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Abstract-This paper presents a multi-sieving net- 
work (MSN) architecture and a multi-sieving learn- 
ing (MSL) algorithm for it. The basic idea behind 
MSN architecture is the multi-sieve method, that  is, 
patterns are classified by a rough sieve at the begin- 
ning and done by finer ones gradually. MSN is con- 
structed by adding a sieving module (SM) adaptively 
with progress of training. SM consists of two different 
neural networks and a simple logical circuit. MSL al- 
gorithm starts with a single SM, then does the follow- 
ing three phases repeatedly until all the  training sam- 
ples are successfully learned: (a) the learning phase 
in which the training samples are learned by the cur- 
rent SM, (b) the sieving phase in which the training 
samples that  have been successfully learned are sifted 
out from the training set, and (c) the growing phase in 
which the current SM is frozen and a new S M  is added 
in order to  learn the remaining training samples. MSN 
architecture has several attractive properties such as 
automatic decomposition of learning tasks, modular 
structure, easy implementation of additional learning, 
overcoming a problem of local minima and fast con- 
vergence. The performance of MSN architecture is 
illustrated on two benchmark problems. 

I. INTRODUCTION 
Back-propagation networks (BPNs) have been successfully 
applied to many pattern recognition problems. To date, a 
common feature of these successful applications is that ei- 
ther they are based on relatively small networks or they are 
simple classification problems. For more complex pattern 
classification problems, however, BPNs face many difficul- 
ties such as slow learning, trapping in local minima and 
necessity for selecting a suitable network size. 

In order to overcome the above difficulties, several learn- 
ing architecture for feedforward neural networks have been 
proposed, i.e., the cascade correzation architecture [*I and 
the eztentron dgorithm [2]. Fast convergence and power- 
ful learning capability of these learning architectures have 
been reported. However, there are two main deficiencies 

shared by them: (a) it is difficult to modulize networks, 
and (b) all the parameters of the trained network must be 
changed when new samples are added. 

In this paper, we propose a multi-sieving network 
(MSN) architecture and a multi-sieving learning (MSL) al- 
gorithm for it. MSN architecture can overcome the above 
deficiencies of the existing learning architectures. The ba- 
sic idea behind MSN architecture is a problem solving 
method by human, i.e., the sieve method. Let’s consider 
how humans are dealing with the classification problems. 
To illustrate the concept, we suppose a problem of seeking 
a very small grain of diamond from a huge pile of sands. 
The sizes of the sands are various and the sizes of a large 
part of the sands are greater than that of the diamond. 
Two problem solving methods can be described as follows: 

(a). One seeks for the diamond in the huge pile of the 
sands directly checking whether an object is the diamond 
or not, piece by piece. 

(b). One firstly uses various sizes of sieves from rough to 
fine to sift out the sands which are obviously greater than 
the diamond. With this method, the number of the sands 
will be reduced greatly. Then, one seeks for the diamond 
in a small pile of the sands efficiently. 

Obviously, the second method is much more efficient 
than the first one. It is the second method that is adopted 
in our learning architecture. 

11. NETWORK STRUCTURE 
The multi-sieving network is illustrated in Fig. l(a). It 
consists of several sieving modules connected in cascade. 
A sieving module may take one of two forms, i.e., RC- 
form or R-form as shown in Fig. l(b), according to the 
learning task. The RC-form sieving module consists of a 
recognition network RN, a control network CN, an output 
judgement unit OJU, an AND gate, a NOT gate, and two 
logical switches. The R-form sieving module is similar 
to the RC-form, exclusive of the control network and the 
AND gate. 

Before describing each element of the sieving module, 
we first introduce the output coding method used in the 
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recognition network. 

RC-form 

0 : Recolplitiolr Network 
E- : Control Nelwork 
0 : Output Judgement Unlt 

(b) 

Figure 1: Structure of the multi-sieving neural network 
(a) and two forms of sieving modules (b). 

A .  Output Coding 
We focus on classification tasks as an application of neu- 

ral networks. That is, the network is required to divide 
input data into prescribed number of sets. We use the fol- 
lowing output coding method for the recognition network: 
For classification task of p + 1 sets, we use p or p + 1 out- 
put units. For the kth recognition network RNk, a desired 
output pattern ji.0 = {zZ, zZ,..., z%,} must satisfies 
one of the following rules: 

where Bn: = (1, 2, -.. , N k } ,  Nk is the number of output 
units in RNk, and zEw and represent the low and 
high bounds for the outputs, respectively. For example, 
three output units can only represent four valid outputs 
as follows: ( O , O , O ) ,  ( O , O ,  l),  (O,l,O) and ( l , O , O ) .  Other 
four codings, (0,1, l), (l,O, l), (1,1,0) and (1,1, l), are 
considered to be invalid. 

