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Abstract— Decision confidence is an individual’s feeling of
correctness or optimization when making a decision. Various
physiological signals, including electroencephalography (EEG)
and eye movements have been studied extensively in measuring
levels of decision confidence in humans. While multimodal
fusion generally performs better than single-modal approaches,
it requires data from different modalities at a greater cost.
In particular, collection of EEG data is more complicated
and time consuming while eye movement signals are much
easier to acquire. To tackle this problem, we propose a cross-
modal method based on generative adversarial learning. In our
method, the intrinsic relationship between eye movement and
EEG features in a high-level feature space can be learned in the
training phase, and then we can obtain multimodal information
during the test phase when only eye movements are available
as inputs. Experimental results on the SEED-VPDC dataset
demonstrate that our proposed method outperforms single-
modal methods trained and tested only on eye movement signals
with an improvement of approximately 5.43% in accuracy,
and maintains competitive performance in comparison with
multimodal methods. Our cross-modal approach requires only
eye movements as inputs and reduces reliance on EEG data,
making the decision confidence measurement more applicable
and practicable.

I. INTRODUCTION

Decision confidence is an individual’s feeling of cor-
rectness or optimization when making a decision and can
reflect the probability of being correct [1]. As a common
psychological phenomenon in real life, decision confidence
is probably one of the most basic components of the decision
making process, and it is also an important bridge between
cognition and emotion in the decision-making process.

Studies have found that physiological signals such as eye
movements and EEG can be used to estimate the confidence
level of an individual during the decision-making process.
Lempert et al. conducted a study on eye movement signals
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and confidence value in an auditory task and observed
that the pupil diameter had a direct correlation with the
levels of confidence [2]. Shooshtari et al. [3] designed a
random dot motion (RDM) task to evaluate the correlation
between confidence levels and EEG and eye movement
signals and obtained eight features from these methods
relative to confidence levels. Recently, Li et al. [4] designed
a visual perception task for measuring decision confidence,
and their experimental results indicate that EEG signals
recorded during the experiments can distinguish different
levels of decision confidence and that neural patterns of EEG
signals for decision confidence in the visual perception task
do exist. Sadras et al. [5] found that EEG classification is
accurate enough to build a simulated BCI framework and that
the decoded confidence could be used to improve decision
making performance particularly when the task difficulty and
cost of errors are high.

Many studies have shown that multimodal methods outper-
form single-modal methods because of the complementary
features among different modalities. In the task of emotion
recognition, it has been proven that complementary repre-
sentation properties exist between eye movement and EEG
signals [6], and multimodal data are more conducive to
building a reliable and accurate emotion recognition model
than single-modal data [7]. In the vigilance estimation task,
Zheng et al. found the complementary information between
forehead electrooculography (EOG) and EEG features for
vigilance estimation, and demonstrated that the multimodal
model has a higher recognition rate than the single-modal
method [8].

While multimodal fusion generally performs better than
single-modal approaches, it requires data from different
modalities, which means that data acquisition is more ex-
pensive. For EEG signals, the preparation before acquisition
is also time-consuming, including the correct wearing of
the electrode caps and the injection of conductive gel. In
contrast, eye movement signals can be collected simply by
wearing an eye tracking device.

Based on the above discussion, our goal is to use infor-
mation from both modalities to enhance the performance
in the training stage, and to simplify the process in actual
practice using only eye movements in the test stage. Inspired
by generative adversarial learning [9], we propose a gen-
erative adversarial learning method to extract the intrinsic
relationship between both modalities. Different from the
method proposed by Cai et al. [9], we extract high-level
representations of both modalities before generative adver-
sarial learning. Specifically, in the training stage, high-level20
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representations of both modalities are learned for decision
confidence by a deep autoencoder, and a generator, used to
generate EEG features from corresponding eye movement
features is trained through generative adversarial networks
(GANs). In the test stage, only eye movement signals are
available as inputs, the EEG representations can be generated
from the corresponding eye movement features. We evaluate
our proposed method on the SEED-VPDC dataset proposed
in [4] and find that it achieves superior performance com-
pared to other single-modal models tested and trained only
on eye movements.

