluators directly, it is almost impossible to
directly label the emotions of EEG trials. Thus, many
aBCI studies used videos or music to elicit emotions and
assumed that the subject’s EEG has the same emotion label
as the stimulating video or music.

For example, a “happy” movie clip rated by multiple
evaluators is supposed to elicit a happy emotion from
the subject. However, there are several limitations of this
approach: 1) because of individual differences, the subject
may not feel happy when watching the movie; 2) even
though the subject may feel happy, the activation level may
be too low to be reflected in his/her EEG signals; and 3) the
subject may feel happy for a short duration of the movie,
but it is difficult to know which part it is, so it is usually
assumed that the subject has a happy emotion during the
entire duration of the movie. Because of these reasons, the
emotion label for EEG signals may not be accurate.

In addition, people may exhibit multiple emotions simul-
taneously, e.g., a graduate may feel both happy and sad
at the graduation ceremony, and a viewer may feel both
sad and angry when seeing a good person killed in a
war movie. Unfortunately, currently, most aBCI experi-
ments assign only one emotion label or rating to each
movie/music, which may be too simplified.

Thus, more accurate and realistic emotion labeling
approaches are needed in aBCIs.

C. Diversity and Size of aBCI Datasets

A closer look at the datasets in Table 2 reveals at least
two limitations.

1) The dataset size is very small: the number of subjects
ranges from 8 to 58 (most below 30), and the num-
ber of stimuli ranges from 13 to 40. Huge datasets
in other application domains have greatly boosted
their breakthroughs, e.g., ImageNet [171] (more than
14 million images and 20 000 categories) for deep
learning in image recognition and more than 680 bil-
lion tokens for Generative Pretrained Transformer 3
(GPT-3) [172] in natural language processing. It is
expected that larger aBCI datasets will also facilitate
more rapid progress of aBCIs.

2) The demography of subjects is not diverse enough:
the mean age is between 21 and 35, so children,
teenagers, and the elderly are not adequately repre-
sented. However, these underrepresented groups are
also huge markets for aBCI technologies. For example,
the U.S. Centers for Disease Control and Preven-
tion (CDC) estimates that [173], between 2016 and
2019, for children and teenagers aged 3–17 years,

1326 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 



Wu et al.: aBCIs: A Tutorial

9.4% (approximately 5.8 million) had anxiety, and
4.4% (approximately 2.7 million) had depression.
The World Health Organization estimates that 5.7%
of adults older than 60 have depression. These large
populations should not be overlooked. Due to large
individual differences and the subtle nature of emo-
tions, models and strategies developed from datasets
of young adults may not be directly applicable to
these groups, and dedicated datasets and models
should be created for them.

D. Comparison of Different Approaches

New machine learning algorithms are constantly pro-
posed for aBCIs, and their effectiveness is demonstrated
in the corresponding publications. Unfortunately, it is chal-
lenging to directly compare different algorithms due to the
following reasons.

1) Different datasets are used, e.g., researchers may
collect their own datasets for performance evaluation.
It is desirable to publicize these datasets so that
further comparisons can be made, or, if there are
restrictions to release the self-collected datasets, then
experimental results on some public datasets should
also be reported.

2) Different experimental settings, e.g., different split-
tings of blocks into trials and different partitions of
training/validation/test sets. It is recommended to
introduce these details as much as possible in the
publications.

3) Tricks in algorithm design and optimization, e.g., the
structure of the neural network, setting of hyperpa-
rameters, and the number of training epochs. It is
recommended to share the code with the publications
or at least specify these details as much as possible.

E. Negative Transfer in Emotion Recognition

Transfer learning is now prevailing in cross-
subject/cross-session calibration of emotion recognition
algorithms in aBCIs. However, transfer learning may
not guarantee improved performance, i.e., negative
transfer [118] could occur.

Zhang et al. [118] pointed out four possible reasons for
the negative transfer.

1) Large domain divergence, e.g., negative transfer in
emotion recognition may occur when the source and
target subjects have significantly different cultural
backgrounds.

2) Poor source data quality, e.g., the emotion recognition
accuracy of the source subject is too low to be useful
in helping the target subject.

3) Poor target data quality, e.g., EEG data from the target
subject contain too many artifacts/noise, or the EEG
electrodes may be placed at scalp locations that are
not responsible for emotions.

4) Inappropriate transfer learning algorithm. Each trans-
fer learning algorithm has its assumptions and spe-
cific application scenarios. Choosing an inappropriate
one may result in a negative transfer. For example,
transfer component analysis [122], a classic transfer
learning algorithm, assumes that the source and tar-
get domains have the same conditional probability
distribution, but different marginal distributions, so it
focuses on reducing the latter. It may result in a
negative transfer if the conditional distributions are
significantly different.

There are also different strategies to mitigate or avoid
negative transfer [118], which have not been extensively
investigated in aBCIs yet.

1) domain similarity estimation, which is particularly
useful in selecting the most similar source domains
from multiple ones, i.e., to reduce the domain diver-
gence;

2) safe transfer, which includes deliberately designed
algorithms that can avoid negative transfer with the-
oretical guarantees, regardless of how the source and
target subjects are different from each other;

3) negative transfer mitigation, which alleviates
negative transfer using data/model transferability
enhancements, training process enhancements,
and/or target prediction enhancements.

F. Privacy-Preserving aBCIs

Many aBCI studies used transfer learning to facilitate
the calibration, making use of EEG data from the source
subjects. In addition to emotions, EEG signals also con-
tain other private information [174], e.g., user identity,
health status, and psychological state, which may be eas-
ily revealed. For example, Kong et al. [175] performed
EEG-based user identification on SEED (and three other
EEG datasets from different BCI paradigms), achieving
over 99% accuracy using only seconds of EEG data.

As a result, user privacy protection in BCIs has become
very important [176], [177]. Several recent laws and
regulations, e.g., the European General Data Protection
Regulation2 (GDPR; effective since May 25, 2018) and
the China Personal Information Protection Law (effective
since January 11, 2021), also enforce strict user privacy
protection.

Xia et al. [174] summarized three different strategies to
implement privacy-preserving BCIs.

1) Cryptography, which includes homomorphic encryp-
tion, secure multiparty computation, and secure pro-
cessors. For example, Agarwal et al. [178] used secure
multiparty computation for user privacy protection
in EEG-based driver drowsiness estimation. At a rea-
sonable computational cost, they obtained identical
results as in the unencrypted case.

2) Perturbation, which transforms or adds noise to the
original EEG data while maintaining their utility for

2https://gdpr-info.eu/
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emotion recognition. It can be implemented through
differential privacy or data reconstruction.

3) Machine learning-aided systems, which may be used
to [174] “help people better understand privacy poli-
cies and inform them about the privacy risks when
making privacy decisions.”

Recently, Zhang et al. [179] proposed unsuper-
vised multisource decentralized transfer for offline
privacy-preserving EEG classification, which implements
transfer learning using the source model parameters or
predictions, instead of the source data. Experiments on
SEED demonstrated that it can achieve simultaneously
privacy protection and higher classification accuracy.

Nevertheless, privacy protection of aBCIs has not
received enough attention compared with accurate emo-
tion recognition in aBCIs.

G. Secure aBCIs

Recent research found that many machine learning
models, including both traditional machine learning and
deep learning, are vulnerable to adversarial attacks [180],
where deliberately designed tiny perturbations, which may
be too small to be noticed by human eyes or detected by
computer algorithms, are used to fool a machine learning
algorithm.

Both classification and regression models in EEG-based
BCIs are subject to adversarial attacks [181], [182], [183],
[184], [185]. For example, Meng et al. [186] proposed
two adversarial attack approaches for EEG-based regres-
sion problems, which can generate small perturbations to
change the estimated driver drowsiness level by a prede-
termined amount, at nearly 100% success rate.

