
Part of Speech Tagging with Min-Max Modular Neural

Networks

Qing Ma,
1
 Bao-Liang Lu,

2
 Hitoshi Isahara,

1
 and Michinori Ichikawa

2

1
Keihanna Human Info-Communication Research Center, Communications Research Laboratory , Kyoto, 619-0289 Japan

2
RIKEN Brain Science Institute, Wako, 351-0198 Japan

SUMMARY

A parts of speech (POS) tagging system using neural

networks has been developed by Ma and colleagues. This

system can tag unlearned data with a much higher accuracy

than that of the Hidden Markov Model (HMM), which is

the most popular method of POS tagging. It does so by

learning a small Thai corpus on the order of 10,000 words

that are ambiguous as to their POSs. However, the three-

layer perceptron used in the system has slow convergence

and low learning accuracy even on such a small amount of

data. It is therefore difficult to improve accuracy by incre-

menting the epoch of learning or by increasing the amount

of learning data. To solve this problem, the tagging system

of this paper makes use of the min-max modular (M3)

neural network of Lu and colleagues. This new system

learns faster and has a higher learning accuracy compared

with the old one, by decomposing large, complicated POS

tagging problems into many smaller, easier problems.

Learning accuracy can be improved by using the same

learning data and larger data sets can be learned, which

results in a much higher tagging accuracy. © 2002 Wiley

Periodicals, Inc. Syst Comp Jpn, 33(7): 30�39, 2002; Pub-

lished online in Wiley InterScience (www.interscience.

wiley.com). DOI 10.1002/scj.1139

Key words: POS tagging; Thai corpus; min-max

neural network; parallel learning; overlearning.

1. Introduction

Identifying correct parts of speech for words that are

ambiguous in context�parts of speech (POS) tagging�is

fundamental to natural language processing. This technique

can be applied to the preprocessing of speech synthesis,

postprocessing of OCR and speech recognition, and infor-

mation retrieval. Although many POS tagging systems have

been proposed [1�13], these systems need a large amount

of learning data, a large corpus whose data have been tagged

(for example, on the order of 1 million learning data, for

English) to obtain sufficient accuracy. However, for most

languages, which are not so well studied as English or

Japanese in regard to natural language processing, the cor -

pora are still in the development stage. To avoid this prob-

lem, we have developed a system that can almost reach a

practical level in terms of tagging accuracy [i.e., the accu-

racy on tagging unlearned data (the data not used in learn-

ing)] by using a small amount of data for learning [14�17].

It uses neural networks, which can be considered to be more

robust against the data sparseness problem compared with

statistical methods such as HMM. It has been shown to be

more accurate in POS tagging than HMM, when a small

Thai corpus on the order of 10,000 words that are ambigu-

ous as to their POSs is used for learning.

However, because the three-layer perceptron used in

the POS tagging system suffers from a convergence prob-

lem, it is not easy for the system to reach a learning accuracy

(i.e., the accuracy on tagging the learning data) higher than

© 2002 Wiley Periodicals, Inc.

Systems and Computers in Japan, Vol. 33, No. 7, 2002
Translated from Denshi Joho Tsushin Gakkai Ronbunshi, Vol. J84-D-II, No. 4, April 2001, pp. 708 �717

30

96% even with learning data on the order of 10,000 words,

and the learning takes a considerable amount of time. In

addition, overlearning (overfitting) may occur if the system

tries to improve learning accuracy by increasing learning

time, so there is no guarantee that the tagging accuracy will

be improved. Moreover, the perceptron learning may not

converge with more learning data. Therefore, it is difficult

to improve tagging accuracy by increasing learning epochs

or the amount of learning data.

To solve the problems mentioned above, we adopt the

min-max modular (M3) neural networks of Lu and col-

leagues [18�20]. The M3 network is free of convergence

problems and can learn POS tagging problems faster and

more accurately compared with our previous system be-

cause it splits a large-scale problem into several easy and

small subproblems. Because the M3 network can guarantee

learning convergence, it becomes possible to significantly

decrease the number of units in the hidden layer of each

module, which results in a low probability of overlearning

when raising the learning accuracy. This improves tagging

accuracy by either raising the learning accuracy with the

same learning data or with learning a larger amount of data.

