
Naturalistic Emotion Recognition Using
EEG and Eye Movements

Jian-Ming Zhang1, Jiawen Liu1, Ziyi Li1, Tian-Fang Ma1, Yiting Wang1,
Wei-Long Zheng1, and Bao-Liang Lu1,2,3(B)

1 Department of Computer Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China

{jmzhang98,ljw_venn,liziyi,matianfang2676,weilong,bllu}@sjtu.edu.cn
2 RuiJin-Mihoyo Laboratory, RuiJin Hospital, Shanghai Jiao Tong University School

of Medicine, Shanghai 200020, China
3 Key Laboratory of Shanghai Commission for Intelligent Interaction and Cognitive

Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract. Emotion recognition in affective brain-computer interfaces
(aBCI) has emerged as a prominent research area. However, exist-
ing experimental paradigms for collecting emotional data often rely on
stimuli-based elicitation, which may not accurately reflect emotions expe-
rienced in everyday life. Moreover, these paradigms are limited in terms
of stimulus types and lack investigation into decoding naturalistic emo-
tional states. To address these limitations, we propose a novel experi-
mental paradigm that enables the recording of physiological signals in a
more natural way. In our approach, emotions are allowed to arise spon-
taneously, unrestricted by specific experimental activities. Participants
have the autonomy to determine the start and end of each recording
session and provide corresponding emotion label. Over a period of three
months, we recruited six subjects and collected data through multiple
recording sessions per subject. We utilized electroencephalogram (EEG)
and eye movement signals in both subject-dependent and cross-subject
settings. In the subject-dependent unimodal condition, our attentive
simple graph convolutional network (ASGC) achieved the highest accu-
racy of 76.32% for emotion recognition based on EEG data. For the
cross-subject unimodal condition, our domain adversarial neural network
(DANN) outperformed other models, achieving an average accuracy of
71.90% based on EEG data. These experimental results demonstrate the
feasibility of recognizing emotions in naturalistic settings. The proposed
experimental paradigm holds significant potential for advancing emo-
tion recognition in various practical applications. By allowing emotions
to unfold naturally, our approach enables the future emergence of more
robust and applicable emotion recognition models in the field of aBCI.
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1 Introduction

In the field of mental illness diagnosis, scale tests and empirical judgments by
physicians are often considered the gold standard. However, patients may provide
false answers and conceal their true condition for various reasons. As a result,
there is a growing interest in objective methods for determining emotional and
mental states based on patients’ physiological signals [1]. With the rapid advance-
ment of artificial intelligence technology, emotional intelligence (EI) has shown
great potential in medical and other domains, offering the possibility of emotion
recognition based on physiological signals [2].

In recent studies, EEG and eye movement signals have played a significant
role in capturing human emotions [3–5]. In the field of aBCI, existing emo-
tion recognition paradigms based on physiological signals typically rely on pas-
sive elicitation, which can place a considerable burden on subjects [6]. These
paradigms involve collecting signals in controlled laboratory environments while
evoking emotions through specific stimuli. Subjects are immersed in emotional
stimuli such as pictures, audio, and videos to induce specific emotional states cor-
responding to the stimuli. The limited experimental settings are due to the lack
of technology for collecting high-quality labeled emotion data in daily life, limit-
ing the experimentation to specific tasks conducted in a laboratory. While these
experiments fall under the emotion elicitation experiment paradigm and have
demonstrated that EEG and eye movement signals can detect human emotions,
they still have two limitations: 1) Emotions are passively evoked in unnatural
states, and 2) The stimuli are limited to pictures and videos, with the paradigm
reliant on stimuli.

To address these limitations, we propose a novel paradigm for emotion recog-
nition that operates in natural states without relying on passive stimuli. Our
paradigm introduces several key innovations: 1) Emotions are actively evoked
rather than relying on stimuli, aiming to closely resemble daily life experiences;
2) There are no limitations on the forms of stimuli used; 3) The data collection
process does not require consistency across subjects, allowing for a diversity of
data; and 4) The emotion labels in our collected data are more accurate as they
are provided by the subjects themselves.

