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ABSTRACT
Emotion recognition from physiological signals is a topic of wide-
spread interest, and researchers continue to develop novel tech-
niques for perceiving emotions. However, the emergence of deep
learning has highlighted the need for high-quality emotional datasets
to accurately decode human emotions. In this study, we present
a novel multimodal emotion dataset that incorporates electroen-
cephalography (EEG) and eye movement signals to systematically
explore human emotions. Seven basic emotions (happy, sad, fear,
disgust, surprise, anger, and neutral) are elicited by a large number
of 80 videos and fully investigated with continuous labels that in-
dicate the intensity of the corresponding emotions. Additionally,
we propose a novel Multimodal Adaptive Emotion Transformer
(MAET), that can flexibly process both unimodal and multimodal
inputs. Adversarial training is utilized in MAET to mitigate subject
discrepancy, which enhances domain generalization. Our exten-
sive experiments, encompassing both subject-dependent and cross-
subject conditions, demonstrate MAET’s superior performance in
handling various inputs. The filtering of data for high emotional
evocation using continuous labels proved to be effective in the ex-
periments. Furthermore, the complementary properties between
EEG and eye movements are observed. Our code is available at
https://github.com/935963004/MAET.

CCS CONCEPTS
• Human-centered computing → HCI design and evaluation
methods; • Computing methodologies → Artificial intelligence;
Cognitive science.
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1 INTRODUCTION
Emotion recognition is a critical component of human-computer
interactions (HCIs) [16], enabling machines to attain emotional in-
telligence [41], and allowing computers to identify, understand, and
respond to the emotion of human beings. Given the complexity and
importance of emotion, a psycho-physiological process triggered
by various factors [41], researchers from psychology, neuroscience,
and computer science have been exploring emotion recognition for
years [2, 36]. However, the challenges of detecting and analyzing
human emotions remain largely unexplored.

In recent years, a variety of physiological and non-physiological
signals have been utilized for emotion recognition [2]. For non-
physiological signals, speech [1, 14, 28], facial expressions [7, 12, 37,
38], and body movements [45, 47], have been utilized by researchers
to recognize human emotions. However, non-physiological signals
can be easily falsified and are thus untrustworthy, as individuals
may conceal their true emotions. In contrast, physiological sig-
nals, such as EEG [2, 27, 62], electromyogram (EMG) [23, 39], and
electrocardiogram (ECG) [21, 27], provide more reliable and sta-
ble options than non-physiological signals. Among all, EEG has
shown excellent performance in emotion recognition [2, 62], as it
is intrinsically linked to the fundamental neural mechanisms and
has been extensively studied in fields such as psychology and neu-
roscience [10, 58]. Additionally, eye movement signals have been
shown to process complementary properties with EEG in multi-
modal emotion recognition [50, 61]. Therefore, we collect EEG and
eye movement signals to create a multimodal dataset.

There are two main approaches to characterizing emotions: the
dimensional model and the discrete model. The most well-known
dimensional model is the 2D spacial Russell model, where all af-
fective concepts are located at a point with valence and arousal
dimensions [43]. Valence represents whether the emotions are pos-
itive or negative, while arousal depicts the level of activation or
energy associated with an emotional experience. Many emotion
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recognition studies have been conducted based on the Valence-
Arousal model, such as DEAP [30] and MAHNOB-HCI [50]. Unlike
the dimensional approach which portrays emotions continuously,
the discrete categorical model, first proposed by Ekman, classifies
emotions into a set of discrete statuses [13]. Ekman’s theory iden-
tified six basic emotions, namely happiness, sadness, fear, disgust,
surprise, and anger, which collectively form the basis of all emo-
tional states. The discrete model has also been widely employed in
studies such as SEED [62] and research using functional Magnetic
Resonance Imaging (fMRI) [44]. Our dataset is based on the discrete
model and examines the EEG and eye movement signals of seven
emotions, including the six basic emotions and a neutral state.

Compared to intracranial EEG and fMRI, EEG signals are a conve-
nient and non-invasive method for emotion recognition due to their
harmlessness, inexpensiveness, and quick acquisition [2]. However,
existing EEG emotion datasets such as MAHNOB-HCI [50], DEAP
[30], and SEED [62], have limited diversity in emotion types and
short recording durations, which restricts their potential for data
analysis and performance improvement in emotion recognition.
Furthermore, studies on neuroscience and cognitive science have
shown that emotions are complex and dynamic physiological pro-
cesses that vary in intensity and states over time [36]. Therefore,
recording continuous intensity labels is a practical way to study
these changes. Additionally, multimodal signals have been proven
to be effective in emotion classification [33], highlighting the need
to record other physiological or non-physiological signals during
experiments. To address these challenges, we develop a novel mul-
timodal dataset with continuous labels for emotion recognition
focusing on the six basic emotions and the neutral emotion. Our
dataset features more than 14,000 seconds of recording time, which
is longer than most previous EEG datasets that typically record less
than 4,000 seconds.

