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Abs t rac t :  W e  propose an  architecture of a multilayer quadratic perceptron (MLQP)  that combines 
advantages of multilayer perceptrons(MLPs) and higher-order feedforward neural networks. The fea- 
tures of MLQP are in its simple structure, practical number of adjustable connection weights and 
powerful learning ability. I n  this paper, the architecture of MLQP is described, a backpropagation 
learning algorithm for MLQP is derived, and the learning speed of MLQP is compared expen'men- 
tally with M L P  and other two kinds of the second-order feedforward neural networks on pattern 
classification and function approxamation problems. 

1. Introduction 
The multilayer perceptron(MLP) is one of the 

most popular architectures of neural networks for 
pattern recognition etc., trained with a tutored 
learning. However, in some applications, MLP does 
not work well in learning and generalization. In order 
to  improve the performance of MLP, several archi- 
tectures having higher-order connectivity have been 
proposed [l-4. While increasing the order of con- 
nectivity enhances the computational power of the 
network, it may not be favorable in learning speed 
because of increase in adjustable connection weights. 
Hence it is need'ed to  find efficient ways of introduc- 
ing higher-order connectivity considering the follow- 
ing points: (a) Computational power of the network, 
(b) Learning speed and (c) Generalization ability, in 
practical applicakions. 

In this paper, we propose an architecture of a 
multilayer quadratic perceptron (MLQP) consider- 
ing the above discussions. A backpropagation learn- 
ing algorithm for MLQP is presented, and the learn- 
ing speed of MLQP is compared experimentally with 
MLP and other two kinds of the second-order feed- 
forward neural networks(SFNs) on pattern classifi- 
cation and function approximation problems. 

2. The MLQP Architecture 
The basic idea of MLQP is an introduction of 

quadratic terms into the net input to  a unit. The 
computational element of MLQP is shown in Fig. 1. 
The characteristic of the unit in MLQP is defined by 

X k 3  = f (netk,) (2) 
fork = 2 , 3 , . . . ,  M ;  j = 1 , 2 , . . .  ,Nk 

where both Ukj i  and vkj i  are the weights connect- 
ing the i th  unit in the layer k - 1 to the j t h  unit 
in the layer I C ,  biaskj  is the bias of the j t h  unit in 
the layer k ,  N'k is the number of units in the layer 
k(1 5 k 5 M ) ,  and f(.) is a sigmoidal activation 
function. 

The features of MLQP are in its simple structure 
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Figure 1: Computational element in MLQP. 

and practical number of adjustable weights. If an 
MLQP and an MLP have the same number of units 
at each layer, the number of adjustable weights in 
MLQP is about two times as many as in MLP. There- 
fore, MLQP can scale well to large problems, simi- 
larly to the conventional MLP. 
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From Eqs. (1) and (2), we see that the decision 
region of a unit in the hidden and the output layers 
in MLQP is a hypersphere(inc1uding a hyperplane 
as a special case). This indicates that MLQP can 
realize both local representation as in RBF[4] and 
gloable one as in MLP. As a result, MLQP combines 
the flexibility of local neural network approaches and 
the generlization property of global neural network 
appro aches. 

3. Learning Algorithm 
A backpropagation learning algorithm for MLQP 

is derived in a similar way to  that obtaining the back- 
propagation algorithm for the conventional MLP. 
This learning algorithm is comprised of the follow- 
ing sequence of operations: 

0 Calculate the error terms by 

where a1 and a2 are momentums, and 71 and 
7 2  are learning rates. Results of various simu- 
lations show that setting different values to  71 
and 72 improves speed of convergence. 

4. Experimental Comparison 
In order to  investigate the computational power 

of MLQP and to compare it with the conventional 
MLP and other two kinds of SFNs on pattern classi- 
fication and function approximation problems, siniu- 
lations are carried out for three benchmark problems. 
In the simulations, modified backpropagation learn- 
ing algorithms L5j are used for training the following 
four kinds of the networks. 

(a) Conventional MLP. 
(b) MLQP. 
(c) Network with quadratic sigmoidal activation 

NQA is a network having the function(NQA)[2]. 

connectivity same as the conventional MLP, and the 
activation function is defined by: 

(7) 

where 6'kj is an  adjustable coefficient. In NQA, 
higher-order terms are introduced with few extra 
adjustable coefficients relatively to  the conventional 
MLP, and it is more restrictive in comparison with 
MLQP. The characteristic of NQA is its partially lo- 
calized representation, i.e., its representation is local 
in the direction of the connection weight and global 
in its orthogonal space. 