This paper is organized as follows. First, we formal-

ize the problem of POS tagging and describe the problem

decomposition and solution combination, the two intrinsic

operations of the M3 network. Next, we describe the POS

tagging method of the M3 network. Finally, we describe the

experimental results and show that a POS tagging system

is superior to other systems in terms of both its learning and

generalization ability.

2. POS Tagging Problems

Suppose there is a lexicon:

where the POSs that can be assigned to each word are listed,

and suppose there is a set of POSs:

where v is the number of registered words and γ is the

number of POSs. The POS tagging problem is to find a

string of POSs T = τ1 τ2 . . . τs(τi ∈ Γ, i = 1, . . . , s) by the

following procedure ϕ when a sentence

W = w1w2 . . . ws (wi ∈ V, i = 1, . . . , s) is given:

Here, t is the index of the target word (the word to be tagged)

and Wt is the word sequence which is centered on the target

word wt and has l and r words to the left and right of the

target, respectively. That is,

where t − l ≥ 1, t + r ≤ s. POS tagging can therefore be re-

garded as a classification problem by replacing the POS

with a class and can be handled by using neural networks.

3. How to Solve Problems with M
3

Networks

The essential idea of solving problems with M3 net-

works is how to decompose a complicated problem into

simpler subproblems and how to combine the solutions of

the subproblems, which are solved by independent mod-

ules, into a final solution to the original problem. In this

section, we describe the fundamental aspects of the problem

decomposition and solution combination. For the details,

see Refs. 18�20.

3.1. Problem decomposition

In this section, we describe how a complicated and

large classification problem with K classes (which we call

a K-class problem) can be decomposed into small two-class

problems. Let T denote the learning set of the K-class

problem:

where Xl ∈ Rn is the input vector, Yl ∈ RK is the desired

output vector, and L is the number of learning data.

Generally, a K-class problem can be decomposed into

K two-class problems. The learning set of each two-class

problem is as follows:

where i = 1, . . . , K, and yl
(i) ∈ R1 is the desired output defined

as

where ε is a small positive constant and C
__
i denotes all

classes other than Ci. Equation (6) corresponds to the

learning set of the problem where the data belonging to Ci

are discriminated from the other data. Later, we will use

such a learning set to define an actual classification prob-

lem.

In general, the two-class problems defined by Eq. (6)

are still large and complicated, so they should be further

split into the problems of discriminating the data belonging

(1)

(2)

(3)

(4)

(5)

(6)

(7)

31

to Ci from the data belonging to each of the other classes.

First, all input vectors Xl(l = 1, . . . , L) in learning set T are

split into subsets according to the class labels. As a result,

K subsets of input vectors

are obtained. Here, Li is the number of input vectors in the

i-th subset, so Σi=1
K Li = L. A two-class problem defined by

Eq. (6) can then be split into K � 1 smaller two-class

problems:

where j = 1, . . . , K(j ≠ i), Xl(i) ∈ χi, and Xl
(j) ∈ χj are input

vectors belonging to Ci and Cj, respectively. Therefore, the

two-class problem defined by Eq. (9) is to discriminate Ci

from Cj. The larger the number of classes K, the smaller the

problem defined by Eq. (9) will be, compared with the

two-class problem defined by Eq. (6). In this way, the

K-class problem defined by Eq. (5) can be easily split into

relatively smaller K × (K � 1) two-class problems as defined

by Eq. (9).

Even in these K × (K � 1) two-class problems, how-

ever, there will still be complicated problems. These com-

plicated problems, as shown below, can be further split into

smaller and simpler problems.

First, suppose the input set χi defined in Eq. (8) can

be split into Ni (1 ≤ Ni ≤ Li) subsets:

where Li
(j) is the number of input vectors in the subset χij

and ∪j=1
N

i χij = χi holds. This partition is not unique. Here, the

partition is done randomly. Using such input sets, a two-

class problem defined in Eq. (9) can be split into Ni × Nj

problems:

where u = 1, . . . , Ni, v = 1, . . . , Nj, Xl
(iu) ∈ χiu and Xl

(jv) ∈
χjv are input vectors belonging to Ci and Cj, respectively.