To address the challenges of emotion classification, we propose a
novel Multimodal Adaptive Emotion Transformer (MAET), possess-
ing specialized modules that make it possible for MAET to operate
flexibly on both unimodal and multimodal inputs. MAET is first
trained with EEG and eye movement features, aiming to learn how
to tackle multimodal inputs. Whereafter, we leverage the emotional
prompt tuning to enableMAET to recognize emotions using a single
modality, while still maintaining the ability to process multimodal
features. Moreover, the subject discrepancy is obscured by MAET
using adversarial training for promoting domain generalization.

In summary, the main contributions of this paper are as follows:

1) We introduce a novel multimodal emotion dataset focusing
on seven basic emotions (happy, sad, fear, disgust, surprise,
anger, and neutral), with EEG and eye movement signals
recorded. Additionally, continuous labels representing the
intensity of the corresponding emotions are collected.

2) We propose a novel Multimodal Adaptive Emotion Trans-
former (MAET), a flexible model that can process both uni-
modal and multimodal inputs with specialized modules. Fur-
thermore, Our MAET model alleviates subject discrepancy
by adopting adversarial training, thus improving domain
generalization.

3) We conduct systematic experiments in various conditions
to evaluate MAET compared to other classifiers, including

unimodal and multimodal conditions, along with subject-
dependent and cross-subject conditions.

4) We analyze the effectiveness of filtering high-induced data
using continuous labels. Experimental results indicate that
filtering high-induced data can significantly enhance emo-
tion discrimination ability.

2 RELATEDWORK
2.1 EEG Dataset for Emotion Recognition
Given the extensive attention that emotion recognition using EEG
signals has received, an increasing number of emotional state eval-
uation methods have been proposed [2]. Hence, comprehensive
and high-quality emotional datasets are urgently acquired for re-
searchers to evaluate the performance of their methods. To date,
there are several datasets available for classifying emotions that in-
clude recordings of EEG along or EEG along with other modalities.

For the Valence-Arousal model, DEAP [30] and MAHNOB-HCI
[50] recorded EEG as well as other physiological signals, such as
GSR, ECG, and EMG, for emotion research. DEAP revealed that EEG
was better for predicting arousal while peripheral physiological
signals were better for predicting valence. It is worth mentioning
that eye gaze data was proved to be the best single modality for
classifying both arousal and valence based on MAHNOB-HCI [50],
highlighting the potential effectiveness of eye movement signals in
emotion recognition. To make affective computing more applicable
in everyday scenarios, wearable and wireless equipment was em-
ployed to collect EEG and ECG signals while subjects watched 18
film clips intended to elicit 9 target emotions in DREAMER [27].

Different from the datasets mentioned above, SEED [62] utilized
a discrete model to observe the EEG and eye movement states
of particular emotions. The dataset selected 15 film clips to evoke
positive, neutral, and negative emotions. To acquire high-resolution
EEG (HR-EEG) signals, Becker et. al. selected 13 videos that consist
of 7 positive emotions and 6 negative emotions from FilmStim to
obtain HR-EEG alongwith other physiological signals of 27 subjects.
Multiple physiological signals were recorded with 28 emotional
videos as elicitation from 23 subjects. Hu et. al. constructed THU-
EP [22], collecting EEG signals from 80 subjects who responded to
28 video clips of nine emotions, including four positive emotions
like joy and amusement, and four negative emotions like anger
and disgust. However, existing datasets have some limitations: 1)
limited types of emotion states being studied; 2) inadequate videos
for inducing each emotion state; and 3) short total video time, which
make it difficult to obtain comprehensive and high-quality datasets.

2.2 EEG-based Emotion Recognition
As EEG has been proven to be the most promising physiological sig-
nal in emotion recognition, many emotion recognition algorithms
based on EEG have been proposed over the years [2]. Zheng et.
al. employed a deep belief network (DBN) to investigate critical
frequency bands and channels of EEG signals for emotion recog-
nition [62]. By reshaping and flattening the EEG signals to image-
like tensors according to the spatial relationships, Li et. al. used
a hierarchical convolutional neural network (HCNN) to learn the
spatial pattern of each emotion [31]. Alhagry et. al. proposed an
EEG feature extraction algorithm using long short-term memory
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(LSTM) and applied the features for classifying low/high valence
and arousal. To better extract topographical information in EEG
signals, a regularized graph neural network (RGNN) which can
capture both local and global inter-channel relations was used
by Zhong et. al. for emotion detection [63]. Song et. al. adopted
a dynamical graph convolutional neural network (DGCNN) for
emotion discrimination which can dynamically learn the intrinsic
relationship between EEG channels [52]. Jiang et. al. proposed a
graph convolutional network with channel attention (GCNCA) to
classify anger and surprise emotion [26]. Recently, Transformer
has been used for emotion recognition. For example, Wang et. al.
proposed a Transformer-based model to hierarchically learn the
discriminative spatial information [57]. Using attention mechanism
on raw EEG signals, Arjun et. al. achieved excellent accuracy of
99.4% and 99.1% for classifying valence and arousal [3]. Rajpoot
et. al. improved LSTM and CNN using attention mechanism for
subject-independent emotion recognition [42].