Adversarial attacks on BCIs could lead to serious security
and safety problems, as pointed out by a recent report
by the RAND Corporation [187]: “hacking BCI capabilities
could theoretically provide adversaries with direct path-
ways into the emotional and cognitive centers of opera-
tors’ brains to sow confusion or emotional distress. In the
extreme, adversary hacking into BCI devices that influence
the motor cortex of human operators could theoretically
send false directions or elicit unintended actions, such as
friendly fire.”

Though very important, there has not been research
on adversarial defenses for aBCIs. We [188] performed a
systematic review on adversarial attacks and defenses in
physiological computing, including BCIs, and pointed out
several potential adversarial defense strategies:

1) data modification, which improves the adversar-
ial robustness by modifying the training data, e.g.,
through adversarial training [189], or the test data,
e.g., through data compression [190] or randomiza-
tion [191];

2) model modification, which improves the adversarial
robustness by modifying the target model directly,
e.g., through regularization [192] and defensive dis-
tillation [193];

3) auxiliary tools, which improve the adversarial robust-
ness by using auxiliary machine learning modules,
e.g., adversarial detection [194].

Their effectiveness has yet to be validated in aBCIs.

IX. C O N C L U S I O N
Affects, including moods and emotions, are pervasive in
our everyday life and are essential in human cognition,
communication, and decision-making. An aBCI monitors
and/or regulates the emotional state of the brain, which
can be used in education, entertainment, healthcare, and
so on. This tutorial on aBCIs introduces first the basic
concepts of BCIs and then, in detail, the individual com-
ponents in a closed-loop aBCI system, including signal
acquisition, signal processing, feature extraction, emo-
tion recognition, and brain stimulation. It also describes
three representative applications of aBCIs, i.e., cognitive
workload recognition, fatigue estimation, and depression
diagnosis and treatment. Finally, several challenges and
opportunities in aBCI research and applications, includ-
ing brain signal acquisition, emotion labeling, diversity
and size of aBCI datasets, algorithm comparison, negative
transfer in emotion recognition, and privacy protection and
security of aBCIs, are pointed out.

To the best of our knowledge, this is the most compre-
hensive and up-to-date aBCI tutorial in the literature. .

R E F E R E N C E S
[1] J. S. Lerner, Y. Li, P. Valdesolo, and K. S. Kassam,

“Emotion and decision making,” Annu. Rev.
Psychol., vol. 66, no. 1, pp. 799–823, 2015.

[2] M. Minsky, The Society of Mind. New York, NY,
USA: Simon and Schuster, 1988.

[3] R. Picard, Affective Computing. Cambridge, MA,
USA: MIT Media Lab., 1995.

[4] P. Ekman et al., “Universals and cultural
differences in the judgments of facial expressions
of emotion,” J. Personality Social Psychol., vol. 53,
no. 4, pp. 712–717, 1987.

[5] M. El Ayadi, M. S. Kamel, and F. Karray, “Survey
on speech emotion recognition: Features,
classification schemes, and databases,” Pattern
Recognit., vol. 44, no. 3, pp. 572–587, Mar. 2011.

[6] M. Kipp and J.-C. Martin, “Gesture and emotion:
Can basic gestural form features discriminate
emotions?” in Proc. 3rd Int. Conf. Affect. Comput.
Intell. Interact. Workshops, Amsterdam, The

Netherlands, Sep. 2009, pp. 1–8.
[7] C. O. Alm, D. Roth, and R. Sproat, “Emotions from

text: Machine learning for text-based emotion
prediction,” in Proc. Conf. Hum. Lang. Technol.
Empirical Methods Natural Lang. Process.,
Vancouver, BC, Canada, 2005, pp. 579–586.

[8] L. Kessous, G. Castellano, and G. Caridakis,
“Multimodal emotion recognition in speech-based
interaction using facial expression, body gesture
and acoustic analysis,” J. Multimodal User
Interfaces, vol. 3, nos. 1–2, pp. 33–48, Mar. 2010.

[9] R. W. Picard, E. Vyzas, and J. Healey, “Toward
machine emotional intelligence: Analysis of
affective physiological state,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 23, no. 10,
pp. 1175–1191, Oct. 2001.

[10] X. Quan, Z. Zeng, J. Jiang, Y. Zhang, B.-L. Lv, and
D. Wu, “Physiological signals based affective
computing: A systematic review,” Acta Autom.

Sinica, vol. 47, no. 8, pp. 1769–1784, 2021.
[11] B. J. Lance, S. E. Kerick, A. J. Ries, K. S. Oie, and

K. McDowell, “Brain–computer interface
technologies in the coming decades,” Proc. IEEE,
vol. 100, no. 2, pp. 1585–1599, May 2012.

[12] J. J. Daly and J. R. Wolpaw, “Brain–computer
interfaces in neurological rehabilitation,” Lancet
Neurol., vol. 7, no. 11, pp. 1032–1043, 2008.

[13] X. Chen, Y. Wang, M. Nakanishi, X. Gao, T.-P. Jung,
and S. Gao, “High-speed spelling with a
noninvasive brain–computer interface,” Proc. Nat.
Acad. Sci. USA, vol. 112, no. 44, pp.
E6058–E6067, Nov. 2015.

[14] D. Marshall, D. Coyle, S. Wilson, and
M. Callaghan, “Games, gameplay, and BCI: The
state of the art,” IEEE Trans. Comput. Intell. AI
Games, vol. 5, no. 2, pp. 82–99, Jun. 2013.

[15] H. Huang et al., “An EEG-based brain computer
interface for emotion recognition and its

1328 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 



Wu et al.: aBCIs: A Tutorial

application in patients with disorder of
consciousness,” IEEE Trans. Affect. Comput.,
vol. 12, no. 4, pp. 832–842, Oct. 2021.

[16] T. G. Monteiro, C. Skourup, and H. Zhang, “Using
EEG for mental fatigue assessment: A
comprehensive look into the current state of the
art,” IEEE Trans. Hum.-Mach. Syst., vol. 49, no. 6,
pp. 599–610, Dec. 2019.

[17] W.-L. Zheng and B.-L. Lu, “A multimodal approach
to estimating vigilance using EEG and forehead
EOG,” J. Neural Eng., vol. 14, no. 2, Apr. 2017,
Art. no. 026017.

[18] G. K. Anumanchipalli, J. Chartier, and E. F. Chang,
“Speech synthesis from neural decoding of spoken
sentences,” Nature, vol. 568, no. 7753,
pp. 493–498, Apr. 2019.

[19] D. A. Moses et al., “Neuroprosthesis for decoding
speech in a paralyzed person with anarthria,” New
England J. Med., vol. 385, no. 3, pp. 217–227,
Jul. 2021.

[20] M. Capogrosso et al., “A brain–spine interface
alleviating gait deficits after spinal cord injury in
primates,” Nature, vol. 539, no. 7628,
pp. 284–288, 2016.

[21] P. D. Ganzer et al., “Restoring the sense of touch
using a sensorimotor demultiplexing neural
interface,” Cell, vol. 181, no. 4, pp. 763–773,
May 2020.

[22] M. Velliste, S. Perel, M. C. Spalding,
A. S. Whitford, and A. B. Schwartz, “Cortical
control of a prosthetic arm for self-feeding,”
Nature, vol. 453, no. 7198, pp. 1098–1101,
Jun. 2008.

[23] L. R. Hochberg et al., “Reach and grasp by people
with tetraplegia using a neurally controlled
robotic arm,” Nature, vol. 485, no. 7398,
pp. 372–375, May 2012.

[24] R. P. Rao, Brain–Computer Interfacing: An
Introduction. New York, NY, USA: Cambridge Univ.
Press, 2013.

[25] M. L. Martini, E. K. Oermann, N. L. Opie, F. Panov,
T. Oxley, and K. Yaeger, “Sensor modalities for
brain–computer interface technology: A
comprehensive literature review,” Neurosurgery,
vol. 86, no. 2, pp. E108–E117, 2020.

[26] C. Muhl, B. Allison, A. Nijholt, and G. Chanel,
“A survey of affective brain computer interfaces:
Principles, state-of-the-art, and challenges,”
Brain-Comput. Interfaces, vol. 1, no. 2, pp. 66–84,
Apr. 2014.