Therefore, if all of the two-class problems defined in

Eq. (9) are split into smaller two-class problems in Eq. (11),

the K-class problem is decomposed into Σi=1
K Σj=1

K
(j≠i)Ni × Nj

smaller two-class problems. If the splitting is performed

such that a learning set has only two different elements (i.e.,

Li
(u) = 1 and Lj

(v) = 1), Eq. (11) can be expressed as

This is clearly a linearly separable problem.

3.2. Solution combination

After the modules learn the split problems, the mod-

ules must be integrated to solve the original problem. In this

section, we describe how the modules are merged. For the

question as to why the network formed by such a merging

can solve the original problem, see Refs. 19 and 20.

We use three units, MIN, MAX, and INV, for the

integration of modules. Here, let Mij and Mij
(u,v) denote the

modules which learn the learning set Tij [Eq. (9)] and

Tij
(u,v) [Eq. (11)], respectively. Let Mij denote the (i, j)-th

element of the K × K matrix M, and let Mij
(u,v) denote the (u,

v)-th element of the Ni × Nj matrix Mij, which corresponds

to the element (i, j) of M.

When solving the K-class problem T [Eq. (5)] by

splitting it into K × (K � 1) two-class problems Tij [Eq. (9)],

the modules in each row of matrix M are first merged using

the MIN unit, which selects the minimum value from

multiple inputs:

where, for simplicity, the symbols of the MIN unit and the

modules express their outputs. Next, using the outputs of

the K MIN units, the final solution can be obtained as

where C is the class to which the input data belong.

If there exists a large two-class problem Tij, it is

further split into smaller problems Tij
(u,v). In this case, the

modules Mij
(u,v) that learn Tij

(u,v) are merged as follows. First,

Nj modules in each row of matrix Mij are merged by the

MIN unit:

Next, the Ni MIN units are merged into the module M ij by

the MAX unit, which selects the maximum value from

multiple inputs:

The merged module Mij in this way is integrated into Eq.

(13).

From the viewpoint of classification, the two-class

problems Tij and Tji are identical. The only difference

between them is the desired output of the modules. That is,

if the desired output of the former problem is 1 � ε [see Eq.

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

32

(7)], then that of the latter is ε. Therefore, Mji can be

constructed using Mij and the INV unit, which convert the

input values.

4. POS Tagging with M
3
 Network

4.1. POS tagging of Thai

Unlike Japanese or English, Thai words have no

inflection. That is, the lexical form is fixed even when the

word is in a different position or performs different roles in

a sentence. Moreover, it often happens that one word serves

as multiple POSs, such as verb and preposition, or verb and

adverb. These facts imply that POS tagging of Thai is more

difficult than in Japanese or English (for more details, see

Ref. 21). On the other hand, the ambiguity rates (the rate of

words ambiguous in POSs in the corpus being used) are

35% for English (Brown Corpus [22]), 56% for Japanese

(Kyodai Corpus [23]), and 42% for Chinese (Tsinghua

University corpus [24]), respectively, but only 19% for Thai

(the corpus used in this paper*). It is not clear whether this

figure (19%) reflects the actual characteristics of Thai,

because the size of the corpus is small. Regardless, the

tagging accuracy shown in this paper is measured only for

the words that are ambiguous in POS, so the result will not

be influenced by the ambiguity rate.

4.2. Decomposition of the POS tagging

problem

The Thai corpus consists of 10,452 sentences. We

treat a randomly selected 8322 sentences of the corpus as

the learning data and the remaining 2130 sentences as the

testing data. The learning data contain 124,331 words, of

which 22,311 words are ambiguous in POS. The testing

data contain 34,544 words, of which 6717 words are am-

biguous in POS. We use only ambiguous words for the

learning of the network. Although 47 kinds of POSs are

defined in Thai [21, 25], only 38 of them appear in the

corpus. Therefore, the POS tagging problem here can be

treated as a 38-class classification problem.� The class

distributions of the 22,311 learning data and the 6716

testing data are shown in Table 1.