2.3 Multimodal Emotion Recognition
Emotion is an internal subjective experience and is accompanied by
various complex imperceptible physiological performances besides
facial expressions, such as activation in particular cerebral cortex
areas [44] and fluctuation of pupil diameter [60]. Hence, applying
multimodal signals can improve discrimination ability and this
approach has been widely used in emotion recognition due to the
potential complementary properties of different modalities [51, 61].

Sun et. al. used a hierarchical classifier with hybrid fusion to
distinguish emotions [53]. Fuzzy cognitive map and SVM were
employed to form a hybrid classifier for emotion recognition by
Guo et. al. [19]. A Two-stream heterogeneous graph recurrent neu-
ral network was developed to classify emotions, which can fuse
spatial-spectral-temporal domain features in a unified framework
[25]. With the invention of the attention mechanism, more and
more deep methods of fusion have been developed based on the
attention mechanism. Liu et. al. proposed a deep canonical cor-
relation analysis (DCCA) with an attention-based fusion strategy
to perform multimodal emotion recognition [33]. By pre-training
Transformers using masked value prediction, Vazquez et. al. fused
EEG and ECG signals to classify emotions [55]. Nonetheless, these
techniques are tailored explicitly for multimodal inputs, and their
major drawback is the limited adaptability to unimodal signals.

3 EXPERIMENT SETUP
3.1 Stimuli
The experiments are designed to record EEG and eye movement
signals simultaneously during the elicitation of seven emotions.
The selection of stimuli materials is critical as it directly affects
the effectiveness of emotional elicitation. Previous studies have
employed various types of stimuli to evoke emotions, including
music [29], pictures [5], facial expressions [7], and videos [30, 50].
Among them, videos have been found to be particularly effective
as they provide both visual and auditory stimuli.

During the preliminary stage, a pool of stimuli materials com-
prising video clips is prepared for eliciting six emotions, excluding
surprise. To select the most effective video clips for eliciting emo-
tions, we employ a strategy involving the assessment of all video

H N D S A A S D N H H N D S A A S D N H

A S F N U U N F S A A S F N U U N F S A

H U D F A A F D U H H U D F A A F D U H

D S F U H H U F S D D S F U H H U F S D

Session 1

Session 2

Session 3

Session 4

Fold 1 Fold 2 Fold 3 Fold 4

H: Happy  U: Surprise  N: Neutral  D: Disgust  F: Fear  S: Sad  A: Anger

Figure 1: The experiment design of watching videos.

clips by 20 volunteers, who rated each clip on a scale of 1 to 5. We
select the high-scoring clips for each emotion. For the emotion of
surprise, magic videos are chosen for emotion elicitation as magic
shows have been demonstrated to be effective for eliciting surprise
[26]. Consequently, twelve clips were selected for each emotion (ex-
cept neutral) with mean scores of 3 or higher. The neutral emotion
comprised eight clips, resulting in a total of 80 clips. Each clip lasts
for 2 to 5 minutes and the total time of all clips is about 14,097.86
seconds. We elaborately separate the 80 clips into four sessions, and
the subjects are required to complete the entire experiment in four
sessions with an interval of 24 hours or more between sessions.

3.2 Subjects
Twenty subjects (10 males and 10 females) with ages ranging from
19 to 26 (MEAN: 22.5, STD: 1.80) participate in the experiments. All
participants are right-handed students with normal or corrected-
to-normal vision and normal hearing. They are selected through
the Eysenck Personality Questionnaire (EPQ) [15], a widely used
questionnaire developed by Eysenck et.al. to assess an individual’s
personality traits. Eysenck initially conceptualized personality as
several biologically-based independent dimensions of temperament:
E (Extraversion/Introversion), N (Neuroticism/Stability), P (Psy-
choticism/Socialisation), and L (Lie/Social Desirability). Previous
research has demonstrated that individuals with extroverted charac-
teristics are prone to perform better in perceiving emotions during
experiments compared to those without such characteristics [62],
and people with high extraversion possess more empathy ability
[40, 46]. Therefore, we rank the volunteers according to E values
and selected those with high E values to participate in the experi-
ments. This approach is adopted to ensure that participants possess
the desired characteristics for accurate emotion recognition.

3.3 Protocol
In order to ensure data quality, the experiments are conducted in
a controlled laboratory environment to minimize noise and other
environmental disturbances. Also, the experiments are scheduled
during the morning or early afternoon to avoid any confounding
effects of fatigue. EEG and eyemovement signals are simultaneously
collected by the 62-channel electrode cap with the international
10-20 system and Tobii Pro Fusion eye tracker, respectively. EEG
signals are acquired using ESI NeuroScan System at a sampling rate
of 1000 Hz while eye movement signals are sampled at 250 Hz.

All subjects undergo four experimental sessions as Figure 1
shows. There are twenty trials in each session, each trial consists
of two parts, where the first part is watching videos and the sec-
ond part is self-assessment where subjects score their emotional
intensity level from 1 to 10 points. For each session, there are only
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five out of seven emotions to be elicited, which reduces the impact
of subjects switching into too many emotional states. Prior to and
following the presentation of each video clip, there is a 3-second
countdown to alert participants to the imminent start or end of
the video. The sequence of the video clips is carefully arranged to
avoid sudden shifts in emotional valence, as human emotions tend
to transform gradually. Eighty video clips of four sessions in total
are divided into four folds, each fold contains five clips from each
session and all emotional videos are equal in number. At the end
of each session, participants are instructed to review all twenty
video clips, recalling the emotional responses they experienced
during the session and assigning continuous labels to the session’s
entirety via a mouse wheel. The continuous labels range between
0% and 100%, where larger values correspond to stronger elicited
emotions. This study was approved by the Scientific & Technical
Ethics Committee of Shanghai Jiao Tong University. All subjects
are informed of the experimental process before the first session
and signed up for an informed consent.