[27] M. M. Shanechi, “Brain–machine interfaces from
motor to mood,” Nature Neurosci., vol. 22, no. 10,
pp. 1554–1564, Oct. 2019.

[28] G. Pfurtscheller and C. Neuper, “Motor imagery
and direct brain–computer communication,” Proc.
IEEE, vol. 89, no. 7, pp. 1123–1134, Jul. 2001.

[29] P. Ekman and W. V. Friesen, “Constants across
cultures in the face and emotion.,” J. Personality
Social Psychol., vol. 17, no. 2, pp. 124–129, 1971.

[30] J. A. Russell, “A circumplex model of affect,”
J. Personality Social Psychol., vol. 39, no. 6,
pp. 1161–1178, Dec. 1980.

[31] A. Mehrabian and J. A. Russell, An Approach to
Environmental Psychology. Cambridge, MA, USA:
MIT Press, 1974.

[32] G. Pfurtscheller, D. Flotzinger, and J. Kalcher,
“Brain–computer interface—A new
communication device for handicapped persons,”
J. Microcomput. Appl., vol. 16, no. 3, pp. 293–299,
Jul. 1993.

[33] L. A. Farwell and E. Donchin, “Talking off the top
of your head: Toward a mental prosthesis utilizing
event-related brain potentials,” Electroencephalogr.
Clin. Neurophysiol., vol. 70, no. 6, pp. 510–523,
Dec. 1988.

[34] O. Friman, I. Volosyak, and A. Graser, “Multiple
channel detection of steady-state visual evoked
potentials for brain–computer interfaces,” IEEE
Trans. Biomed. Eng., vol. 54, no. 4, pp. 742–750,
Apr. 2007.

[35] S. Koelstra et al., “DEAP: A database for emotion
analysis; using physiological signals,” IEEE Trans.
Affect. Comput., vol. 3, no. 1, pp. 18–31,
Mar. 2012.

[36] L.-D. Liao et al., “Biosensor technologies for

augmented brain–computer interfaces in the next
decades,” Proc. IEEE, vol. 100, no. 2,
pp. 1553–1566, May 2012.

[37] P. Fattahi, G. Yang, G. Kim, and M. R. Abidian,
“A review of organic and inorganic biomaterials
for neural interfaces,” Adv. Mater., vol. 26, no. 12,
pp. 1846–1885, Mar. 2014.

[38] Electroencephalography. Accessed: May 25, 2025.
[Online]. Available: https://en.wikipedia.org/
wiki/Electroencephalography

[39] B.-L. Lu, Y. Zhang, and W.-L. Zheng, “A survey of
affective brain–computer interface,” Chin. J. Intell.
Sci. Technol., vol. 3, no. 1, pp. 36–48, 2021.

[40] W. J. Ray and H. W. Cole, “EEG alpha activity
reflects attentional demands, and beta activity
reflects emotional and cognitive processes,”
Science, vol. 228, no. 4700, pp. 750–752,
May 1985.

[41] W. Zheng, J. Zhu, and B. Lu, “Identifying stable
patterns over time for emotion recognition from
EEG,” IEEE Trans. Affect. Comput., vol. 10, no. 3,
pp. 417–429, Jul. 2019.

[42] Y. Peng, F. Qin, W. Kong, Y. Ge, F. Nie, and
A. Cichocki, “GFIL: A unified framework for the
importance analysis of features, frequency bands,
and channels in EEG-based emotion recognition,”
IEEE Trans. Cognit. Develop. Syst., vol. 14, no. 3,
pp. 935–947, Sep. 2022.

[43] S. A. Huettel et al., Functional Magnetic Resonance
Imaging, vol. 1. Sunderland, MA, USA: Sinauer
Associates, 2004.

[44] M. Ferrari and V. Quaresima, “A brief review on
the history of human functional near-infrared
spectroscopy (fNIRS) development and fields of
application,” NeuroImage, vol. 63, no. 2,
pp. 921–935, Nov. 2012.

[45] M. Soleymani, J. Lichtenauer, T. Pun, and
M. Pantic, “A multimodal database for affect
recognition and implicit tagging,” IEEE Trans.
Affect. Comput., vol. 3, no. 1, pp. 42–55,
Mar. 2012.

[46] W. Zheng and B. Lu, “Investigating critical
frequency bands and channels for EEG-based
emotion recognition with deep neural networks,”
IEEE Trans. Auto. Mental Develop., vol. 7, no. 3,
pp. 162–175, Sep. 2015.

[47] R. Subramanian, J. Wache, M. K. Abadi,
R. L. Vieriu, S. Winkler, and N. Sebe, “ASCERTAIN:
Emotion and personality recognition using
commercial sensors,” IEEE Trans. Affect. Comput.,
vol. 9, no. 2, pp. 147–160, Apr. 2018.

[48] S. Katsigiannis and N. Ramzan, “DREAMER: A
database for emotion recognition through EEG
and ECG signals from wireless low-cost
off-the-shelf devices,” IEEE J. Biomed. Health
Informat., vol. 22, no. 1, pp. 98–107, Jan. 2018.

[49] J. A. Miranda-Correa, M. K. Abadi, N. Sebe, and
I. Patras, “AMIGOS: A dataset for affect,
personality and mood research on individuals and
groups,” IEEE Trans. Affect. Comput., vol. 12,
no. 2, pp. 479–493, Apr. 2021.

[50] Y. Li, W. Zheng, Z. Cui, Y. Zong, and S. Ge, “EEG
emotion recognition based on graph regularized
sparse linear regression,” Neural Process. Lett.,
vol. 49, no. 2, pp. 555–571, Apr. 2019.

[51] T. Song, W. Zheng, C. Lu, Y. Zong, X. Zhang, and
Z. Cui, “MPED: A multi-modal physiological
emotion database for discrete emotion
recognition,” IEEE Access, vol. 7,
pp. 12177–12191, 2019.

[52] W. Zheng, W. Liu, Y. Lu, B. Lu, and A. Cichocki,
“EmotionMeter: A multimodal framework for
recognizing human emotions,” IEEE Trans.
Cybern., vol. 49, no. 3, pp. 1110–1122, Mar. 2019.

[53] H. Becker, J. Fleureau, P. Guillotel, F. Wendling,
I. Merlet, and L. Albera, “Emotion recognition
based on high-resolution EEG recordings and
reconstructed brain sources,” IEEE Trans. Affect.
Comput., vol. 11, no. 2, pp. 244–257, Apr. 2020.

[54] T. Li, W. Liu, W. Zheng, and B. Lu, “Classification
of five emotions from EEG and eye movement
signals: Discrimination ability and stability over
time,” in Proc. 9th Int. IEEE/EMBS Conf. Neural
Eng. (NER). San Francisco, CA, USA: IEEE,
Mar. 2019, pp. 607–610.

[55] W. Liu, W.-L. Zheng, Z. Li, S.-Y. Wu, L. Gan, and
B.-L. Lu, “Identifying similarities and differences
in emotion recognition with EEG and eye
movements among Chinese, German, and French
people,” J. Neural Eng., vol. 19, no. 2, Apr. 2022,
Art. no. 026012.

[56] J. Xue, J. Wang, S. Hu, N. Bi, and Z. Lv, “OVPD:
Odor-video elicited physiological signal database
for emotion recognition,” IEEE Trans. Instrum.
Meas., vol. 71, pp. 1–12, 2022.

[57] D. Dinges and R. Grace, “PERCLOS: A valid
psychophysiological measure of alertness as
assessed by psychomotor vigilance,” U.S. Dept.
Transp., Federal Highway Admin., Oklahoma City,
OK, USA, Tech. Rep., FHWA-MCRT-98-006, 1998.

[58] S. M. Alarcão and M. J. Fonseca, “Emotions
recognition using EEG signals: A survey,” IEEE
Trans. Affect. Comput., vol. 10, no. 3, pp. 374–393,
Jul. 2019.