II. METHOD

In our method, the training stage can be divided into two
parts as high-level feature extraction and EEG high-level fea-
ture generation. More specifically, high-level features of each
modality used to identify the levels of decision confidence
are learned by deep auto encoder (DAE), and then GANs are
trained to generate features of the EEG modality from eye
movements. In the test stage, only eye movement signals are
needed, and the corresponding EEG features are generated
from them.

Training Stage I

Test Stage

Copy & Freeze

Xeye OeyeEeye Generator Oeye Classifier ŷÔeeg Ôeeg
+

Contatenate

Training Stage II

Xeye Xeeg

Oeye Generator
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Oeeg
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Ôeeg
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Fig. 1. The framework of our method. The training stage can be divided
into two parts as high-level feature extraction and EEG high-level feature
generation. Only eye movement signals are needed in the test stage.

1) Training Stage I: Feature Extraction: Assume that
Xeye ∈ RN×d1 represents the data of eye movement signals,
Xeeg ∈ RN×d2 represents the data of EEG signals, and
N is batch-size, d1 and d2 are the dimensions of the
extracted features for these modalities. Eeye, Deye represent
the encoder and decoder of eye movements while Eeeg ,
Deeg represent the encoder and decoder of EEG signals, and
ueye, veye, ueeg , veeg denote their respective parameters. The
outputs through encoders can be represented as

Oeye = Eeye (Xeye;ueye) , Oeeg = Eeeg (Xeeg;ueeg) . (1)

Correspondingly, the outputs of decoders are

X̂eye = Deye (Oeye; veye) , X̂eeg = Deeg (Oeeg; veeg) . (2)

The loss of DAE can be represented as the reconstruction
loss of eye movement and EEG features,

LRC = LMSE(Xeye, X̂eye) + LMSE(Xeeg, X̂eeg). (3)

Then, we choose aggregation-based fusion as the multi-
modal fusion strategy, which concatenates Oeye and Oeeg

directly. The classification result can be represented as

ŷ = CLS(X̂eye, X̂eeg), (4)

where CLS denotes the multimodal classifier.
The high-level features of eye movements and EEG signals

representing the level of decision confidence can be learned
by minimizing the following loss:

L = λRCLRC + λCLSLCLS , (5)

where λRC , λCLS are the tradeoff parameters for each loss.
2) Training Stage II: EEG High-level Feature Generation:

After training stage I, we obtain high-level features of eye
movements Oeye and EEG Oeeg , respectively. Then, we take
Oeye as the inputs of the GANs to guide the generator to
produce the corresponding EEG features

Ôeeg = G(Oeye; θ), (6)

where θ denotes the parameters of the generator G.
The discriminator D is a binary classifier to distinguish

the true modality pairs from the predicted modality pairs.
We give the true multimodal data (Oeye, Oeeg) a label of 1
and the predicted multimodal data (Oeye, Ôeeg) a label of 0.
We minimize the following cross-entropy loss to train the
discriminator,

LD = LCE(D((Oeye, Oeeg);β), 1)

+ LCE(D((Oeye, Ôeeg);β), 0),
(7)

where β denotes the parameters of discriminator D.
The generator is optimized to estimate the generated

data in order to make it difficult for the discriminator
to distinguish from the true data. Therefore, we train the
generator with the following objective function LG by fixing
the parameter β in the discriminator,

LG = LCE(D((Oeye, Ôeeg);β), 1). (8)

In addition, a content loss function is employed to encourage
Ôeeg to be close to Oeeg . This can be achieved by minimizing
the Euclidean distance between them, resulting in a mean
squared error (MSE) loss LMSE defined as

LMSE(Oeeg, Ôeeg) = ∥Oeeg −G(Oeye; θ)∥22, (9)

where LMSE encourages the learning of detailed information
for completing the EEG modality. Therefore, the overall loss
function of generator G can be described as

L = λMSELMSE + λGLG. (10)

The algorithm for optimizing the problem is given in
Algorithm 1.
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Algorithm 1: The cross-modal method based on
generative adversarial learning

Data: Eye movement data Xeye, EEG data Xeeg and
labels Y . Divide training and test sets
according to cross-validation.