4 METHOD
4.1 Multimodal Adaptive Emotion Transformer
The overall architecture of the Multimodal Adaptive Emotion Trans-
former is illustrated in Figure 2. The training procedure has two
steps. It is first trained using both EEG and eye movement fea-
tures to endow it with the ability to process multimodal inputs.
Afterwards, the backbone of MAET is frozen and we introduce the
emotional prompt tuning to only tune the emotional prompts and
the classifier of a single modality. Once MAET is trained, it can take
either EEG or eye movements or both EEG and eye movements
as input. Given an input feature 𝑥 ∈ R𝑑 , where 𝑑 is the dimen-
sion of the feature, 𝑥 is first passed to the multi-view embedding
module to map the single feature to multiple tokens from different
views. Then, it is fed into the adaptive Transformer and the mixture
Transformer, and finally predicts emotions by the classifiers.

4.1.1 Multi-view Embedding Module. The multi-view embedding
module takes the input feature and transforms it into multiple em-
beddings, which aims to encourage the model to concentrate on
different views of the feature. The input feature 𝑥 is first trans-
formed to 𝑣 embeddings by 𝑣 parallel linear layers:

𝑒𝑖 = Linear𝑖 (𝑥), 𝑖 = 1, .., 𝑣 (1)

where 𝑒𝑖 ∈ R𝑑𝑒 and 𝑑𝑒 is the dimension of embeddings. Another
linear layer followed by an activation function is used to gate the
embeddings with useful information for emotion recognition

𝑒 = 𝜎 (Linear(𝑥)), (2)

where 𝑒 ∈ R𝑑𝑒 and𝜎 is the sigmoid function constraining the output
value between 0 and 1. 𝑒𝑖 and 𝑒 aremultiplied element-wise and then
stacked over 𝑣 embeddings, resulting in 𝐸 = (𝐸1, ..., 𝐸𝑣) ∈ R𝑣×𝑑𝑒 .
The final output can be calculated as

𝐸 = BN(stack(𝑒 ⊙ 𝑒𝑖 )), 𝑖 = 1, ..., 𝑣 (3)

where ⊙ represents Hadamard product and BN denotes batch nor-
malization. By this means, an input feature 𝑥 is converted into
a sequence of tokens from different views which can be further
processed by subsequent Transformer layers.

It is worthwhile to mention that the multi-view embedding mod-
ule is optional for EEG because EEG features are naturally a se-
quence formed by multiple channels or multiple frequency bands,
which can be applied directly by the multi-head self-attention.
Whereas, we still adopt this module for EEG in this paper since we
observe a performance boost with it incorporated.

4.1.2 Adaptive Transformer and Mixture Transformer. The adaptive
Transformer and mixture Transformer are flexible components that
are inspired by the mixture-of-experts Transformer [4]. These two
modules are capable to cover arbitrary scenarios, such as inputting
EEG only, inputting eye movements only, and inputting both EEG
and eye movements, owing to the flexibility of the multi-head self-
attention.

Before passing to the adaptive Transformer, the embeddings 𝐸 are
first prepended by a learnable class token 𝐸𝑐𝑙𝑠 ∈ R𝑑

𝑒
, the function

of which is to aggregate information from the whole sequence and
used for emotion classification later. To incorporate the positional
and modal information, learnable positional embedding 𝐸𝑝𝑜𝑠 ∈
R(𝑣+1)×𝑑𝑒 and modality embedding 𝐸𝑚𝑜𝑑 ∈ R𝑑𝑒 are added to the
input embeddings, which can be formulated as

𝐸 = (𝐸𝑐𝑙𝑠 , 𝐸1, ..., 𝐸𝑣) + 𝐸𝑝𝑜𝑠 + 𝐸𝑚𝑜𝑑 , (4)

where 𝐸 ∈ R(𝑣+1)×𝑑𝑒 .
The core component in the adaptive Transformer and mixture

Transformer is the same, i.e., multi-head self-attention (MHSA) [54].
The embedding 𝐸 is transformed to queries 𝑄𝑖 , keys 𝐾𝑖 , and values
𝑉𝑖 by three linear layers. The self-attention can be calculated as

Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ) = softmax(
𝑄𝑖𝐾

𝑇
𝑖√
𝑑𝑒

)𝑉𝑖 . (5)

We employ ℎ heads for self-attention and each head can be denoted
by 𝐻𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ). The output of multi-head attention
is Concat(𝐻1, 𝐻2, ..., 𝐻ℎ)𝑊 , where𝑊 is the weight.