For a given input pattern jir, RNk may generate three 
kinds of actual outputs: 

(a). Valid output : The valid output is the correct out- 
put generated by the recognition network. That is, 

V j j + - x y k j < 6  f O r j E B k  (1) 

where 3s is the desired output of the j t h  unit, x y k  is 
the actual output of the j t h  output unit of mk, and 6 
denotes a tolerance. If the desired values of output units 
are set to 0 and 1, then, xEw = 6 and zggh = 1 - 6. 

(b). Pseudo valid output : The recognition network may 
generate an output which follows the coding rule men- 
tioned above, but is not correct. We called such an output 
a pseudo valid output: 

where the desired output of the hth unit satisfies 3: > 
‘&h’ 

(c). Invalid output: Otherwise. 
For example, if the desired output pattern is (0, 0, l) ,  

6 = 0.2, Zggh = 0.8, and zEw = 0.2, then, (0.1, 0.1, 0.9) 
is a valid output, (0.9, 0.1, 0.1) and (0.1, 0.1, 0.1) are two 
pseudo valid outputs, and (0.9, 0.1, 0.9) is a invalid out- 
put. 

B. Output Control 
In order to differentiate among valid, pseudo valid and 

invalid outputs, the outputs produced by the recognition 
network are classified and controlled by an output control 
circuit as drawn in dotted line in Fig. l(b). The output 
control circuit consists of an output judgement unit OJU, 
a control network CN, an AND gate, a NOT gate , and 
two logical switches. 

(a) The output judgement unit is used to differentiate 
the invalid output from other two kinds of outputs. OJU 
generates 1 or 0 according to 

{ 0, Otherwise 

1, if z?‘ is a valid or pseudo valid 
output ; (3) OOJU,k = 

where OOJU,k is the output of OJU in the kth sieving 
module, A = {1,2,.. . ,  tk}, tk is the number of examples 
used for training the kth recognition network. 

(b) The control network is used to differentiate the valid 
output from the pseudo valid output. Its output is also 1 
or 0, which is determined by 

1, if zyk is a valid output; 
0, Otherwise %N,k = 

where OCN,k is the output of the control network 
kth sieving module. 

(4) 

in the 
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(c) The logical switch works as follows: If the input is 
"l", then the data are blocked by it. Otherwise, the data 
pass through it. 

111. MULTI-SIEVING LEARNING ALGORITHM 

Let Ti be a set of ti training samples to be learned: 

~ 1 = { ( 5 7 ,  $)I for i=1 ,2 ,  e.., ti} ( 5 )  

where ji: E RNI and 80 E RNO are the input and the 
desired output of the i th  sample, respectively. 

The multi-sieving learning algorithm works as follows: 
Step 1: Initially, a recognition network, namely RNi, is 

trained on the original set 2'1. Let m = 1, and proceed to 
the following steps. 

Step 2: Compute the number of valid outputs, Nvo,m, 
and the number of pseudo valid outputs, Npvo,m, according 
to Eqs. (1) and (2), respectively. If xEl Nvo,i = t i ,  i.e., 
all ti samples are learned by the multi-sieving network, 
then the training is completed. If Npvo,, > 0, i.e., if there 
are NpVO,, pseudo valid outputs, then, a control network, 
namely CN,, is trained on the set of Nvo,m + Npvo,, sam- 
ples, corresponding to valid or pseudo valid outputs gen- 
erated by RN,. If Npvo,, = 0, i.e., if there are no pseudo 
valid outputs, then the control network is unnecessary. 

Step 9: Freeze the parameters of RN, and CN, (if it 
exists), and construct the mth sieving module as shown in 
Fig. l(b). 

Step 4: Remove Nvo,, samples which have been suc- 
cessfully classified by RN, from T, and create a new set 

not classified by RN,. Let m = m + 1 and go back to the 
step 2. 

I t  should be noted that we assume that the control net- 
work CNm always learns the classification of the valid and 
the pseudo valid outputs successfully. 

The multi-sieving learning algorithm has several attrac- 
tive properties such as: 

(a) Once a sample is learned by a sieving module, then 
this sample will be removed from the set of samples and 
never been used in the training process. As a result, the 
deeper the multi-sieving network is, the fewer the samples 
become. 

(b) A complex task can be decomposed into several 
manageable subtasks automatically, and each subtask can 
be learned by a sieving module. 

(c) By adjusting the sizes of the recognition networks 
and the epochs used for training them, the number of siev- 
ing modules can be controlled. 

(d) Various sorts of the structures of RNm and CN, 
and the training algorithms for them can be chosen by the 
user. 

of tm+l  (t,+l = tm - Nvo,,) samples T'+l, which are 

(e) The network obtained by MSL algorithm is mod- 
ulized. Thus, it can be constructed and implemented eas- 
ily in hardware. 