Result: Predicted labels on test data.
1 Training Stage I:
2 Initialize encoders Eeye, Eeeg , decoders Deye, Deeg

and classifier C;
3 while not converged do
4 Optimize Eeye, Eeeg , Deye, Deeg and C by

minimizing Equation (5) ;
5 end
6 Training Stage II:
7 Initialize the generator G and discriminator D;
8 while not converged do
9 Update the discriminator D by minimizing

Equation (7);
10 Update the discriminator G by minimizing

Equation (10);
11 end
12 Test Stage:
13 Obtain eye movement features using trained feature

extractor Eeye;
14 Generator G generates EEG features from eye

movement features;
15 Send concatenated data with eye movement features

and EEG features to the classifier C;
16 Return predicted labels;

III. EXPERIMENT

A. Datasets

We conduct the experiments on the SEED-VPDC
dataset [7]. The dataset is a multimodal dataset including
EEG signals and eye movements for measuring five-level
decision confidence. The experiment consists of 135 trials,
where each trial contains one image, which corresponds to
one decision. The stimuli materials contain three types of
similar animails chosen from the Caltech 101 dataset [10].
Fourteen subjects participate in the experiments, and eye
movements and EEG signals are recorded at the same time
during the entire experiment. Since the eye movement data
for one of the subjects is incomplete, we conclude with com-
plete eye movements and EEG signals for thirteen subjects.

For eye movement signals, 22 features including pupil
diameter, fixation duration, blink duration, and saccade du-
ration are extracted by a Tobii Pro X3-120 screen-based eye
tracker. The EEG signals are recorded by a 62-channel active
AgCl electrode cap with an ESI NeuroScan System at a
sampling rate of 1000 Hz according to the international 10-20
system. For data preprocessing, a bandpass filter between 0.3
and 50 Hz is applied to each channel to filter the noise and a
linear dynamic system (LDS) method is adopted to smooth
features. Different entropy (DE) features [4] are extracted

TABLE I
THE CLASSIFICATION ACCURACY AND F1-SCORE (%) (MEAN/STD) OF

DIFFERENT MODELS ON THE FIVE-CATEGORY SEED-VP DATASET

Method Training data Test data Score
EYE EEG EYE EEG F1-Score Accuracy

SVM [4] ✓ ✓ 34.49/6.14 40.76/7.61
✓ ✓ ✓ ✓ 40.94/7.50 46.51/7.91

DNNS [4] ✓ ✓ 39.11/6.70 44.09/7.49
✓ ✓ ✓ ✓ 46.62/6.98 50.15/8.14

DAE ✓ ✓ ✓ ✓ 48.79/6.85 52.23/7.83
DAL [9] ✓ ✓ ✓ 39.38/8.32 42.42/9.47
Our Method ✓ ✓ ✓ 44.54/7.35 48.22/8.64

within a nonoverlapping one-second time window from 5
frequency bands (namely δ: 1-3 Hz, θ: 4-7 Hz, α: 8-13 Hz, β:
14-30 Hz, and γ: 31-50 Hz) of every sample, which has been
proven to have the best performance for the classification of
decision confidence [4].