The adaptive Transformer introduces two modality experts to
substitute the standard feed-forward network (FFN), i.e., EEG-FFN
and EYE-FFN, and it adaptively selects an expert to capture the
modality-specific information according to the input modality. For
example, if the input is EEG-only (eye movements-only), we em-
ploy the expert of EEG-FFN (EYE-FFN) to encode the features. If
the input contains multiple modalities, the EEG expert and the eye
movement expert are used to process the respective modality fea-
tures parallelly. The mixture Transformer just follows the vanilla
Transformer, of which the Mix-FFN is expected to capture more
modality interaction. We stack 𝐿𝑎 adaptive Transformer blocks and
𝐿𝑚 mixture Transformer blocks.

4.1.3 Fusion and Classifiers. Let 𝐻𝑐𝑙𝑠 ∈ R𝑑𝑒 denote the class token
of themixture Transformer output.We introduce an attention-based
fusion to adaptively fuse the features from multiple modalities. We
first calculate the attention weights `𝑒𝑒𝑔 and `𝑒𝑦𝑒 by

`𝑒𝑒𝑔, `𝑒𝑦𝑒 = softmax(⟨𝐻𝑒𝑒𝑔
𝑐𝑙𝑠

,𝑊𝐴⟩, ⟨𝐻𝑒𝑦𝑒
𝑐𝑙𝑠

,𝑊𝐴⟩), (6)

where 𝑊𝐴 ∈ R𝑑𝑒 and ⟨, ⟩ means dot product. Thus, the fused
features are extracted by

𝐻 = `𝑒𝑒𝑔𝐻
𝑒𝑒𝑔

𝑐𝑙𝑠
+ `𝑒𝑦𝑒𝐻𝑒𝑦𝑒

𝑐𝑙𝑠
. (7)
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Figure 2: The architecture of MAET. MAET is a general and flexible framework for EEG and eye movements, composed of a
multi-view embedding module, an adaptive Transformer block, a mixture Transformer block, and several classifiers.

Finally, a classifier that consists of a linear layer is applied to the
fused features to obtain the final prediction 𝑦. The whole procedure
can be formulated as

𝑦𝑚 = C𝑓 (F (𝑥𝑒𝑒𝑔, 𝑥𝑒𝑦𝑒 )), (8)

where F represents the feature extractor of MAET, i.e., the com-
ponents excluding classifiers, and C𝑓 denotes the fusion classifier.
The objective function is the cross-entropy loss:

L𝑚 = −
𝑁∑︁
𝑖=1

𝑦𝑖 log𝑦𝑚𝑖 , (9)

where 𝑦 is the ground truth label.

4.1.4 Emotional Prompt Tuning. We introduce emotional prompt
tuning (EPT), which is inspired by the advent of prompt tuning
[24, 32], to tune the model that has been trained on multimodal
inputs to adapt a single modality. The idea is quite straightforward.
We prepend a small set of learnable embeddings 𝑃𝑖 ∈ R𝑝×𝑑𝑒 to the
feature embeddings in each Transformer layer, which are referred
to as emotional prompts. The emotional prompt tuning can be
formulated as

[𝐸𝑖+1, _] = 𝑇𝐿𝑖 ( [𝐸𝑖 , 𝑃𝑖 ]), (10)
where𝑇𝐿𝑖 denote 𝑖-th Transformer layer and 𝐸𝑖 denotes the feature
embeddings of 𝑖-th layer. 𝐸𝑖+1 is the output as well as the input
of 𝑖 + 1-th Transformer layer. After all the adaptive and mixture
Transformer layers, we adopt the mean pooling over all the EEG
or eye movement embeddings, followed by the classifier C𝑒𝑒𝑔 for
EEG or C𝑒𝑦𝑒 for eye movements. In this stage, we only tune the
emotional prompts together with the classifier and keep the entire
backbone trained on multimodal signals frozen. Thus, the ability to
cope with multimodal inputs is preserved, while it learns to predict
emotions using a single modality.

4.1.5 Domain Adversarial Training for Domain Generalization. EEG
signals vary considerably across different subjects, which leads to
the degraded generalizability of deep learning models and make
cross-subject emotion recognition challenging. In order to reduce
the negative impact of individual discrepancy, we exploit the ad-
versarial domain generalization method to make the model more

robust [17]. The core idea is to encourage themodel to learn domain-
invariant representations. Assume that for an input feature 𝑥 , its
corresponding domain label is 𝑑 from 𝐾 domains. We devise a
domain classifier C𝑑 which consists of two linear layers and the
Gaussian error linear units (GELU) [20] function in between them.
The domain classifier is trained jointly with other components in
MAET to discriminate which domain the input belongs to. How-
ever, over-confident domain classifiers and domain label noise can
lead to instability in domain adversarial training. To overcome this
challenge, we adopt the environment label smoothing (ELS) [59]
which encourages the domain classifier to output soft probability.
For an domain label 𝑑 ∈ [0, 1]𝐾 , we transform it to 𝑑 as follows

𝑑 (𝑖) =
{
𝛾, for 𝑑 (𝑖) = 1;
1−𝛾
𝐾−1 , otherwise,

(11)

where 𝑖 is from 1 to 𝐾 and
∑𝐾
𝑖=1 𝑑 (𝑖) = 1. 𝛾 is the tradeoff that

controls the algorithm convergence and adversarial divergence
minimization. We follow the annealing strategy [59] that gradually
decreases 𝛾 during training as 𝛾 = 1− 𝐾−1