Iv. IMPLEMENTATION OF ADDITIONAL LEARNING 
In many applications of neural networks, the trained net- 
work may not have good generalization capability since 
the number of training data picked up from environments 
is limited. Consequently, after the training, we must ex- 
amine the generalization capability of the network. If the 
network has poor generalization capability, we should re- 
train the network by adding new data. In such a case, the 
additional learning is required. In this section, we present 
an algorithm for implementing additional learning based 
on MSN architecture and MSL algorithm. 

Suppose a set of tl samples 2''' has been successfully 
learned by an MSN with q sieving modules, namely 
MSNZ,,. Now, the problem is how to add a new set of 
9 1  samples U1 

U1 = {(a;, a?) I f o r j  = 1,2, - - a ,  u1) (6) 

to  MSN:,,. Without loss of generality and for simplicity of 
illustration, we also suppose that (a) all the q sieving mod- 
ules are RC-form sieving modules and (b) the numbers of 
the valid outputs and the pseudo valid outputs produced 
by the kth recognition network RN; in MSNz,, are Nvo,k 
and N b , k 7  respectively. Let NtoT and q : z k  be the num- 
bers o valid outputs and pseudo valid outputs generalized 
by the kth recognition network RNE, respectively, when 
the new training inputs are presented to MSN:,,. 

Based on MSN architecture and MSL algorithm, the ad- 
ditional learning can be implemented as follows: 

Step 1: Initially, present all u1 new training inputs to 
the first recognition network RNf, let m = 1, and do the 
following steps. 

Step 2: Compute N::; and N;tCm according to Eqs. 

Step 9: If ((m 5 q)A(czl N::: = ul)), i.e., all u1 new 
training inputs are generalized correctly by RN! through 
RNQ,, then the additional learning is completed. 

Step 4: If ((m > q )  A (Cy=, N,",'; < ul)), then go to 
step 5. If ((m 5 q)  A (E==, Nt:; < ul)), then replace 
CNQ, with a new control network CNKw which is trained 
on a set of w:>+ N & ,  + N;GCm + N & ,  training data. 
If ((m 5 q)A(Egl Ntz? < U~)A\(N,",~W, = O)A(N,tZ, = 
0)), then CNQ, remains unchanged. Let m = m + 1, and 
go back to step 2. 

Step 5: Remove Cy==r Nt:: samples, which are gener- 
alized correctly by RN? through RN;, from U1 and train 
a new multi-sieving network, namely MSN:,,, on a set of 
u1 - cy=, N,",eY samples according to MSL algorithm. 

Step 6: Suppose the set of 11 - E:=, N::? samples has 

(1) and (2). 
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been successfully learned by MSNE,. Connect MSN:,, to 
MSN~,,  in series as shown in Fig. 2. 

Y 

0.5. 
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Figure 2: The connection of MSN:,, to MSNE,,. 

Y 
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V. SIMULATION RESULTS 
In this section, we will describe simulations to study 
the performance of MSNs in comparison with that of 
BPNs. The structure of RN, and CN, and the 
training algorithm for them are chosen to be multi- 
layer quadratic perceptron (MLQP) [31 and the back- 
propagation algorithm i41, respectively. MLQP is an ex- 
tension of multilayer perceptron. In MLQP, quadratic 
terms are introduced into the net input as well as linear 
terms in the conventional multilayer perceptron. It has 
been shown that MLQP is far superior to the conventional 
BPN in convergence for pattern classification problems L31. 
In the simulations, the learning rates are experimentally 
optimized in convergence speed for the specified problems 
with a constant coefficient (0.9) for the momentums. 

A .  Example 1 
The “two-spirals” problem is chosen as a benchmark 

for this study because it is an extremely hard problem for 
BPNs [51. The training set consists of 194 (2, y) points at 
which the network should output 0’s or 1’s as shown in 
Fig. 3(d). 

This problem is learned by a multi-sieving network with 
three sieving modules. The recognition network in each 
sieving module has 2 input, 5 hidden and 1 output units. 
All the sieving modules take the R-form as shown in Fig. 
l(b) because there are no pseudo valid outputs in each 
sieving stage. In each sieving stage, the learning is stopped 
after 10,000 epochs if the total error is greater than a given 
value. Figs. 3(a) through 3(c) show the patterns that are 
classified by the first through the third sieving modules. 
The response plots of the first through the third sieving 
modules and the whole MSN are illustrated in Figs. 4(a) 
through 4(d). The CPU time for training all the recog- 
nition networks in three R-form sieving modules is about 
2075 seconds on Sparc ELC workstation. 

This problem is also learned by a MLQP with 2 input, 
40 hidden and 1 output units. The network is trained 
by the back-propagation algorithm. After 500,000 epochs, 
the network has not yet achieved the desired total error. 
The learning curve and the response plot of the network 

are shown in Figs. 5(a) and 5(b), respectively. The CPU 
time for training this network is about 160,000 seconds. 
Comparing the learning results shown in Figs. 4(d) and 
5(b) and the CPU time, we see that the multi-sieving net- 
work is much better than MLQP. 