B. Experimental settings

We adopt a five-fold cross-validation method and the
subject-dependent classification setting which follows the
work in [4]. We choose two classifiers, support vector
machine (SVM) and deep neural network with shortcut
connections (DNNS) as the baselines, which were employed
to investigate the capability of EEG signals for measuring
human decision confidence in [4]. we use the radial basis
function kernel and search the parameter space from 2[−5:10]

for C in SVM. The DNNS method employs four hidden
layers and one output layer, the size of the hidden layers
is searched from 16 to 256, and the learning rate is set to
0.001. The two classifiers are tested and trained on eye move-
ments and multimodal data, respectively. To further validate
the performance gap between our cross-modal model and
the multimodal model, we choose aggregation-based fusion
as the multimodal fusion strategy, which concatenates the
high-level eye movement and EEG features extracted from
DAE. Finally, to verify the performance of our cross-modal
method, we test the model based on deep adversarial learning
(DAL) proposed in [9] on the SEED-VPDC dataset, which
generates EEG information from primary eye movement
features directly.

IV. RESULTS

The experimental results including the accuracy and F1-
score of different methods are listed in Table I. The mean
accuracies and standard deviations of our model are com-
pared with those of other methods.

A. EEG vs. Eye Movement

From Table 1, we find that the DNNS method signif-
icantly outperforms the SVM method on either modality,
which demonstrates the superiority of neural networks. In
addition, the ability of EEG signals to classify confidence
decisions is stronger than that of eye movements, regardless
of whether the SVM method or the DNNS method is used,
which indicates that EEG signals are more reliable than eye
movements in the task of confidence decision recognition.
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From the confusion matrix shown in Fig. 2, we find that
eye movements have a relatively high recognition rate for
low decision confidence levels (1 and 2), while EEG signals
have a stronger ability to discriminate the extreme confidence
levels (1 and 5) [4]. This indicates that complementary rep-
resentations exist between eye movement and EEG signals
for measuring the decision confidence.

B. Cross-modal vs. Single-modal methods
Our proposed cross-modal method outperforms the DNNS

method trained and tested only on eye movement signals
with an improvement of approximately 5.43% in accuracy
and 4.13% for the F1-score, see Table I. In addition, it is
demonstrated from the confusion matrices that our proposed
method has a relatively large improvement on the recognition
rate on all levels, especially extreme confidence levels, by up
to 11.55% on the first level and 8.82% on the fifth level. We
believe that EEG knowledge which has stronger ability to
identify extreme confidence levels has been learned through
our method even with eye movements as the only inputs.
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Fig. 2. The confusion matrices of SVM, DNNS trained and tested only on
eye movement modality, DAE multimodal method and our proposed cross-
modal method. The rows of the confusion matrices represent the target
class and the columns represent the predicted class. The numbers from 1 to
5 represent weak to strong confidence in decision making.

C. Cross-modal vs. Multimodal methods
Our method is as competitive as the DNNS multimodal

method, but there is still performance gap in comparison
with the DAE multimodal approach. As seen from the
confusion matrix, our approach mainly performs worse in
the identification of extreme confidence levels. This can be
explained by the fact that generated EEG information cannot
completely replace the real EEG signals. However, the mod-
erate decrease in accuracy compared to multimodal methods
is considered acceptable because our method only tested on
eye movement signals, thereby reducing the dependence on
EEG signals which makes decision confidence measurement
more applicable and practicable.

D. Comparison of cross-modal methods

Compared with the DAL method, which generates EEG
information from primary eye movement signals without
going through the high-level feature extraction process, our
method obtains an improvement of approximately 5.80% in
accuracy and 5.16% for the F1-score. The DAE method
achieves better performance than multimodal DNNS method,
which indicates that the high-level features extracted from
the first training phase are more conducive to decision
confidence classification. More importantly, it is difficult to
generate primary high-dimensional EEG features from low
dimensional eye movement features.

V. CONCLUSION

In this paper, we propose a cross-modal approach based
on generative adversarial learning for the task of decision
confidence measurement. In our method, the intrinsic re-
lationship between eye movement and EEG features in a
high-level feature space can be learned in the training stage.
Experimental results on the SEED-VPDC dataset demon-
strate that our proposed method outperforms the single-
modal methods trained and tested only on eye movement
signals. This indicates that EEG features can be generated
from the eye movement features without EEG, which to some
extent complements the information of the EEG modality.
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