[59] M. Klug and K. Gramann, “Identifying key factors
for improving ICA-based decomposition of EEG
data in mobile and stationary experiments,” Eur. J.
Neurosci., vol. 54, no. 12, pp. 8406–8420, 2021.

[60] Backgound on EEG References. Accessed:
Sep. 25, 2022. [Online]. Available: https://eeglab.
org/tutorials/ConceptsGuide/rereferencing_
background.html

[61] S. Makeig, A. J. Bell, T.-P. Jung, and
T. J. Sejnowski, “Independent component analysis
of electroencephalographic data,” in Proc. Adv.
Neural Inf. Process. Syst., Denver, CO, USA,
Dec. 1996, pp. 145–151.

[62] T.-P. Jung et al., “Removing
electroencephalographic artifacts by blind source
separation,” Psychophysiology, vol. 37, no. 2,
pp. 163–178, Mar. 2000.

[63] S. B. Rutkove, Introduction to Volume Conduction.
Totowa, NJ, USA: Humana Press, 2007,
pp. 43–53.

[64] Background on Independent Component Analysis
Applied to EEG. Accessed: Sep. 25, 2022. [Online].
Available: https://eeglab.org/tutorials/
ConceptsGuide/ICA_background.html

[65] J. Yu, C. Li, K. Lou, C. Wei, and Q. Liu,
“Embedding decomposition for artifacts removal
in EEG signals,” J. Neural Eng., vol. 19, no. 2,
Apr. 2022, Art. no. 026052.

[66] Y. Wang and D. Wu, “Real-time fMRI based brain
computer interface: A review,” in Proc. 24th Int.
Conf. Neural Inf. Process., Guangzhou, China,
Nov. 2017, pp. 833–842.

[67] R. Sladky, K. J. Friston, J. Tröstl, R. Cunnington,
E. Moser, and C. Windischberger, “Slice-timing
effects and their correction in functional MRI,”
NeuroImage, vol. 58, no. 2, pp. 588–594,
Sep. 2011.

[68] K. J. Friston, C. D. Frith, R. S. J. Frackowiak, and
R. Turner, “Characterizing dynamic brain
responses with fMRI: A multivariate approach,”
NeuroImage, vol. 2, no. 2, pp. 166–172, Jun. 1995.

[69] W. M. Wells, P. Viola, H. Atsumi, S. Nakajima, and
R. Kikinis, “Multi-modal volume registration by
maximization of mutual information,” Med. Image
Anal., vol. 1, no. 1, pp. 35–51, Mar. 1996.

[70] J. Ashburner and K. Friston, “The role of
registration and spatial normalisation in detecting
activations in functional imaging,” Clin. MRI,
vol. 7, no. 1, pp. 26–27, 1997.

[71] P. Pinti, F. Scholkmann, A. Hamilton, P. Burgess,
and I. Tachtsidis, “Current status and issues
regarding pre-processing of fNIRS neuroimaging
data: An investigation of diverse signal filtering
methods within a general linear model
framework,” Frontiers Hum. Neurosci., vol. 12,
p. 505, Jan. 2019.

[72] M. L. Filippetti, J. Andreu-Perez, C. De Klerk,
C. Richmond, and S. Rigato, “Are advanced
methods necessary to improve infant fNIRS data
analysis? An assessment of baseline-corrected
averaging, general linear model (GLM) and
multivariate pattern analysis (MVPA) based
approaches,” NeuroImage, vol. 265, Nov. 2023,
Art. no. 119756.

[73] R. Jenke, A. Peer, and M. Buss, “Feature extraction
and selection for emotion recognition from EEG,”

Vol. 111, No. 10, October 2023 | PROCEEDINGS OF THE IEEE 1329
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 



Wu et al.: aBCIs: A Tutorial

IEEE Trans. Affect. Comput., vol. 5, no. 3,
pp. 327–339, Sep. 2014.

[74] Z. Mohammadi, J. Frounchi, and M. Amiri,
“Wavelet-based emotion recognition system using
EEG signal,” Neural Comput. Appl., vol. 28, no. 8,
pp. 1985–1990, Aug. 2017.

[75] E. Kroupi, J. Vesin, and T. Ebrahimi, “Subject-
independent odor pleasantness classification using
brain and peripheral signals,” IEEE Trans. Affect.
Comput., vol. 7, no. 4, pp. 422–434, Oct. 2016.

[76] B. Hjorth, “EEG analysis based on time domain
properties,” Electroencephalogr. Clin.
Neurophysiol., vol. 29, no. 3, pp. 306–310,
Sep. 1970.

[77] J. M. Hausdorff, A. Lertratanakul,
M. E. Cudkowicz, A. L. Peterson, D. Kaliton, and
A. L. Goldberger, “Dynamic markers of altered
gait rhythm in amyotrophic lateral sclerosis,”
J. Appl. Physiol., vol. 88, no. 6, pp. 2045–2053,
Jun. 2000.

[78] T. Higuchi, “Approach to an irregular time series
on the basis of the fractal theory,” Phys. D,
Nonlinear Phenomena, vol. 31, no. 2, pp. 277–283,
Jun. 1988.

[79] P. C. Petrantonakis and L. J. Hadjileontiadis,
“Emotion recognition from EEG using higher
order crossings,” IEEE Trans. Inf. Technol. Biomed.,
vol. 14, no. 2, pp. 186–197, Mar. 2010.

[80] R.-N. Duan, J.-Y. Zhu, and B.-L. Lu, “Differential
entropy feature for EEG-based emotion
classification,” in Proc. 6th Int. IEEE/EMBS Conf.
Neural Eng. (NER), San Diego, CA, USA,
Nov. 2013, pp. 81–84.

[81] S. A. Hosseini, M. A. Khalilzadeh,
M. B. Naghibi-Sistani, and V. Niazmand, “Higher
order spectra analysis of EEG signals in emotional
stress states,” in Proc. 2nd Int. Conf. Inf. Technol.
Comput. Sci., Kiev, Ukraine, Jul. 2010, pp. 60–63.

[82] L.-C. Shi, Y.-Y. Jiao, and B.-L. Lu, “Differential
entropy feature for EEG-based vigilance
estimation,” in Proc. 35th Annu. Int. Conf. IEEE
Eng. Med. Biol. Soc. (EMBC), Osaka, Japan,
Jul. 2013, pp. 6627–6630.

[83] Y.-P. Lin, Y.-H. Yang, and T.-P. Jung, “Fusion of
electroencephalographic dynamics and musical
contents for estimating emotional responses in
music listening,” Frontiers Neurosci., vol. 8, p. 94,
May 2014.

[84] J. S. Richman and J. R. Moorman, “Physiological
time-series analysis using approximate entropy
and sample entropy,” Amer. J. Physiol.-Heart
Circulatory Physiol., vol. 278, no. 6,
pp. H2039–H2049, Jun. 2000.

[85] C. Bandt and B. Pompe, “Permutation entropy: A
natural complexity measure for time series,” Phys.
Rev. Lett., vol. 88, no. 17, Apr. 2002,
Art. no. 174102.

[86] M. Rostaghi and H. Azami, “Dispersion entropy: A
measure for time-series analysis,” IEEE Signal
Process. Lett., vol. 23, no. 5, pp. 610–614,
May 2016.

[87] X. Ding, Z. Liu, D. Li, Y. He, and M. Wu,
“Electroencephalogram emotion recognition
based on dispersion entropy feature extraction
using random oversampling imbalanced data
processing,” IEEE Trans. Cognit. Develop. Syst.,
vol. 14, no. 3, pp. 882–891, Sep. 2022.

[88] G. Giannakakis, D. Grigoriadis, K. Giannakaki,
O. Simantiraki, A. Roniotis, and M. Tsiknakis,
“Review on psychological stress detection using
biosignals,” IEEE Trans. Affect. Comput., vol. 13,
no. 1, pp. 440–460, Jan. 2022.