To validate the feasibility of recognizing emotions in naturalistic settings
using our paradigm, we collected EEG and eye movement signals from six sub-
jects engaged in daily emotional activities. Subsequently, we conducted a series
of experiments using commonly used models in aBCI. The results demonstrated
the viability of recognizing emotions in a naturalistic manner.

2 Methods

2.1 Paradigm Design

The EEG signals were recorded using the DSI-24 Dry Electrode EEG Cap, while
eye movement signals were recorded with the Tobii Screen-based Eye Tracker.
To ensure that our experiments closely resembled the daily lives of the subjects,
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we selected six graduate students (three males and three females; Avg. of ages:
24.33, Std. of ages: 1.97). The experiments took place in proximity to their work-
places. The start and end of the experiments were determined by the subjects
themselves. The objective of the experiments was to record the subjects’ natural
emotional states during their daily activities, which included watching movies,
reading, playing games, etc.

Fig. 1. The procedure of data collecting and emotion recognition from collected signals.

Each experiment consisted of multiple trials. The subjects initiated each trial
by clicking the mouse to send triggers. When the subjects perceived a significant
change in their emotions, they would click the mouse to send the start trigger,
and they would label the trial after sending the end trigger. Several trials were
recorded within a single experiment, corresponding to the subjects’ emotional
states. The subject would also retrace the entire experiment and refine the emo-
tion labels at the end of each experiment. A brief illustration of the procedure
is provided at the top of Fig. 1, while the bottom shows the models used for
emotion recognition (Sect. 2.3) and our experiment settings (Sect. 3.1). After the
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experiment, the information of each trial included the start and end time, EEG
and eye movement signals, emotion labels, and the activities performed.

We utilized the 2-D valence and arousal space [7] as a popular method for
dimensional emotion representation. Based on the 2-D Emotion Wheel [8,9],
we selected several common typical emotions as our emotion labels, including
astonished, excited, delighted, happy, pleased, satisfied, relaxed, calm, sleepy,
tired, droopy, bored, depressed, sad, miserable, frustrated, distressed, annoyed,
angry, afraid, tense and alarmed. We defined the point at 0 arousal and 0 valence
as neutral emotion, representing a state without positive or negative emotions.
The subjects categorized their emotional states and rated the intensity of their
emotions on a scale from 0 to 5, with 5 indicating the strongest intensity.

2.2 Data Preprocessing

For EEG signals, we extracted the differential entropy (DE) features [10] in the
five frequency bands (δ: 1–3 Hz, θ: 4–7 Hz, α: 8–13 Hz, β: 14–30 Hz, and γ: 31–50
Hz) with non-overlapping 4-s time window from every sample. The DE feature
on a one-dimensional signal X drawn from a Gaussian distribution N(μ, δ2) is
defined as

h(X) = −
∫ ∞

−∞
P (x) log(P (x))dx =

1
2
log(2πeσ2), (1)

where P (x) = 1√
2πσ2 e− (x−μ)2

2σ2 .
For eye movement signals, we extracted 23 features, including pupil diameter,

fixation duration, saccade duration, blink duration and other event statistics.
Detailed information of eye movement features is shown in Table 1.

Table 1. Details of the extracted eye movement features.

Eye movement parameters Extracted features

Pupil diameter Mean, standard deviation, DE features in four
bands (0–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, 0.6–1 Hz)

Fixation duration Mean, standard deviation, maximum
Saccade duration Mean, standard deviation
Blink duration Mean, standard deviation
Event statistics Fixation frequency, saccade frequency, saccade

latency, blink frequency

We carried out the emotion classification tasks with positive (emotions on
the right side of the Emotion Wheel), negative (emotions on the left side of the
Emotion Wheel) [8,9] and neutral emotions. Since the emotions were generated
under the natural states of subjects, statistical results have shown an obvious
data imbalance. Specifically, the numbers of neutral and negative trials were
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significantly less than that of positive ones. The statistics of different emotions
for six subjects are shown in Table 2.

Table 2. The number of trials for EEG and eye movement data over six subjects.
Each row represents statistic for each subject. Each column represents the statistic for
positive, neutral and negative emotions.