𝐾
𝑡
𝑇
, where 𝑡 is the current

training step and 𝑇 is the total steps. Therefore, the loss of the
domain classifier is

L𝑑 = −
𝑁∑︁
𝑖=1

𝑑𝑖 logC𝑑 (F (𝑥𝑖 )). (12)

In order to confuse the domain classifier so that the feature
extractor can learn domain-invariant representations, we introduce
a gradient reverse layer (GRL) [17] which can be ignored during
forward propagation and reverses the gradient passed backward
from C𝑑 to F . Consequently, the total loss for EEG-based cross-
subject emotion recognition is

L = L𝑒𝑒𝑔 − _L𝑑 , (13)

where L𝑒𝑒𝑔 is the cross-entropy loss for the EEG classifier and _ is
a scaling factor that gradually changes from 0 to 1. It is suggested
that _ = 2

1+𝑒−10𝑡/𝑇 − 1 and this strategy makes the domain classifier
insensitive to noise at the early stages of the training procedure.
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Table 1: Performance (accuracies and F1 scores, %) of different methods using unimodality.

Method EEG eye movements

ACC STD F1 STD ACC STD F1 STD

KNN [9] 36.43 05.38 34.08 05.79 36.01 06.30 34.74 06.33
HCNN [31] 52.42 06.47 49.02 06.80 - - - -
RGNN [63] 48.50 06.83 45.32 07.20 - - - -
Transformer [54] 56.04 07.82 53.35 08.30 - - - -
GCNCA[26] 58.04 07.78 55.48 08.30 - - - -
MAET (w/o EPT) 57.84 08.80 54.94 09.41 49.99 07.17 46.72 07.94
MAET 58.11 08.78 54.98 09.45 50.31 07.14 47.10 07.84

4.2 Feature Extraction
4.2.1 EEG Features. Contaminated by environmental and physio-
logical artifacts, the raw EEG signals collected during experiments
contain non-negligible noise which hinders the precise analysis
of brain activity. To mitigate the impact of noise, we first visually
inspect the EEG signals and interpolate any bad channels using the
MNE-Python toolbox [18]. We then apply a bandpass filter with
cutoff frequencies of 0.1 Hz and 70 Hz to remove low-frequency
noise and power-line interference. Additionally, a notch filter with
a cutoff frequency of 50 Hz is applied. To reduce computational
complexity, we downsample the raw EEG signals from the original
sampling rate of 1000 Hz to 200 Hz.

For EEG features, differential entropy (DE) has been proven to
be the most effective feature for emotion recognition, as it has a
balanced ability to discriminate EEG patterns between low- and
high-frequency energy [11]. We use a 256-point Short-Time Fourier
Transform (STFT) with a non-overlapped Hanning window of 4
seconds to calculate the frequency domain features. The DE features
are extracted in five frequency bands (delta: 1-4 Hz, theta: 4-8 Hz,
alpha: 8-14 Hz, beta: 14-31 Hz, gamma: 31-49 Hz), which are defined
as

ℎ(𝑋 ) = −
∫ +∞

−∞

1
√
2𝜋𝜎2

𝑒
− (𝑥−`)2

2𝜎2 log( 1
√
2𝜋𝜎2

𝑒
− (𝑥−`)2

2𝜎2 )𝑑𝑥 (14)

=
1
2
log(2𝜋𝑒𝜎2), (15)

where the random variable 𝑋 obeys Gaussian distribution 𝑁 (`, 𝜎).
DE is equivalent to the logarithmic energy spectrum for a fixed-
length sequence in a specific band. For 62-channel EEG signals, a
sample of the DE feature in the 5 frequency bands is 310-dimension.

Based on the assumption that the emotional state is defined in
a continuous space and that emotional states change gradually
over time, we exploit the linear dynamic system (LDS) to filter out
components that are not associated with emotional states [48].

4.2.2 Eye Movement Features. For eye movement signals, various
parameters can be captured by the eye tracker, such as pupil diame-
ters, fixation details, saccade details, gaze point details, etc. Among
them, pupil diameters have been demonstrated to play a critical
role in emotion recognition [6]. Nonetheless, pupil diameters are
highly sensitive to environmental luminance. We first employ linear
interpolation to replace the missing pupil diameter samples due
to eye blinking. Based on the observation that the responses of

Table 2: The accuracies and F1 scores (%) of different method
using multimodality.

Method ACC STD F1 STD

KNN [9] 40.44 06.30 37.94 06.54
BDAE [34] 61.55 08.74 59.11 08.87
ETF [56] 65.30 08.55 63.13 08.88
VigilanceNet [8] 62.93 07.12 60.46 07.81
MAET 71.28 07.74 69.16 08.35

subjects to the same video in the controlled lighting environment
have similar patterns, principal component analysis (PCA) is used
to eliminate the effect of luminance on pupil diameters [51]. The
original data are subtracted by the light reflex which is estimated by
the first principal component of the observation matrix containing
pupil diameter data of the same video clip from all subjects. After
that, the residual part contains the emotion-associated-only pupil
response. The DE features are then computed for the left and right
pupil diameters using STFT in the four frequency bands with a
non-overlapped Hanning window of 4 seconds. In addition to the
DE features, the mean and the standard deviation of pupil diame-
ters are also calculated. Except for pupil diameter, 21 other features
are also extracted [61]. Consequently, the total number of features
obtained from eye movement signals is 33.