According to Section 3.1, this 38-class classification

problem is first uniquely split into K × (K � 1) = 38 × 37

two-class problems Tij(i, j = 1, . . . , K, j ≠ i) defined in Eq.

(9). However, as shown in Table 1, while the number of

learning data in the smallest two-class problem (T36,38) is

only 2 + 1 = 3, that of the largest two-class classification

problem (T6,8) is 3008 + 3197 = 6205. Since such a problem

is still too large, according to Section 3.1, we randomly split

the data sets of the 12 classes that contain more than 481

data (C10) in Table 1, so that each subset contains 300 or

less data.* As a result, the two-class problems Ti,j containing

these large classes are further split into Ni × Nj two-class

problems Tij
(u,v) (u = 1, . . . , Ni, v = 1, . . . , Nj) defined in

*
The Thai corpus, ORCHID (Open linguistic Resources CHanelled toward

InterDisciplinary research), used in this paper is the outcome of the

collaboration project [21] of the Communications Research Laboratory

(CRL) and Thai National Electronics and Computer Technology Center

(NECTEC) from 1996.
�
Although only 38 kinds of POSs appear in the corpus, by taking into

account the generalization ability, the input format of our system was

designed to cope with all 47 POSs (see Section 4.3.1).

Table 1. Distribution of data belonging to each class

*
The two values (481 and 300) may be determined by considering the

trade-off in speed of convergence and number of modules (the number of

parameters). If convergence speed is needed, these values should be

decreased, or vice versa.

33

Eq. (11). Here, Ni and Nj denote the numbers of subsets

derived from the learning data in class Ci and class Cj,

respectively, as in Section 3.1. The numbers of subsets

larger than 1 are shown in Table 2 (that the number of

subsets is 1 means that the data set of the class has not been

split). Therefore, for example, the two-class problem T1,2 is

split into N1 × N2 = 10 × 1 = 10 subproblems, and T1,3 is

split into N1 × N3 = 10 × 5 = 50 subproblems. On the other

hand, problems like T2,7 are not split any further. That is, N2

= 1 and N7 = 1 hold (note that N2 and N7 are not included

in Table 2).

As mentioned in Section 3.2, two-class problems Tij
and Tji are identical, so the 38-class POS tagging problem

is split into

smaller two-class problems. Among these, the largest two-

class problem is T10,19 in which the number of learning data

is 481 + 476 = 957.

4.3. The M
3
 network for POS tagging

4.3.1. Construction

The M3 network is constructed by merging the above-

mentioned 3893 modules that learned the 3893 two-class

subproblems as shown in Fig. 1. Each module M ij is con-

structed as in Fig. 2, if the corresponding problem Tij is split

(e.g., T13, see Table 2). In the example in the figure, M13 is

composed of 50 modules M13
(u,v) (u = 1, . . . , 10, v = 1, . . . ,

5), because the problem T13 is split into N1 × N3 = 10 × 5 =

50 subproblems. Mji(j > i) is constructed by using M ij and

the INV unit.

4.3.2. Input and output

The input vector X (or Xl [Eq. (5)] at the learning

phase) of the M3 network is constructed from a word

sequence Wt [Eq. (4)] that is centered on the target word

wt and has l and r words to the left and right of wt,

respectively:

Concretely, given the position p (p = t � l, . . . , t + r) of the

word w, xp, an element of X, is a vector:

where the dimension γ (47) of the vector is equal to the

number of kinds of POSs. The dimension of the input vector

X is γ × (l + 1 + r). If the word w appears in the learning

data, each element ewi is obtained as follows:

Table 2. Number of subsets of learning data in each

class

(17)

(18)

(19)

Fig. 1. Composition of the M3 network.

Fig. 2. Composition of module M1,3.

(20)

34

where Prob(τi|w) is a prior probability of τi that the word w

can take. It is estimated from the learning data:

where |τi, w| is the number of times both τi and w appear,

and |(w)| is the number of times w appears in the learning

data. If the word w does not appear in the learning data, each

element ewi is given by

where γw is the number of kinds of POSs that the word w

can take.*

The output vector Y is defined as

provided that Y is decoded as

where τ(wt) is the result of tagging of the word wt.