Subject EEG Eye Movement
Positive Neutral Negative Total Positive Neutral Negative Total

01 12 4 2 18 6 1 2 9
02 13 2 8 23 13 2 8 23
03 7 3 10 20 7 3 10 20
04 7 5 5 17 7 4 5 16
05 18 5 6 29 17 5 6 28
06 13 6 1 20 5 4 1 10

2.3 Models

We carefully selected several classification models commonly employed in emo-
tion recognition based on EEG and eye movement signals, and we created appro-
priate training and test data sets tailored to their characteristics.

To effectively capture the interdependencies between input channels, we
employed a graph convolutional network (GCN) that utilizes an adjacency
matrix as a weight representation. This approach helps prevent overfitting among
the channels of features and allows us to examine the significance of each channel.
We treated the EEG and eye movement signals as graphs and applied a graph
convolutional network with channel attention (GCNCA) model [11]. This model
achieved notable performance in classifying three emotions: anger, surprise, and
neutrality.

Similarly, we utilized an attentive simple graph convolutional network
(ASGC) [12], a graph neural network-based model for processing EEG signals
in tasks related to measuring human decision confidence. ASGC incorporates a
learnable adjacency matrix and a simple graph convolutional network (SGC) to
capture the coarse-grained relationships between EEG channels. It then employs
a self-attention mechanism to capture the fine-grained relationships between
channels. Finally, a confidence distribution loss is used to calculate the discrep-
ancy between the predicted class distribution and the true confidence distribu-
tion. ASGC leverages the topological structure of EEG signal channels through
graph neural networks, dynamically adjusts channel weights for each sample
using self-attention, and addresses the challenges of limited training samples
and ambiguous labels using a confidence distribution loss, as opposed to relying
solely on simple one-hot encoding. The main process of the model is as follows.
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Considering each EEG channel as a graph node, a feature matrix X ∈ R
n×d

is constructed, where n denotes the number of channels and d denotes the feature
dimension of each channel. Using the learnable adjacency matrix A ∈ R

n×n in
SGC to capture the coarse-grained relationships between EEG channels, a high-
dimensional feature matrix Z ∈ R

n×h is obtained, where h denotes the hidden
layer size. Specifically, Z can be expressed as follows

Z = SKXW = X̃W, (2)

where S = D̃− 1
2 ÃD̃− 1

2 , which is a normalized adjacency matrix. Meanwhile,
Ã = A+ In, D̃ii =

∑
j Ãij , W ∈ R

d×h, and K represents the number of graph
convolution layers. Then, the fine-grained relationships between EEG channels
are captured by a self-attentive mechanism to obtain a weighted feature matrix
X̂ ∈ R

n×d. Specifically, X̂ can be denoted as

X̂ = softmax
(
ZZT

)
X̃, (3)

where the softmax operation is normalized along each row so that each row
sums to 1. Finally, the features of all nodes in X̂ are stitched into a vector, and
the final class distribution is obtained by a fully connected layer and a softmax
activation function.

Transformer and attention-based fusion have been employed to extract com-
plementary properties of EEG and eye movements, which proved the effective-
ness of Transformer on interpreting temporal resolution for both modalities [13].
Besides improving the performance of emotion recognition, Transformer achieves
better parallelism than sequential models like recurrent neural networks (RNN).

For multimodal approaches, by extending deep canonical correlation analy-
sis (DCCA) model, Liu et al. [14] introduced deep canonical correlation analysis
with attention mechanism (DCCA-AM), which added an attention-based fusion
module assisting the representations of multiple modalities by passing them
to multiple nonlinear transform layers for better emotion recognition. Through
adaptive weighted-sum fusion, attention-based fusion produced no worse results
than weighted-sum fusion since the weights computed by attention-based fusion
can be the same as the weighted-sum fusion. In addition, DCCA-AM can handle
different dimensions, different distributions, different sampling rates, etc. It is
worth mentioning that the loss function of DCCA-AM consists of two parts,

L = αLcca + βLclassification, (4)

where L is the final loss, α and β are trade-offs that control the synergy of the
two loss terms. Let X1 ∈ R

N×d1 and X2 ∈ R
N×d2 be the instance matrices for

two modalities respectively, where d1 and d2 represent the dimensions of two
different features and N represents the number of instances. By constructing
two deep neural networks f1, f2 with parameters W1, W2 respectively, we can
obtain Lcca which represents the opposite number of correlations between EEG
and eye movement signals.