5 EXPERIMENTAL RESULTS
5.1 Implementation Details
For the hyperparameters of MAET, the number of adaptive Trans-
former blocks 𝐿𝑎 and mixture Transformer blocks 𝐿𝑚 is set to 2
and 1, respectively. We empirically set the number of views 𝑣 = 5
in the multi-view embedding module. The number of heads ℎ is
4 in MHSA. The embedding dimension 𝑑𝑒 is tuned from {32, 64}.
The batch size is 64 in subject-dependent experiments and 256 in
cross-subject experiments. We use AdamW [35] as the optimizer
with the learning rate tuned from {0.00003, 0.0001, 0.0003}. More-
over, we tune the weight decay from {0.0001, 0.01, 0.1}. The prompt
length 𝑝 is 1 or 2. Note that the domain adversarial training is only
employed in the cross-subject conditions. The emotional prompt
tuning is only employed in Section 5.2. Otherwise, MAET is directly
trained using solely EEG features with the cross-entropy loss.
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5.2 Unimodal and Multimodal Emotion
Recognition

Aiming to evaluate the efficacy of EEG and eye movements in
identifying emotions, we construct a subject-dependent model for
each subject. Specifically, we merge the data from all four sessions
of one subject and then partition the data into four folds for carrying
out a four-fold cross-validation. Notably, the input EEG and eye
movement features are transformed by z-score normalization.

5.2.1 Classification Performance of EEG. The classification perfor-
mance of six baseline classifiers and our newly developed MAET
are compared systematically,𝐾 nearest neighbor (KNN) [9] (𝐾 is set
to 1), hierarchical convolutional neural network (HCNN) [31], reg-
ularized graph neural network (RGNN) [63], Transformer [54], and
graph convolutional network with channel attention (GCNCA) [26].
Note that the EmotionDL proposed in RGNN is not implemented
in this paper. All methods are implemented strictly under the same
conditions and are compared with each other fairly. Table 1 shows
the average accuracies and weighted F1 scores for each method.

For classifying the seven emotions, MAET attains the most ac-
curate discriminating capacity. Specifically, the highest prediction
accuracy of 58.11% is acquired by the MAET machine while utiliz-
ing the total band, highlighting the effectiveness of MAET. Figure 3
(a) depicts the confusion matrix of MAET using EEG signals ex-
clusively. It can be observed that the surprise and fear emotions
are distinguished by MAET with higher accuracy than other emo-
tions. In addition, the happy emotion is prone to be misclassified as
surprise while neutral is more likely to be confused with sadness.
Besides, compared to other emotions, the sad and angry emotions
display a greater likelihood of being misclassified as each other in
the classification based on EEG signals, which indicates the simi-
larity between the neural patterns of sad and angry emotions.

5.2.2 Classification Performance of Eye Movements. For eye move-
ments, we compare our proposed MAET with KNN since other
baseline methods are unable to handle eye movement features. The
results are shown in Table 1. It is conspicuous that MAET obtains
the highest prediction accuracy of 50.31% and the highest F1 score
of 47.10%. Figure 3 (b) presents the confusion matrix of MAET us-
ing eye movement signals alone. It is evident from the table that
eye movement signals exhibit remarkable performance in distin-
guishing neutral and fear emotions. In spite of this, isolate eye
movement signals have relatively poor performance in classifying
happy and disgust emotions, whose accuracies are lower than 40%.
Observed from Figure 3 (a) and (b), EEG signals attain better results
in discriminating happiness, surprise, disgust, and anger while eye
movement signals acquire more accurate results in classifying neu-
tral, sadness, and fear. It is worth noting that there are some similar
eye movement patterns between happy and angry emotions for the
reason that 27.53% happy emotions have been recognized as anger.

In addition, the second line from the bottom in Table 1 presents
the results of only tuning the classifiers. The decreased performance
highlights the effectiveness of emotional prompt tuning.

5.2.3 Classification Performance of Multimodal signals. Table 2
displays the results of different models using both EEG and eye
movements. A systematic comparison is conducted between KNN,
Bimodal Deep AutoEncoder (BDAE) [34], Emotion Transformer

Figure 3: Confusion matrices of MAET using EEG and eye
movements or both. The horizontal axis represents the pre-
dicted labels and the vertical axis represents the true labels.

Table 3: The performance (%) of different methods of cross-
subject experiments.