In the systems that have been proposed so far [16],

an elasticity has been introduced to the length of inputs (l,

r) to boost the accuracy of tagging. However, since these

systems use gradual learning �from small networks to large

networks,� which fits the elasticity, the learning time of the

first network used as the kernel is quite long. We do not

introduce such an elasticity into the M3 network to make

the learning faster. In addition, during tagging a sentence

from left to right, the words on the left side of the target

word have already been tagged. In the systems proposed so

far, the tagging results for these preceding words are dy-

namically used to construct inputs. For simplicity, we do

not distinguish between left and right words, and we use the

method described above for constructing inputs. Moreover,

in the systems proposed so far, when constructing an input

xp [Eq. (19)], the information gain (IG) computed from the

learning data is used as weights. However, in our system,

we do not use IG because the exact IG for each module

cannot be obtained for the split data due to the small number

of learning data in this case.

5. Experimental Results

The data described in Section 4.2 were used. The

length (l, r) of the word sequence given to the M3 network

was (3,3). Corresponding to this length, the number of units

on the input layer is (l + 1 + r) × γ = 7 × 47 = 329, where γ
denotes the number of kinds of POSs. Each module of the

M3 network is basically composed of a three-layer percep-

tron with 266 � 2 � 1 units in the input, hidden, and output

layers, respectively. The learning for all modules is iterated

through all the learning data of the corresponding sub-

problems until the error EACT(k) is smaller than the objective

error:

where k is the number of epochs, D(b) is the desired output

for the b-th learning data, O(b)(k) is the actual output for the

b-th leaning data, and P is the total number of learning data.

If the error is still larger than the objective error after 2000

epochs, we regard the module as nonconvergent. In this

case, we perform the learning again by increasing the

number of units in the hidden layer to 4 or 6.*

The previous system used for comparative experi-

ments is composed of a three-layer perceptron with [47 ×
(l + 1 + r)] units in the input layer, [47 × (l + 1 + r)] /2 units

in the hidden layer, and 38 units in the output layer. The

length (l, r) of a word sequence given is elastic. In the

learning phase, (l, r) increases stepwise as (1, 1) → (2, 1)

→ (2, 2) → (3, 2) → (3, 3), that is, the learning proceeds

gradually from small networks to large networks. In the

tagging phase, (l, r) decreases as (3, 3) → (3, 2) → (2, 2)

→ (2, 1) → (1, 1) → (1, 0) → (0, 0) in compliance with

necessity, provided that the number of units in the hidden

layer is the maximum number [i.e., the one corresponding

to (l, r) = (3, 3)]. A three-layer perceptron using the maxi-

mum input length (l, r) [i.e., (3, 3)] was also used for

comparative experiments.

In Table 3, the POS tagging accuracies of the M3

network are shown for six different cases. The accuracy is

measured only for the words that have POS ambiguity. In

case 1, the objective error is 0.005 and the number of units

in the hidden layer is 2 (default). In this case, 3841 modules

converged while the remaining 52 modules did not con-
*
The learning and testing corpora used in the experiments of the paper are

those that have been manually tagged beforehand, so they have no so-

called unknown words (words that are not in the dictionary). If we set each

element ewi as 1 / γ, however, our system then can also handle the case

when word w is unknown.

(21)

(22)

(23)

(24)

*
When the M

3
 network is used, there is no problem of convergence in the

strict sense, because complicated problems can be split into simpler

problems. The convergence problem arises here because we restricted the

learning times and the number of units in the hidden layer.

(25)

35

verge. In tagging, the accuracy for the learning data (i.e.,

the learning accuracy) was 98.4% and the accuracy for the

testing data (i.e., the tagging accuracy) was 92.6%. In case

2, for the modules that did not converge after the learning

of case 1, the number of units in the hidden layer was

increased to 4 and the learning was performed again. In this

case, only 11 modules did not converge, and the learning

accuracy was 98.5% and the tagging accuracy was 93.0%.

In case 3, similarly, for the modules that did not converge

after the learning of case 2, the number of units in the hidden

layer was increased to 6 and the learning was performed for

a third time. In cases 4 to 6, the objective error was de-

creased to 0.002 and the learning processes of cases 1 to 3

were performed.