[89] S. K. Hadjidimitriou and L. J. Hadjileontiadis,
“EEG-based classification of music appraisal
responses using time-frequency analysis and
familiarity ratings,” IEEE Trans. Affect. Comput.,
vol. 4, no. 2, pp. 161–172, Jun. 2013.

[90] M. Murugappan, M. Rizon, R. Nagarajan,
S. Yaacob, I. Zunaidi, and D. Hazry, “EEG feature
extraction for classifying emotions using FCM and
FKM,” Int. J. Comput. Commun., vol. 1, no. 2,
pp. 21–25, 2007.

[91] L. Cohen, “Time-frequency distributions—A
review,” Proc. IEEE, vol. 77, no. 7, pp. 941–981,
Jul. 1989.

[92] Y. Zhao, L. E. Atlas, and R. J. Marks, “The use of
cone-shaped kernels for generalized
time-frequency representations of nonstationary
signals,” IEEE Trans. Acoust., Speech, Signal
Process., vol. 38, no. 7, pp. 1084–1091, Jul. 1990.

[93] N. Huang et al., “The empirical
modedecomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis,”
Proc. Roy. Soc. London. Ser. A, Math., Phys. Eng.
Sci., vol. 454, no. 1971, pp. 903–995, 1998.

[94] P. C. Petrantonakis and L. J. Hadjileontiadis,
“Emotion recognition from brain signals using
hybrid adaptive filtering and higher order
crossings analysis,” IEEE Trans. Affect. Comput.,
vol. 1, no. 2, pp. 81–97, Dec. 2010.

[95] S. Moon, S. Jang, and J. Lee, “Convolutional
neural network approach for EEG-based emotion
recognition using brain connectivity and its spatial
information,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process. (ICASSP), Calgary, AB,
Canada, Apr. 2018, pp. 2556–2560.

[96] J.-P. Lachaux, E. Rodriguez, J. Martinerie, and
F. J. Varela, “Measuring phase synchrony in brain
signals,” Hum. Brain Mapping, vol. 8, no. 4,
pp. 194–208, 1999.

[97] C. J. Stam, G. Nolte, and A. Daffertshofer, “Phase
lag index: Assessment of functional connectivity
from multi channel EEG and MEG with
diminished bias from common sources,” Hum.
Brain Mapping, vol. 28, no. 11, pp. 1178–1193,
2007.

[98] S. Liu, X. Wang, L. Zhao, J. Zhao, Q. Xin, and
S. Wang, “Subject-independent emotion
recognition of EEG signals based on dynamic
empirical convolutional neural network,”
IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 18,
no. 5, pp. 1710–1721, Sep. 2021.

[99] J. Zhang et al., “Disrupted brain connectivity
networks in drug-naive, first-episode major
depressive disorder,” Biol. Psychiatry, vol. 70,
no. 4, pp. 334–342, Aug. 2011.

[100] J. Han, X. Ji, X. Hu, L. Guo, and T. Liu, “Arousal
recognition using audio-visual features and
FMRI-based brain response,” IEEE Trans. Affect.
Comput., vol. 6, no. 4, pp. 337–347, Oct. 2015.

[101] N. Tzourio-Mazoyer et al., “Automated anatomical
labeling of activations in SPM using a macroscopic
anatomical parcellation of the MNI MRI
single-subject brain,” NeuroImage, vol. 15, no. 1,
pp. 273–289, Jan. 2002.

[102] D. Zhu et al., “DICCCOL: Dense individualizedand
common connectivity-based cortical landmarks,”
Cerebral cortex, vol. 23, no. 4, pp. 786–800, 2013.

[103] D. Watts and S. Strogatz, “Collective dynamics of
‘small-world’ networks,” Nature, vol. 393,
pp. 440–442, Jun. 1998.

[104] V. Latora and M. Marchiori, “Efficient behavior of
small-world networks,” Phys. Rev. Lett., vol. 87,
Oct. 2001, Art. no. 198701.

[105] M. Rubinov and O. Sporns, “Complex network
measures of brain connectivity: Uses and
interpretations,” NeuroImage, vol. 52, no. 3,
pp. 1059–1069, Sep. 2010.

[106] Y. Sun, H. Ayaz, and A. N. Akansu, “Multimodal
affective state assessment using fNIRS + EEG and
spontaneous facial expression,” Brain Sci., vol. 10,
no. 2, p. 85, Feb. 2020.

[107] H. Cai, Z. Qu, Z. Li, Y. Zhang, X. Hu, and B. Hu,
“Feature-level fusion approaches based on
multimodal EEG data for depression recognition,”
Inf. Fusion, vol. 59, pp. 127–138, Jul. 2020.

[108] D. Wu et al., “Optimal arousal identification and
classification for affective computing using
physiological signals: Virtual reality Stroop task,”
IEEE Trans. Affect. Comput., vol. 1, no. 2,
pp. 109–118, Jul. 2010.

[109] Z. Liang et al., “EEGFuseNet: Hybrid unsupervised
deep feature characterization and fusion for
high-dimensional EEG with an application to
emotion recognition,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 29, pp. 1913–1925, 2021.

[110] B. García-Martínez, A. Martínez-Rodrigo,
R. Alcaraz, and A. Fernández-Caballero, “A review
on nonlinear methods using
electroencephalographic recordings for emotion

recognition,” IEEE Trans. Affect. Comput., vol. 12,
no. 3, pp. 801–820, Jul. 2021.

[111] S. Liu et al., “3DCANN: A spatio-temporal
convolution attention neural network for EEG
emotion recognition,” IEEE J. Biomed. Health
Informat., vol. 26, no. 11, pp. 5321–5331,
Nov. 2022.

[112] F. Wang et al., “Emotion recognition with
convolutional neural network and EEG-based
EFDMs,” Neuropsychologia, vol. 146, Sep. 2020,
Art. no. 107506.

[113] X. Wu, W.-L. Zheng, Z. Li, and B.-L. Lu,
“Investigating EEG-based functional connectivity
patterns for multimodal emotion recognition,”
J. Neural Eng., vol. 19, no. 1, Feb. 2022,
Art. no. 016012.

[114] Y. Luo et al., “EEG-based emotion classification
using spiking neural networks,” IEEE Access,
vol. 8, pp. 46007–46016, 2020.

[115] R. Li et al., “The perils and pitfalls of block design
for EEG classification experiments,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 43, no. 1,
pp. 316–333, Jan. 2021.

[116] F. Zhuang et al., “A comprehensive survey on
transfer learning,” Proc. IEEE, vol. 109, no. 1,
pp. 1–34, Jul. 2020.

[117] D. Wu, Y. Xu, and B. Lu, “Transfer learning for
EEG-based brain–computer interfaces: A review of
progress made since 2016,” IEEE Trans. Cognit.
Develop. Syst., vol. 14, no. 1, pp. 4–19, Mar. 2022.

[118] W. Zhang, L. Deng, L. Zhang, and D. Wu, “A survey
on negative transfer,” IEEE/CAA J. Autom. Sinica,
vol. 10, no. 2, pp. 305–329, Feb. 2023.

[119] X. Zhang et al., “Individual similarity guided
transfer modeling for EEG-based emotion
recognition,” in Proc. IEEE Int. Conf. Bioinf.
Biomed. (BIBM), San Diego, CA, USA, Nov. 2019,
pp. 1156–1161.

[120] Y. Lin, “Constructing a personalized cross-day
EEG-based emotion-classification model using
transfer learning,” IEEE J. Biomed. Health
Informat., vol. 24, no. 5, pp. 1255–1264,
May 2020.

[121] W. Zheng, Y. Zhang, J. Zhu, and B. Lu, “Transfer
components between subjects for EEG-based
emotion recognition,” in Proc. Int. Conf. Affect.
Comput. Intell. Interact. (ACII), Xian, China,
Sep. 2015, pp. 917–922.

[122] S. Jialin Pan, I. W. Tsang, J. T. Kwok, and Q. Yang,
“Domain adaptation via transfer component
analysis,” IEEE Trans. Neural Netw., vol. 22, no. 2,
pp. 199–210, Feb. 2011.