Lcca = − corr(f1(X1;W1), f2(X2;W2)), (5)



Naturalistic Emotion Recognition Using EEG and Eye Movements 271

where f1(X1;W1) and f2(X2;W2) represent the outputs of the neural networks
and corr represents the correlation between them. Lclassification represents the
cross entropy generated by fusing the EEG and eye movement signals into the
fully connected layer.

For cross-subject models, domain adversarial neural network (DANN) [15]
can extract the shared representations between the source domain and the tar-
get domain. It utilizes an ingenious gradient reversal layer (GRL) to bridge
differences between domains, resulting in learning domain-independent features.
In cross-subject emotion recognition, DANN can eliminate the differences across
subjects and achieve better generalization performance.

3 Experiments and Results

3.1 Experiment Settings

In the field of emotion recognition in aBCI, two paradigms are commonly used:
subject-dependent and cross-subject [14]. Previous studies have demonstrated
that both EEG and eye movement modalities are effective in measuring the
emotional state of subjects [4]. Furthermore, combining multiple modalities can
provide a more comprehensive understanding of human emotions by capturing
different aspects. Additionally, research has shown that different modalities can
complement each other in emotion measurement [16]. However, collecting mul-
timodal signals can be costlier due to the various types of signals involved. To
ensure fair and comprehensive results, we conducted experiments using both
unimodal and multimodal approaches.

In this study, we designed four experimental settings that constructed dif-
ferent training and test data: subject-dependent emotion recognition (including
EEG-based, eye movement-based, and multimodal) and cross-subject emotion
recognition based on EEG to testify our paradigm under different conditions.
We utilized stratified K-fold cross-validation technique for the subject-dependent
experiment settings, while leave-one-subject-out validation was applied for the
cross-subject experiment setting. Notably, Table 2 indicates that there is only
one trial in eye movement signals of Subject 01 and both EEG, eye movement
signals of Subject 06 under neutral or negative emotion. For these three cases,
we performed binary classification tasks, which are marked with stars in the
result tables. The average and standard deviation of accuracies reported in the
results do not include the binary classification tasks. In all four settings, we used
traditional support vector machine (SVM) and multilayer perceptron (MLP) as
the baseline classifiers.
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Table 3. Results of different models on EEG-based subject-dependent unimodal emo-
tion recognition task.

Model SVM MLP GCNCA Transformer ASGC
01 60.53 58.99 67.16 72.69 83.79
02 77.53 77.02 71.20 64.63 72.21
03 67.35 72.01 69.55 91.81 90.54
04 46.45 38.21 40.15 58.81 55.94
05 79.77 70.98 64.58 89.01 79.11
*06 64.49 72.00 64.70 83.64 90.55
Avg. 66.33 63.44 62.53 75.39 76.32
Std. 12.13 13.94 11.41 13.06 11.82

∗ Binary classification due to the number of trials

3.2 Experimental Results

Subject-Dependent Emotion Recognition. In the subject-dependent uni-
modal EEG-based emotion recognition, we further evaluated the performance of
GCNCA [11], Transformer [13], and ASGC [12]. From the results presented in
Table 3, we can observe that ASGC and Transformer achieved the highest aver-
age accuracies of 76.32% and 75.39%, respectively, across the three classification
tasks. When focusing on the subject-dependent unimodal eye movement-based
emotion recognition, we considered GCNCA and Transformer as well. Table 4
illustrates that Transformer outperformed the other algorithms with an accu-
racy rate of 75.65%. Notably, the average accuracy of eye movement signals
using Transformer was higher than that of EEG signals.

Table 4. Results of different models on eye movement-based subject-dependent uni-
modal emotion recognition task.

Model SVM MLP GCNCA Transformer
*01 97.12 99.74 97.38 99.19
02 44.22 54.57 70.62 72.76
03 72.51 71.29 77.04 84.09
04 39.32 62.80 50.73 57.99
05 71.67 69.27 77.09 87.75
*06 82.79 70.29 92.44 87.47
Avg. 56.93 64.48 68.87 75.65
Std. 15.26 6.53 10.80 11.60

∗ Binary classification due to the number of trials
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For the multimodal setting, we fused EEG and eye movement signals and used
Transformer and DCCA-AM [14] additionally. From Table 5, an average accuracy
of 74.91% is obtained using DCCA-AM which achieves the best performance.