The results show that the M3 network can boost

learning accuracy in compliance with necessity and that

tagging accuracy increases in proportion to learning accu -

racy. That is, the problem of overlearning did not occur in

this experiment. The reason why the M3 network is free

from overlearning is thought to be that the number of units

in the hidden layer is quite small. On the other hand, as for

the three-layer perceptron, tagging accuracy decreased as

learning accuracy increased, as shown in Table 4. That is,

the three-layer perceptron suffered from overlearning.*

Table 5 lists the tagging accuracies of various meth-

ods. The baseline model uses only the POS frequencies for

each word computed from the learning data and does not

use contexts. The highest accuracies in Tables 3 and 4 are

shown for the three-layer perceptron and the M3 network.

The methods using neural networks are generally better

than the statistical methods, and the M3 network�s accuracy

is more than 1% higher than that of the three-layer percep-

tron and is almost the same as the elastic perceptron.

The most important characteristic of the M3 network

is that a large, complicated problem can be split into

smaller, simpler problems and these smaller problems can

be learned with independent modules. That is, these mod-

ules can be learned in parallel. If the parallel computation

is used, the computational time of the M3 network is domi-

nated by the learning time of the slowest module. Ignoring

the speed of the computer used in the experiment, the

learning time depends on three elements: data size, number

of learning epochs, and number of parameters (weights

between neurons) to be estimated. In Table 6, these three

elements are shown for the three-layer perceptron, the

elastic perceptron, and the M3 network. For the three-layer

Table 3. Tagging accuracy of M
3
 networks

*

*
Here, the three-layer perceptron with fixed length [(l, r) = (3, 3)] of input

was used. The elastic perceptron was not used in comparative experiments,

because its kernel network could not converge in gradual learning when

the objective error was decreased to 0.004.

Table 4. Tagging accuracy of three-layer perceptron
*

36

perceptrons, the data size is the number of all learning data.

On the other hand, for the M3 network, the data size is the

number of data in the largest subproblem, because the

problem is learned by splitting. The learning of the M 3

network consists of three rounds, as shown in case 6 of

Table 3; therefore, the largest data size of each round is

shown in the table. The learning method of the elastic

perceptron is a gradual learning method consisting of five

steps (from smaller networks to larger networks). There-

fore, the number of epochs and the corresponding parame-

ters are shown. If we calculate the computational

complexity by using �data size × number of epochs ×
number of parameters,� then those of the three-layer per-

ceptron, the elastic perceptron, and the M3 network are 1.06

× 1011, 3.57 × 1011, and 5.88 × 109, respectively. That is, by

using parallel computing the M3 network should be more

than 60 times faster than the other methods. We should note

that although the number of units in the output layer of the

three-layer perceptron and the elastic perceptron used in the

experiment was 47, we used 38 as the number of units when

computing computational complexity, the same as in the M3

network, for a fair comparison. Furthermore, all three ele-

ments used for calculating the computational complexity of

the M3 network are the largest cases and the actual compu-

tational complexity therefore will be smaller because the

three elements are not always present in one learning case.

Even if we do not use parallel computing, the com-

putational time of the M3 network is comparable to those

of the previous methods. Figure 3 shows the distribution of

learning epochs when 3893 split subproblems are learned

to reach an error below 0.002 (Case 4 in Table 3). The

distribution in this figure shows that most modules con-

verge within 500 epochs and that only 4% of all the modules

do not converge after learning. The computational com-

plexities of cases 5 and 6 are therefore so small compared

with case 4 that they can be ignored. Taking these facts into

consideration, we can approximate the average number of

learning epochs as 250, the number of parameters as 660,

and the average number of learning data as the mean of the

maximum and minimum values: (957 + 1)/2 = 479 (see

Section 4.2). Thus, we can obtain the approximate total

computational complexity: number of modules × number

of parameters × average number of data × average number

of epochs = 3893 × 660 × 479 × 250 = 3.08 × 1011. This

value is smaller than that of the previous methods, and even

if the ignored computational complexities of cases 5 and 6

are added, the total complexity is comparable to those of

the previous methods.

Table 5. Tagging accuracy of various methods
*

Fig. 3. Distribution of number of epochs.