[123] B. Schölkopf, A. Smola, and K.-R. Müller,
“Nonlinear component analysis as a kernel
eigenvalue problem,” Neural Comput., vol. 10,
no. 5, pp. 1299–1319, Jul. 1998.

[124] X. Chai et al., “A fast, efficient domain adaptation
technique for cross-domain
electroencephalography(EEG)-based emotion
recognition,” Sensors, vol. 17, no. 5, p. 1014,
May 2017.

[125] P. Zanini, M. Congedo, C. Jutten, S. Said, and
Y. Berthoumieu, “Transfer learning: A Riemannian
geometry framework with applications to
brain–computer interfaces,” IEEE Trans. Biomed.
Eng., vol. 65, no. 5, pp. 1107–1116, May 2018.

[126] H. He and D. Wu, “Transfer learning for
brain–computer interfaces: A Euclidean space
data alignment approach,” IEEE Trans. Biomed.
Eng., vol. 67, no. 2, pp. 399–410, Feb. 2020.

[127] Y. Wang, J. Liu, Q. Ruan, S. Wang, and C. Wang,
“Cross-subject EEG emotion classification based
on few-label adversarial domain adaption,” Exp.
Syst. Appl., vol. 185, Dec. 2021, Art. no. 115581.

[128] Y. Jiang, S. Xie, X. Xie, Y. Cui, and H. Tang,
“Emotion recognition via multiscale feature fusion
network and attention mechanism,” IEEE Sensors
J., vol. 23, no. 10, pp. 10790–10800, May 2023.

[129] W.-L. Zheng and B.-L. Lu, “Personalizing
EEG-based affective models with transfer
learning,” in Proc. 25th Int. Joint Conf. Artif. Intell.,
New York, NY, USA, Jul. 2016, pp. 2732–2738.

[130] W. Li, W. Huan, B. Hou, Y. Tian, Z. Zhang, and
A. Song, “Can emotion be transferred?—A review
on transfer learning for EEG-based emotion

1330 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 



Wu et al.: aBCIs: A Tutorial

recognition,” IEEE Trans. Cognit. Develop. Syst.,
vol. 14, no. 3, pp. 833–846, Jul. 2022.

[131] J. Li, S. Qiu, Y. Shen, C. Liu, and H. He,
“Multisource transfer learning for cross-subject
EEG emotion recognition,” IEEE Trans. Cybern.,
vol. 50, no. 7, pp. 3281–3293, Jul. 2020.

[132] I. Goodfellow, Y. Bengio, and A. Courville, Deep
Learning. Boston, MA, USA: MIT Press, 2016.
[Online]. Available:
http://www.deeplearningbook.org

[133] Y. Luo, S.-Y. Zhang, W.-L. Zheng, and B.-L. Lu,
“WGAN domain adaptation for EEG-based
emotion recognition,” in Proc. Int. Conf. Neural Inf.
Process., Siem Reap, Cambodia, Dec. 2018,
pp. 275–286.

[134] D. Ruta and B. Gabrys, “An overview of classifier
fusion methods,” Comput. Inf. Syst., vol. 7, no. 1,
pp. 1–10, 2000.

[135] Y. Huang, J. Yang, P. Liao, and J. Pan, “Fusion of
facial expressions and EEG for multimodal
emotion recognition,” Comput. Intell. Neurosci.,
vol. 2017, Sep. 2017, Art. no. 2107451.

[136] W.-L. Zheng, B.-N. Dong, and B.-L. Lu,
“Multimodal emotion recognition using EEG and
eye tracking data,” in Proc. 36th Annu. Int. Conf.
IEEE Eng. Med. Biol. Soc., Chicago, IL, USA,
Aug. 2014, pp. 5040–5043.

[137] M. Soleymani, M. Pantic, and T. Pun, “Multimodal
emotion recognition in response to videos,” IEEE
Trans. Affect. Comput., vol. 3, no. 2, pp. 211–223,
Jun. 2012.

[138] W.-L. Zheng, Z.-F. Shi, and B.-L. Lu, “Building
cross-subject EEG-based affective models using
heterogeneous transfer learning,” Chin. J.
Comput., vol. 43, no. 2, pp. 177–189, 2020, in
Chinese.

[139] X. Yan, L.-M. Zhao, and B.-L. Lu, “Simplifying
multimodal emotion recognition with single eye
movement modality,” in Proc. 29th ACM Int. Conf.
Multimedia, Oct. 2021, pp. 1057–1063.

[140] F. Wang, M. Mao, L. Duan, Y. Huang, Z. Li, and
C. Zhu, “Intersession instability in fNIRS-based
emotion recognition,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 26, no. 7, pp. 1324–1333,
Jul. 2018.

[141] A. Etkin, C. Büchel, and J. J. Gross, “The neural
bases of emotion regulation,” Nature Rev.
Neurosci., vol. 16, no. 11, pp. 693–700, Nov. 2015.

[142] W. Huang, W. Wu, M. V. Lucas, H. Huang, Z. Wen,
and Y. Li, “Neurofeedback training with an
electroencephalogram-based brain–computer
interface enhances emotion regulation,” IEEE
Trans. Affect. Comput., early access, Dec. 13, 2021,
doi: 10.1109/TAFFC.2021.3134183.

[143] J. V. Hardt and J. Kamiya, “Anxiety change
through electroencephalographic alpha feedback
seen only in high anxiety subjects,” Science,
vol. 201, no. 4350, pp. 79–81, Jul. 1978.

[144] R. Mennella, E. Patron, and D. Palomba, “Frontal
alpha asymmetry neurofeedback for the reduction
of negative affect and anxiety,” Behaviour Res.
Therapy, vol. 92, pp. 32–40, May 2017.

[145] P. Linhartová, A. Látalová, B. Kósa, T. Kaspárek,
C. Schmahl, and C. Paret, “FMRI neurofeedback in
emotion regulation: A literature review,”
NeuroImage, vol. 193, pp. 75–92, Jun. 2019.

[146] A.-C.-S. Kimmig et al., “Feasibility of NIRS-based
neurofeedback training in social anxiety disorder:
Behavioral and neural correlates,” J. Neural
Transmiss., vol. 126, no. 9, pp. 1175–1185,
Sep. 2019.

[147] C. Cusin and D. D. Dougherty, “Somatic therapies
for treatment-resistant depression: ECT, TMS,
VNS, DBS,” Biol. Mood Anxiety Disorders, vol. 2,
no. 1, pp. 1–9, Dec. 2012.

[148] P. Antonenko, F. Paas, R. Grabner, and T. van Gog,
“Using electroencephalography to measure
cognitive load,” Educ. Psychol. Rev., vol. 22, no. 4,
pp. 425–438, Dec. 2010.

[149] G. Du, W. Zhou, C. Li, D. Li, and P. X. Liu,
“An emotion recognition method for game
evaluation based on electroencephalogram,” IEEE
Trans. Affect. Comput., vol. 14, no. 1, pp. 591–602,
Jan. 2023.

[150] C. D. Wickens, “Multiple resources and

performance prediction,” Theor. Issues Ergonom.
Sci., vol. 3, no. 2, pp. 159–177, Jan. 2002.

[151] R. M. Yerkes and J. D. Dodson, “The relation of
strength of stimulus to rapidity of
habit-formation,” J. Comparative Neurol. Psychol.,
vol. 18, no. 5, pp. 459–482, Nov. 1908.

[152] A.-M. Brouwer, M. A. Hogervorst, J. B. F. van Erp,
T. Heffelaar, P. H. Zimmerman, and R. Oostenveld,
“Estimating workload using EEG spectral power
and ERPs in the n-back task,” J. Neural Eng.,
vol. 9, no. 4, Aug. 2012, Art. no. 045008.

[153] C. Muhl, C. Jeunet, and F. Lotte, “EEG-based
workload estimation across affective contexts,”
Frontiers Neurosci., vol. 8, p. 114, Jun. 2014.