(d) Network with the second-order unit(NSU) [l]. 
The characteristic of the unit in NSU is represented 
by 

f ( n e t k , )  = 1/ (1+ eup(net2, - ~ c ,  )) 

N k - l  

l k j  =f( (ukj:X2-1,* + ~ k j * 5 k - - 1 , 1 )  + 
r = l  

N k - i - 1  N k - 1  

WkjzhXk-I , ,  . Xk-1,h + biask,) (8) 
:=I h=c+1 

k =  2 , 3 , , ' . ,  M ;  = 1 , 2 , . . .  , N E  

where U k j i ,  V k j i ,  W k j i h  and biaskj  denote the connec- 
tion weights and the bias, respectively. For NSU, a 
unit in the layer k needs 

adjustable weights(inc1uding bias). Thus, the num- 
ber of weights required to accommodate all the sec- 
ond correlations increase extremely with the input 
dimension and the numbers of hidden and output 
units, and hence i t  is not suitable to  large problems. 

In the simulations, all the networks have three lay- 
ers. In order to compare the performances of the 
networks systematically, two strategies for choosing 
the number of hidden units are used. One is to  se- 
lect different number of hidden units to make each 
of the networks have similar number of adjustable 
weights, and another is to  select same number of 
hidden units for each of the networks. The num- 
bers of the input, the hidden and the output units 
are shown in the captions of Fig. 2(b), 4(b) and 
5(b). The learning rates are shown in Table 1. They 
are optimized in convergence speed in the specified 
problems and the network architectures in prelim- 
inary experiments. The momentums are set all to 
0.9. In the simulations, the learning is considered 
completed when the sum of squared error(SSE) be- 
tween the desired and the actual outputs gets less 
than a specified value. 

4.1 Pattern Classification 
For simplicity of illustration, a simplified version 

of spirals problem(SP) is considered. The train- 
ing data for this problem are shown in Fig. 2(a). 
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The points a t  which the network should output 0's 
and 1's are represented by small crosses and squares, 
respectively. The learning curves are illustrated in 
Fig. 2(b). From Fig. 2(b), we see that MLQP is far 
superior t o  MLP, NQA and NSU in learning speed. 
In order to  illustrate the internal representation of 
MLQP, the decision regions of units in the hidden 
layer formed by MLQP are depicted in Fig. (3). 

x CPU "(ret.) 

(4 (b) 

Figure 2: The training input data of the spirals prob- 
lem(a) and the learning curves(b). 

Figure 3: The decision regions of un.,s in the hi---tn 
layer formed by MLQP for the problem SP, where 
z, y and t denote the inputs and the output of the 
hidden unit, respectively. 

4.2 Function Approximation 
The following two functions ['I are approximated. 

0 Stair case function(SF): 

where S =  {-4, -2, 0, 2, 4) and x E D = 
[-5, 51. 

0 Ripple function(RF): 

(11) 
1 + sin(6(x2 + y')) 

2 f2(., Y) = 

where (z, y)  E D = [0, 112. 
For learning of the stair case and the ripple func- 

tions, 100 and 200 training patterns are sampled 
uniformly from their domains, respectively. The re- 
sults of approximating the stair case function and the 
learning curves are shown in Figs. 4(a) and 4(b), re- 
spectively. For the ripple function, the original func- 
tion(RF) and the learning curves are shown in Figs. 
5(a) and 5(b), respectively. The approximated func- 
tions by MLP, MLQP, NQA, and NSU are shown in 
Figs. 6(a) through G(d). The errors between the orig- 
inal ripple function and the approximated functions 
are shown in Figs. 7(a) through 7(d). From these 
figures, it is clear that MLQP converges much faster 
and approximates much better than MLP, NQA and 
NSU. 
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Figure 4: The results of approximating the stair case 
function(a) and the learning curves(b). 

5 .  Conclusion 
This paper has presented a novel multilayer 

quadratic feedforward neural network, and shown 
that the proposed network is efficient for pattern 
classification and function approximation in compar- 
ison with the conventional multilayer perceptron and 
the existing other two kinds of the second-order feed- 
forward networks. 

In future studies, we will analyze the computa- 
tional power of MLQP theoretically, investigate the 
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internal representation deeper and examine its per- 
formance on realistic problems such as recognition of 
hand written characters. 

classification and function approximation problems 
Table 1 The learning rates for pattern 

M L P  NQA NSU M L Q P  
9 17 171 v2 173 171 72 

SP 0.1 0.018 0.01 0.05 0.05 0.1 0.2 
SF 0.22 0.015 0.23 0.3 0.2 0.27 0.47 
RF 0.02 0.008 0.026 0.04 0.02 0.05 0.08 

Note: 71, 72 and 73 are learning rates for u k j ,  u k j  
and W k j i h  of the NSU, respectively. 
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Figure 7: The errors between the original ripple func- 0 
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tion as shown in Fig. 5(a) and the approximated 
(4 (b) functions as shown in Fig. 6(a) through 6(d). 

Figure 5: The original ripple function(a) and the 
learning curves(b). 
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