Table 6. Computational complexity of different neural-network-based methods

37

6. Conclusion

In this paper, we described a new POS tagging system

using a modular neural network that splits a given large,

complicated problem into many smaller, simple problems.

This system yields almost the same tagging accuracy as the

previous methods, but is 60 times faster. It does not have

convergence problems and its learning accuracy can be

boosted in compliance with necessity, because each module

deals with only a small and simple two-class classification

problem. Moreover, the number of units in the hidden layer

can be set to a very small value, so that overlearning does

not occur. Therefore, tagging accuracy can be boosted by

increasing the learning accuracy or by increasing the learn-

ing data size. In the future, we plan to apply this method to

a Chinese corpus, which includes 63 kinds of POSs and

more than 100,000 words with ambiguous POSs.

REFERENCES

1. Garside R, Leech G, Sampson G. The computational

analysis of English: A corpus-based approach. Long-

man, 1987.

2. Hindle D. Acquiring disambiguation rules from text.

Proc ACL�89, Vancouver, BC, p 118�125.

3. Brill E. Transformation-based error-driven learning

and natural language processing: A case study in

part-of-speech tagging. Comput Linguistics

1994;21:543�565.

4. Church K. A stochastic parts program and noun

phrase parser for unrestricted text. Proc 2nd ACL

Applied NLP, Austin, Texas, p 136�143, 1988.

5. DeRose S. Grammatical category disambiguation by

statistical optimization. Comput Linguistics

1988;14:31�39.

6. Cutting D, Kupiec J, Pederson J, Sibun P. A practical

part of speech tagger. Proc 3rd ACL Applied NLP,

Trento, Italy, p 133�140, 1992.

7. Charnik E, Hendrickson C, Jacobson N, Perkowitz

M. Equations for part-of-speech tagging. Proc 11th

National Conference on Artificial Intelligence, AAAI

Press/MIT Press, Menlo Park, p 784�789, 1993.

8. Charniak E. Statistical language learning. MIT Press;

1993.

9. Weischedel R, et al. Coping with ambiguity and

unknown words through probabilistic models. Com-

put Linguistics 1993;19:359�382.

10. Merialdo B. Tagging English text with a probabilistic

model. Comput Linguistics 1994;20:155�171.

11. Schütze H, Singer Y. Part-of-speech tagging using a

variable memory Markov model. Proc ACL�94, Las

Cruces, New Mexico, p 181�187.

12. Nakamura M, Maruyama K, Kawabata T, Shikano K.

Neural network approach to word category predic-

tion for English texts. Proc COLING�90, Helsinki

University, p 213�218.

13. Schmid H. Part-of-speech tagging with neural net-

works. Proc COLING�94, Kyoto, p 172�176.

14. Ma Q, Isahara H. A multi-neuro tagger using variable

lengths of contexts. Proc COLING-ACL�98, Mont-

real, p 802�806.

15. Ma Q, Isahara H. A multi-neuro tagger using variable

lengths of contexts. J Natural Language Process

1999;6:29�42. (in Japanese)

16. Ma Q, Uchimoto K, Murata M, Isahara H. Automatic

part-of-speech tagging system. J Jpn Soc Artif Intell

1999;14:1116�1124. (in Japanese)

17. Ma Q, Uchimoto K, Murata M, Isahara H. Hybrid

neuro and rule-based part of speech taggers. Proc

COLING�2000, Saarbrücken, p 509�515.

18. Lu BL, Ito M. Task decomposition based on class

relations: A modular neural network architecture for

pattern classification. Lecture Notes in Computer

Science 1997;1240:330�339.

19. Lu BL, Ito M. Task decomposition and module com-

bination based on class relations: A modular neural

network for pattern classification. IEEE Trans Neural

Networks 1999;10:1244�1256.

20. Lu BL, Ichikawa M. Emergence of learning: An ap-

proach to coping with NP-complete problems in learn-

ing. Proc IJCNN�2000, Como, Italy, Vol. IV, p 159�164.

21. Sornlertlamvanich V, Takahashi N, Isahara H. Build-

ing a Thai part-of-speech tagged corpus (ORCHID).