[154] Y. Zhou, S. Huang, Z. Xu, P. Wang, X. Wu, and
D. Zhang, “Cognitive workload recognition using
EEG signals and machine learning: A review,” IEEE
Trans. Cognit. Develop. Syst., vol. 14, no. 3,
pp. 799–818, Sep. 2022.

[155] P. Aricò et al., “Adaptive automation triggered by
EEG-based mental workload index: A passive
brain–computer interface application in realistic
air traffic control environment,” Frontiers Hum.
Neurosci., vol. 10, p. 539, Oct. 2016.

[156] L. Zhang et al., “Cognitive load measurement in a
virtual reality-based driving system for autism
intervention,” IEEE Trans. Affect. Comput., vol. 8,
no. 2, pp. 176–189, Apr. 2017.

[157] Fatality Analysis Reporting System Encyclopedia.
National Highway Traffic Safety Administration.
Accessed: Feb. 2, 2017. [Online]. Available:
https://www-fars.nhtsa.dot.gov/Main/index.aspx

[158] L. Bergasa, J. Nuevo, M. Sotelo, R. Barea, and
M. Lopez, “Real-time system for monitoring driver
vigilance,” IEEE Trans. Intell. Transp. Syst., vol. 7,
no. 1, pp. 63–67, Mar. 2006.

[159] Y. Cui, Y. Xu, and D. Wu, “EEG-based driver
drowsiness estimation using feature weighted
episodic training,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 27, no. 11, pp. 2263–2273,
Nov. 2019.

[160] D. Wu, V. J. Lawhern, S. Gordon, B. J. Lance, and
C. Lin, “Driver drowsiness estimation from EEG
signals using online weighted adaptation
regularization for regression (OwARR),” IEEE
Trans. Fuzzy Syst., vol. 25, no. 6, pp. 1522–1535,
Dec. 2017.

[161] C.-S. Wei, Y.-P. Lin, Y.-T. Wang, C.-T. Lin, and
T.-P. Jung, “A subject-transfer framework for
obviating inter- and intra-subject variability in
EEG-based drowsiness detection,” NeuroImage,
vol. 174, pp. 407–419, 2018.

[162] Depression. Accessed: Oct. 1, 2022. [Online].
Available: https://www.who.int/news-room/fact-
sheets/detail/depression

[163] J. J. Allen, W. G. Iacono, R. A. Depue, and P. Arbisi,
“Regional electroencephalographic asymmetries in
bipolar seasonal affective disorder before and
after exposure to bright light,” Biol. Psychiatry,
vol. 33, nos. 8–9, pp. 642–646, Apr. 1993.

[164] K. M. Putnam and L. B. McSweeney, “Depressive
symptoms and baseline prefrontal EEG alpha
activity: A study utilizing ecological momentary
assessment,” Biol. Psychol., vol. 77, no. 2,
pp. 237–240, Feb. 2008.

[165] J. Li, Y. Hao, W. Zhang, X. Li, and B. Hu, “Effective
connectivity based EEG revealing the inhibitory
deficits for distracting stimuli in major depression
disorders,” IEEE Trans. Affect. Comput., vol. 14,
no. 1, pp. 694–705, Jan. 2023.

[166] F. S. De Aguiar Neto and J. L. G. Rosa, “Depression
biomarkers using non-invasive EEG: A review,”
Neurosci. Biobehavioral Rev., vol. 105, pp. 83–93,
Oct. 2019.

[167] J. S. Perlmutter and J. W. Mink, “Deep brain
stimulation,” Annu. Rev. Neurosci., vol. 29, p. 229,
Jul. 2006.

[168] K. W. Scangos, G. S. Makhoul, L. P. Sugrue,
E. F. Chang, and A. D. Krystal, “State-dependent
responses to intracranial brain stimulation in a
patient with depression,” Nature Med., vol. 27,
no. 2, pp. 229–231, Feb. 2021.

[169] V. R. Rao et al., “Direct electrical stimulation of
lateral orbitofrontal cortex acutely improves mood
in individuals with symptoms of depression,”

Current Biol., vol. 28, no. 24, pp. 3893–3902,
Dec. 2018.

[170] F. Iacopi and C.-T. Lin, “A perspective on
electroencephalography sensors for
brain–computer interfaces,” Prog. Biomed. Eng.,
vol. 4, no. 4, Oct. 2022, Art. no. 043002.

[171] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and
L. Fei-Fei, “ImageNet: A large-scale hierarchical
image database,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Miami Beach, FL, USA,
Jun. 2009, pp. 248–255.

[172] GPT-3. Accessed: Oct. 1, 2022. [Online].
Available: https://en.wikipedia.org/wiki/GPT-3

[173] Data and Statistics on Children’s Mental Health.
Accessed: Oct. 1, 2022. [Online]. Available:
https://www.cdc.gov/childrensmentalhealth/
data.html

[174] K. Xia et al., “Privacy-preserving brain–computer
interfaces: A systematic review,” IEEE Trans.
Computat. Social Syst., early access,
Jun. 27, 2023, doi: 10.1109/TCSS.2022.3184818.

[175] X. Kong, W. Kong, Q. Fan, Q. Zhao, and
A. Cichocki, “Task-independent EEG identification
via low-rank matrix decomposition,” in Proc. IEEE
Int. Conf. Bioinf. Biomed. (BIBM), Dec. 2018,
pp. 412–419.

[176] R. Yuste et al., “Four ethical piorities for
neurotechnologies and AI,” Nature, vol. 551,
no. 7679, pp. 159–163, 2017.

[177] M. Ienca, P. Haselager, and E. J. Emanuel, “Brain
leaks and consumer neurotechnology,” Nature
Biotechnol., vol. 36, no. 9, pp. 805–810,
Oct. 2018.

[178] A. Agarwal et al., “Protecting privacy of users in
brain–computer interface applications,” IEEE
Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 8,
pp. 1546–1555, Aug. 2019.

[179] W. Zhang, Z. Wang, and D. Wu, “Multi-source
decentralized transfer for privacy-preserving
BCIs,” IEEE Trans. Neural Syst. Rehabil. Eng.,
vol. 30, pp. 2710–2720, 2022.

[180] D. J. Miller, Z. Xiang, and G. Kesidis, “Adversarial
learning targeting deep neural network
classification: A comprehensive review of defenses
against attacks,” Proc. IEEE, vol. 108, no. 3,
pp. 402–433, Mar. 2020.

[181] X. Zhang and D. Wu, “On the vulnerability of CNN
classifiers in EEG-based BCIs,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 27, no. 5, pp. 814–825,
May 2019.

[182] Z. Liu, L. Meng, X. Zhang, W. Fang, and D. Wu,
“Universal adversarial perturbations for CNN
classifiers in EEG-based BCIs,” J. Neural Eng.,
vol. 18, no. 4, Aug. 2021, Art. no. 0460a4.

[183] X. Zhang et al., “Tiny noise, big mistakes:
Adversarial perturbations induce errors in
brain–computer interface spellers,” Nat. Sci. Rev.,
vol. 8, no. 4, Apr. 2021, Art. no. nwaa233.

[184] R. Bian, L. Meng, and D. Wu, “SSVEP-based
brain–computer interfaces are vulnerable to
square wave attacks,” Sci. China Inf. Sci., vol. 65,
no. 4, Apr. 2022, Art. no. 140406.

[185] X. Jiang, L. Meng, S. Li, and D. Wu, “Active
poisoning: Efficient backdoor attacks to transfer
learning based BCIs,” Sci. China Inf. Sci., 2023.
[Online]. Available: https://www.sciengine.com/
SCIS/doi/10.1007/s11432-022-3548-2

[186] L. Meng, C.-T. Lin, T.-P. Jung, and D. Wu,
“White-box target attack for EEG-based BCI
regression problems,” in Proc. Int. Conf. Neural Inf.
Process., Sydney, NSW, Australia, Dec. 2019,
pp. 476–488.