Table 5. Results of different models under subject-dependent multimodal setting.

Method SVM MLP Transformer DCCA-AM
*01 89.96 94.19 81.41 99.74
02 56.38 52.61 57.54 68.16
03 77.92 75.22 84.24 76.99
04 52.60 41.05 45.62 60.55
05 80.28 67.90 72.69 93.93
*06 64.49 80.83 81.77 74.62
Avg. 66.80 59.20 65.02 74.91
Std. 12.41 13.28 14.67 12.43

∗ Binary classification due to the number of trials

Cross-Subject Emotion Recognition. For the cross-subject emotion recog-
nition task, we adopted leave-one-subject-out validation, where signals from one
subject were used as the test set, and signals from the remaining subjects served
as the training set. The corresponding results are displayed in Fig. 2. In this eval-
uation, we solely utilized EEG data, which aligns with the prevailing trend in
current emotion recognition tasks based on physiological signals [17]. We also
assessed the performance of GCNCA, Transformer, and DANN [15] models.
Among these models, DANN with transfer learning techniques demonstrated
the best performance, achieving an average accuracy of 71.90%. The success
of DANN can be attributed to the effective utilization of the Gradient Rever-
sal Layer (GRL) to minimize subject-related differences and extract domain-
independent features. This approach eliminates the negative impact caused by
inter-subject variations [18]. It is worth noting that the lowest performance was
observed when the test set exclusively contained data from Subject 04.

Based on the aforementioned results, it is evident that the performance of
Subject 04 is consistently poor across all settings. The confusion matrices depict-
ing the performance of Subject 04 and Subject 05 using ASGC, Transformer, and
DCCA-AM models under the subject-dependent setting can be seen in Fig. 3.
We can see that the results for Subject 05 exhibit a significant effect across all
three emotions, particularly positive emotion. Conversely, Subject 04 demon-
strates proficiency in recognizing neutral emotion but struggles with differenti-
ating between positive and negative emotions when relying on EEG signals.

Upon closer examination of the source data, we discovered that, except for
Subject 04, the remaining subjects actively or consciously engaged in activities
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Fig. 2. The accuracies for each subject of each model and the averages under the
cross-subject setting.

that evoked or elicited emotions, albeit in varying forms. Analyzing the activi-
ties among the subjects reveals that the other participants engaged in a wider
range of behaviors, some of which led to noticeable changes in emotion, such
as watching movies. In contrast, Subject 04 predominantly participated in less
emotionally stimulating activities, such as reading papers and performing offi-
cial work. During these activities, emotions such as distress or calmness naturally

Fig. 3. Confusion matrices of Subject 04 (top) and Subject 05 (bottom) under subject-
dependent experimental setting. Each column includes matrices under settings of EEG,
eye movement and multimodal signals, respectively.



Naturalistic Emotion Recognition Using EEG and Eye Movements 275

arise, but they are discontinuous and less apparent due to the subjects’ primary
focus on thinking or cognitive tasks.

4 Conclusions

In this paper, we have introduced a novel paradigm for emotion recognition and
conducted a series of experiments to demonstrate its feasibility. Our approach
involved recording various physiological signals while minimizing the influence of
external stimuli, allowing us to capture naturally occurring emotions rather than
relying on passively induced responses. The results obtained from our current
models have shown promising performance, indicating the potential for non-
passive stimuli-based emotion recognition in future applications, particularly in
everyday contexts.

Moving forward, we plan to expand our dataset by collecting emotional data
from a larger number of subjects under natural conditions. This will enable us
to enhance the diversity and representativeness of our dataset, leading to more
robust and reliable emotion recognition models. Additionally, we aim to develop
efficient annotation tools that facilitate the continuous and natural collection of
emotion labels, further improving the quality and granularity of our data.

By advancing our understanding of emotion recognition through non-passive
stimuli and continuously refining our methodology, we believe our research will
contribute to the development of more accurate and practical emotion recogni-
tion systems in various real-world applications.
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