J Acoust Soc Japan (E) 1999;20:189�198.

22. Kupiec J. Robust part-of-speech tagging using a hid-

den Markov model. Computer Speech Language

1992;6:225�242.

23. Murata M, Uchiyama M, Uchimoto K, Ma Q, Isahara

H. Corpus error detection and correction using the

decision-list and example-based methods. Informa-

tion Processing Society of Japan, WGNL 2000-NL-

136, p 49�56, 2000. (in Japanese)

24. Lu BL, Ma Q, Ichikawa M, Isahara H. Massively

parallel learning of part-of-speech disambiguation.

RIKEN Review, No. 30, p 40�49, 2000.

25. Charoenporn T, Sornlertlamvanich V, Isahara H.

Building a large Thai text corpus�part of speech

tagged corpus: ORCHID. Proc NLPRS�97, Phuket,

Thailand, p 509�512.

26. Daelemans W, Van den Bosch A. Generalisation per-

formance of backpropagation learning on a syllabifi-

cation task. In Drossaers M, Nijholt A (editors).

TWLT3: Connectionism and natural Language Proc-

essing. Twente University; p 27�38, 1992.

27. Quinlan J. C4.5: Programs for machine learning.

Morgan Kaufmann; 1993.

38

AUTHORS (from left to right)

Qing Ma received his B.S. degree in electrical engineering from Beijing University of Aeronauti cs and Astronautics,

China, in 1983, and M.S. and D.Eng. degrees in computer science from the University of Tsukuba in 1987 and 1990. He was

with Ono Sokki Co., Ltd. from 1990 to 1993. In 1993, he joined the Communications Research Labo ratory, Ministry of Posts

and Telecommunications. He is now at the Communications Research Laboratory, Independe nt Administrative Institution, as

a senior researcher. His research interests include neural networks, knowledge representa tion, and natural language processing.

He is a member of the Japanese Neural Network Society, the Association of Natural Languag e Processing, and IEICE.

Bao-Liang Lu received his B.S. degree in instrument and control engineering from Qingdao Institute of Chemical

Technology, China, in 1982, M.S. degree in computer science and engineering from Northweste rn Polytechnical University,

China, in 1989, and Ph.D. degree in electrical engineering from Kyoto University in 1994. From 1982 to 1986, he was with the

Qingdao Institute of Chemical Technology. From 1994 to 1999, he was a Frontier Researcher at the Bio-Mimetic Control

Research Center, Institute of Physical and Chemical Research (RIKEN). Currently, he is a res earch scientist at the Brain Science

Institute, RIKEN. His research interests include brainlike computers, neural computatio n, machine learning theory, pattern

recognition, and natural language processing. He is a member of the Japanese Neural Netwo rk Society, IEICE, and a senior

member of IEEE.

Hitoshi Isahara received his B.E. and M.E. degrees in electrical engineering from Kyoto University in 1978 and 1980,

and D.Eng. degree in electrical engineering in 1995. He was with the Electrotechnical Labo ratory, Ministry of International

Trade and Industry, from 1980 to 1995. In 1995, he moved to the Communications Research Labor atory, Ministry of Posts and

Telecommunications, where he was chief of the Intelligent Processing Section. He is now a t the Communications Research

Laboratory, Independent Administrative Institution, as leader of the Computational Lin guistics Group. His research interests

include natural language processing, lexical semantics, and machine translation. He is a member of the Association for Natural

Language Processing, the Information Processing Society of Japan, the Japanese Society for Artificial Intelligence, and the

Japanese Cognitive Science Society.

Michinori Ichikawa received his D.Eng. degree in applied physics from the University of Tsukuba in 1986. From 1986

to 1997, he was with the Electrotechnical Laboratory, where he worked on the mechanism of mem brane excitation, optical

recording methods for neural activities, and brainlike computers. In 1997, he joined the Br ain Science Institute, Institute of

Physical and Chemical Research (RIKEN), as team leader of the Laboratory for Brain-Operative Device. His research interests

include neurophysiology, brainlike computers, robots, and neural computation. He is a me mber of the Japanese Neural Network

Society, the Society for Neuroscience, and IEEE.

39