[187] A. Binnendijk, T. Marler, and E. M. Bartels,
Brain–Computer Interfaces: U.S. Military
Applications and Implications, An Initial
Assessment. Santa Monica, CA, USA: RAND
Corporation, 2020.

[188] D. Wu et al., “Adversarial attacks and defenses in
physiological computing: A systematic review,”
Nat. Sci. Open, vol. 2, no. 1, Jan. 2023,
Art. no. 20220023.

[189] C. Szegedy et al., “Intriguing properties of neural
networks,” in Proc. Int. Conf. Learn. Represent.,
Apr. 2014, pp. 1–10.

[190] N. Das et al., “Keeping the bad guys out:

Vol. 111, No. 10, October 2023 | PROCEEDINGS OF THE IEEE 1331
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.1109/TAFFC.2021.3134183
http://dx.doi.org/10.1109/TCSS.2022.3184818


Wu et al.: aBCIs: A Tutorial

Protecting and vaccinating deep learning with
JPEG compression,” 2017, arXiv:1705.
02900.

[191] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and
A. Yuille, “Adversarial examples for semantic
segmentation and object detection,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017,

pp. 1369–1378.
[192] B. Biggio, B. Nelson, and P. Laskov, “Support

vector machines under adversarial label noise,” in
Proc. Asian Conf. Mach. Learn., Taipei, Taiwan,
Nov. 2011, pp. 97–112.

[193] N. Papernot, P. McDaniel, X. Wu, S. Jha, and
A. Swami, “Distillation as a defense to adversarial

perturbations against deep neural networks,” in
Proc. IEEE Symp. Secur. Privacy (SP), San Jose, CA,
USA, May 2016, pp. 582–597.

[194] A. Qayyum, J. Qadir, M. Bilal, and A. Al-Fuqaha,
“Secure and robust machine learning for
healthcare: A survey,” IEEE Rev. Biomed. Eng.,
vol. 14, pp. 156–180, 2021.

A B O U T T H E A U T H O R S

Dongrui Wu (Fellow, IEEE) received the B.E.
degree in automatic control from the Uni-
versity of Science and Technology of China,
Hefei, China, in 2003, the M.E. degree in
electrical engineering from the National Uni-
versity of Singapore, Singapore, in 2005,
and the Ph.D. degree in electrical engi-
neering from the University of Southern
California, Los Angeles, CA, USA, in 2009.

He is currently a Professor with the School of Artificial Intelligence
and Automation, Huazhong University of Science and Technology,
Wuhan, China. He has more than 200 publications. His research
interests include affective computing, brain–computer interface,
computational intelligence, and machine learning.

Prof. Wu received the NAFIPS Early Career Award in 2014, the IEEE
SMC Society Early Career Award in 2017, the USERN Prize in Formal
Sciences in 2020, the Chinese Association of Automation Early
Career Award in 2021, the Ministry of Education Young Scientist
Award in 2022, and six Outstanding Paper Awards. He has been the
Editor-in-Chief of IEEE TRANSACTIONS ON FUZZY SYSTEMS since 2023.

Bao-Liang Lu (Fellow, IEEE) received the
B.S. degree in instrument and control engi-
neering from the Qingdao University of Sci-
ence and Technology, Qingdao, China, in
1982, the M.S. degree in computer science
and technology from Northwestern Polytech-
nical University, Xi’an, China, in 1989, and
the Dr.Eng. degree in electrical engineering
from Kyoto University, Kyoto, Japan, in 1994.

He was with the Qingdao University of Science and Technol-
ogy from 1982 to 1986. From 1994 to 1999, he was a Frontier
Researcher with the Bio-Mimetic Control Research Center, Institute
of Physical and Chemical Research (RIKEN), Nagoya, Japan, and a
Research Scientist with the RIKEN Brain Science Institute, Wako,
Japan, from 1999 to 2002. Since 2002, he has been a Full Professor
with the Department of Computer Science and Engineering, Shang-
hai Jiao Tong University, Shanghai, China. He is an Executive Dean
of the Qing Yuan Research Institute, Shanghai Jiao Tong University,
where he is also the Director of the Center for Brain-Like Computing
and Machine Intelligence, the Key Laboratory of Shanghai Educa-
tion Commission Intelligent Interaction and Cognitive Engineering,
and the Ruijin-Mihoyo Laboratory. His research interests include
brain-like computing, deep learning, emotion artificial intelligence,
and affective brain–computer interface.

Prof. Lu received the 2018 IEEE TRANSACTIONS ON AUTONOMOUS

MENTAL DEVELOPMENT Outstanding Paper Award, the First Prize of
the 10th Wu Wenjun Artificial Intelligence Natural Science Award,
the 2021 Best of IEEE TRANSACTIONS ON AFFECTIVE COMPUTING Paper
Collection, and the 2022 ANNS (Asia Pacific Neural Network Soci-
ety) Outstanding Achievement Award. He was the Past President
of the Asia Pacific Neural Network Assembly and the General
Chair of the 18th International Conference on Neural Informa-
tion Processing. He is an Associate Editor of IEEE TRANSACTIONS

ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, IEEE TRANSACTIONS ON

AFFECTIVE COMPUTING, and the Journal of Neural Engineering.

Bin Hu (Fellow, IEEE) received the Ph.D.
degree in computer science from the
Institute of Computing Technology, Chinese
Academy of Sciences, Beijing, China,
in 1998.

He is currently a Professor and the Dean
of the School of Medical Technology, Beijing
Institute of Technology, Beijing. He has
more than 400 publications (more than
10 000 citations; H-index: 51).

Prof. Hu is a member of the National Computer Science
Teaching and Steering Committee and the Science and Technology
Committee. He is a member of the Steering Council of Association
for Computing Machinery (ACM) China. His awards include the 2014
China Overseas Innovation Talent Award, the 2016 Chinese Ministry
of Education Technology Invention Award, the 2018 Chinese
National Technology Invention Award, and the 2019 WIPO-CNIPA
Award for Chinese Outstanding Patented Invention. He is a National
Distinguished Expert and a 973 Chief Scientist, and was awarded
National Advanced Worker in 2020. He is a Principal Investigator
of large grants, such as the National Transformative Technology
“Early Recognition and Intervention Technology of Mental Disorders
Based on Psychophysiological Multimodal Information,” which
has greatly promoted the development of objective, quantitative
diagnosis, and nondrug interventions for mental disorders. He is
the Vice-Chair of the China Committee of the International Society
for Social Neuroscience and the Co-Chair of the Computational
Psychophysiology and Cognitive Computing Technical Committees
of the IEEE Systems, Man and Cybernetics Society. He also serves
as the Editor-in-Chief of IEEE TRANSACTIONS ON COMPUTATIONAL

SOCIAL SYSTEMS.

Zhigang Zeng (Fellow, IEEE) received the
Ph.D. degree in systems analysis and inte-
gration from the Huazhong University of
Science and Technology, Wuhan, China,
in 2003.

He is currently a Professor with the School
of Artificial Intelligence and Automation,
Huazhong University of Science and Tech-
nology, and the Key Laboratory of Image
Processing and Intelligent Control of the Education Ministry of
China, Wuhan. He has published over 300 international journal arti-
cles. His current research interests include the theory of functional
differential equations and differential equations with discontinuous
right-hand sides, and their applications to the dynamics of neural
networks, memristive systems, and associative memories.

Dr. Zeng has been a member of the Editorial Board of Neu-
ral Networks since 2012, Cognitive Computation since 2010, and
Applied Soft Computing since 2013. He was an Associate Editor of
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS from
2010 to 2011 and IEEE TRANSACTIONS ON FUZZY SYSTEMS from 2016
to 2021. He has been an Associate Editor of IEEE TRANSACTIONS ON

CYBERNETICS since 2014.

1332 PROCEEDINGS OF THE IEEE | Vol. 111, No. 10, October 2023
Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on December 03,2023 at 09:54:29 UTC from IEEE Xplore.  Restrictions apply. 