* *  

Figure 3: Patterns classified by the first sieving module 
(a), the second sieving module (b), the third sieving mod- 
ule (c), and the whole multi-sieving network (d). For sym- 
bols “o” and “+”, the network is required to generate out- 
put 0 and 1, respectively. 

B. Example 2 
In this example, we will demonstrate how to implement 

additional learning by use of MSN architecture and MSL 
algorithm. A simplified version of the ‘Ltwo-spirals” prob- 
lem shown in Fig. 6(a) is learned by a single recognition 
network RN1. The response plot of RNl is illustrated in 
Fig. 7(a). Now, we add 16 new samples as shown in 
Fig. 6(b). We construct a MSN by adding another sieving 
module as shown in Fig. 8 to learn the augmented prob- 
lem. The role of CN1 is to differentiate the 16 new samples 
from the original samples. RN2 is used to recognize the 
16 new samples. After the 16 new samples are learned by 
RN2, the response plot of the whole MSN is illustrated in 
Fig. 7(d). Figures 7(b) and 7(c) show the response plots 
of CN1 and RN2, respectively. From Figs. 7(a) and 7(d), 
we see that the 16 new samples have been added to the 
network without destroying any parameters of RN1. 
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Figure 4: Response plots of the first sieving module (a), 
the second sieving module (b), the third sieving module 
(c), and the whole multi-sieving network (d). Black and 
white represent output of “0” and “l”, respectively, and 
grey represents intermediate value. 

0.0. 

4 5 .  

0 

0 

CRI Tms=-) 
(4 (b) 

Figure 5: The learning curve (a) and the response plot of 
MLQP for the “two-spirals” problem (b). 

C. Exam.ple 3 
This example demonstrates how to overcome the prob- 

lem of local minima by use of MSN architecture. We per- 
form simulation with a speaker independent vowel recog- 
nition problem [6]. The vowel data consisting of 528 train- 
ing data and 462 test data are taken from CMU learning 
benchmark database 171. 

Initially, a single recognition network with 10 input, 11 
hidden, and 11 output units, namely RNI, is trained on 
a set of 528 samples by the backpropagation algorithm [41. 

After 500,000 epochs of training, the total error is still 
about 3.21. The learning curve is illustrated in Fig. 9(a). 
From this figure, it  seems that the network may be trapped 
in a local minima, and the network can not converge to 
the desired error, which is set to  0.01 in this simulation, 
without changing the initial parameters or network size. 

Examining 528 training data, we see that only 6 data 
are not correctly classified by RN1, and other 522 data 
have been successfully learned. There are no pseudo valid 
outputs formed in this case. In order to overcome the local 
minima and achieve the desired total error, we construct 
MSN by adding a sieving module to RBI. The first siev- 
ing module is chosen to be R-form since Nvo,l = 0. A 
recognition network with 10 input, 3 hidden, and 11 out- 
put units, namely R N 2 ,  is selected to learn the remain- 
ing 6 data which are not classified by RN1. The learning 
curve is shown in Fig. 9(b). From this figure, we see 
that R N 2  converges to the desired error quickly. After 
the training, the network obtained by the MSL algorithm 
is a MSN with two R-form sieving modules. Examining 
the generalization capability of RN1 amd MSN with two 
sieving modules on 462 test data, we obtain 38.74% cor- 
rect rate for RNI, and 41.13% for MSN’. From the above 
results, we see that the MSN architecture can overcome 
local minima efficiently and the generalization capability 
is improved slightly after the local minima is overcome. 

( 4  (b) 
Figure 6: The original 82 samples (a) and the 16 new 
samples (b). 

IV. CONCLUSION 
In this paper, a new neural network architecture MSN and 
a learning algorithm MSL for it are proposed. MSN archi- 
tecture has several advantages over BPNs. The most im- 
portant advantages are automatic decomposition of learn- 
ing tasks and easy implementation of additional learning. 
The simulation results show that MSN architecture over- 
comes the difficulties of local minima and slow conver- 
gence, which are encountered in BPNs, by decomposing 
learning tasks automatically. 

‘For this test data, it is difficult t o  obtain a high correct rate. 
R ~ b i n s o n ~ ~ ]  has reported that a correct rate about 44% is obtained 
by a multilayer perceptron with 11 hidden units. 

1323 



Furtlier refinement of MSN architecture with large pat- 
tern classification application is a subject to be studied in 
the future work. 

Figure 7: Response plots of RN1 (a), CN1 (b), RN2 (c), 
and MSN (d). 

Figure 8: MSN for implementing the additional learning. 
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