Method ACC STD F1 STD

KNN [9] 20.85 04.56 20.23 04.49
HCNN [31] 39.88 04.94 38.18 05.06
RGNN [63] 37.49 05.44 34.52 04.83
Transformer [54] 40.36 05.22 37.76 05.54
GCNCA [26] 38.68 03.94 37.25 03.65
MAET (w/o AT) 40.69 05.50 38.47 06.09
MAET 40.90 05.52 38.85 06.07

Fusion (ETF) [56], VigilanceNet [8], and MAET. For KNN, the EEG
features and eye movement features are directly concatenated into
343-dimensional features. MAET outperforms the other methods
with the best accuracy of 71.28% and F1 score of 69.16%, which
illustrates its effectiveness. The confusion matrix of MAET using
multimodal signals is shown in Figure 3 (c). It could be viewed that
MAET acquires outstanding accuracy on the task of classifying
surprise, neutral, fear, and anger emotions. Among all emotions,
the accuracy of distinguishing fear emotion is the highest at 82.41%.
It is evident that most emotions can be classified more accurately
while using multimodality than using EEG or eye movement signals
individually. These results demonstrate that multimodality can
significantly improve classification performance, which indicates
the complementary properties between EEG and eye movements.
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Table 4: The accuracies and F1 scores (%) of different methods
with/without the filtered high-induced data.

Method Unfiltered Filtered

ACC F1 ACC F1

KNN [9] 31.39 29.92 33.98 32.86
HCNN [31] 46.45 44.29 50.24 45.78
RGNN [63] 43.61 42.51 50.70 49.55
Transformer [54] 49.71 48.71 56.84 56.19
GCNCA [26] 52.74 52.21 58.15 58.16
MAET 52.86 52.26 58.24 58.08

5.3 Cross-subject Emotion Recognition
One of the essential questions is whether it is reliable and robust in
recognizing emotions of a new subject, whose physiological signals
have never been recorded and fed into the classifiers. The strategy
we adopt for measuring the cross-subject performance is leave-
one-subject-out (LOSO) cross-validation. The results are depicted
in Table 3. Due to the variability between distinct subjects, the
performance of all methods is singularly poor compared with that
in subject-dependent conditions and the performance degradation
is nearly 20%. MAET acquires the highest accuracy of 40.90% and F1
score of 38.85%, demonstrating the robustness of MAET. It is worth
noting that MAET without adversarial training (AT) attains the
second-highest accuracy of 40.69%, which implies that adversarial
training is helpful for cross-subject situations to some extent.

5.4 Analysis of Continuous Labels
The intensity score associated with an emotion is a crucial indicator
of the elicitation level and the quality of the collected physiolog-
ical data. Several previous studies [49] have studied emotions by
continuous labels which can measure affective arousal sensitively.
Due to the ambiguous definition of intensity score for neutrality,
we exclude neutral emotion from our analysis in this experiment.

To further investigate the relevance between classification per-
formance and the intensity level, we conduct a comparison of the
classification performance of each method under unfiltered and
filtered situations, and low-induced data are filtered under the fil-
tered situation. The criteria for judging whether the EEG signals
are high-induced is that the score of the corresponding video clip is
larger than a threshold of 50%. For the purpose of discriminating the
quality between high-induced and low-induced data, the smoothing
algorithm LDS introduced in Section 4.2.1 is not employed in this
experiment. The results are displayed in Table 4. From Table 4, we
can see that the classification accuracy and F1 score increase con-
siderably by just using the filtered data for all methods. The highest
accuracy is achieved by MAET of 58.24%. The increasing rate of
accuracy in the filtered case is over 5% and the greatest increment
is obtained by Transformer of 7.13%.

Figure 4 depicts the confusion matrix of MAET under unfiltered
and filtered situations. It is observed that by filtering high-induced
data, the accuracy of the anger, disgust, and fear emotion rises 7.52%,
8.42%, and 4.7%, which underscores the importance of filtering for
discriminating these three emotions. However, there is a slight

Figure 4: Confusion matrices of MAET with/without the fil-
tered high-induced data using continuous labels.

cutback in the classification accuracy of the happy, surprise, and
sad emotions. The reason might be that for the happy, surprise,
and sad emotions, it takes a longer time for subjects to be evoked
by stimuli materials, which results in the lack of physiological
data after filtering. As deep models require large amounts of data,
inadequate data after filtering may account for the decrease in
the accuracies of these three emotions. This observation further
demonstrates the effectiveness of filtering for happy, surprise, and
sad emotions. The finding suggests that filtered high-induced data
is significant for classifying easy-evoked emotions.

6 CONCLUSION
In this study, we have developed a novel multimodal emotion
dataset for the seven basic emotions (happy, sad, fear, disgust, sur-
prise, anger, and neutral) with EEG and eye movement signals.
Besides, our dataset possesses continuous labels which indicate
the affective intensity level subjects experienced during watching
videos. 80 video clips are chosen as our stimuli materials and 20
subjects are recruited by the EPQ questionnaire in our experiments.
Besides, We have proposed a novel method MAET which is ca-
pable to deal with unimodal and multimodal inputs flexibly. The
performance of different methods has been evaluated systemat-
ically in unimodal and multimodal cases. Furthermore, we have
conducted the cross-subject experiment, using the LOSO cross-
validation to examine the performance of each method. On the
other hand, MAET provides a general baseline for future research.
Moreover, a comparison between the unfiltered and filtered situ-
ations has been carried out to explore the effect of filtering data
according to continuous labels. The experimental results show a
considerable accuracy increment with the filtered data.
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