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Abstract. This paper presents a massively parallel method for classi-
fying electroencephalogram (EEG) signals based on min-max modular
neural networks. The method has several attractive features. a) A large-
scale, complex EEG classification problem can be easily broken down
into a number of independent subproblems as small as the user needs.
b) All of the subproblems can be easily learned by individual smaller
network modules in parallel. c) The classification system acts quickly
and facilitates hardware implementation. To demonstrate the effective-
ness of the proposed method, we perform simulations on a set of 2,127
non-averaged single-trial hippocampal EEG data. Compared with a tra-
ditional approach based on multilayer perceptrons, our method converges
very much faster and recognizes with high accuracy.

1 Introduction

Neurophysiologists generate large amounts of time-series data such as EEG data
as they record the electrical activity in the brain. Artificial neural networks have
been applied to neurophysilogical data analysis such as classification of EEG sig-
nals [1,2,10]. However, training large networks on large sets of high-dimensional
EEG data is a hard problem because no efficient algorithm is available for train-
ing large networks and a very long training time is required to achieve satis-
factory learning accuracy [10]. To avoid this problem, existing methods usually
use a few number of features extracted from EEG data as inputs. For example,
only eight features were used in [10]. However, extremely reducing the number
of features will cause the loss of useful information of the original EEG signals
and the decrease in correct classification rate.

In this paper, we present a massively parallel method for classifying EEG
signals based on the min-max modular (M3) neural network, an alternative
committee machine proposed in our previous work [4]. The method has the fol-
lowing several attractive features. a) A large-scale, complex EEG classification
problem can be easily broken down into a number of independent subproblems
as small as the user needs. b) All of the subproblems can be simply learned
by individual smaller network modules in parallel, and therefore, a large set of
high-dimensional EEG data can be learned efficiently. c) The classification sys-
tem acts quickly and facilitates hardware implementation; consequently, it can
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be applied to implementing a hybrid brain-machine interface [5], which relies
on the real-time sampling and processing of large-scale brain activity to control
artificial devices.

2 EEG Data

It has been shown that hippocampal EEG signals are associated to cognitive
process and behaviors, such as attention, learning, and voluntary movement [7].
The hippocampal EEG signals used in this study were recorded from eight adult
male hooded rats between 300 and 400 g. These rats were housed in individual
cages with food and water provided until the behavioral training. One week after
surgery for implanting hippocampal electrodes, the rats were water-deprived and
trained in a chamber by means of an oddball paradigm [7], in which occasional
‘target’ stimuli have to be detected in a train of frequent ‘non-target’ stimuli.
We used a low frequency tone (so called odd tone) as ‘target’ stimuli and a high
frequency tone (so called frequent tone) as ‘non-target’ stimuli. The animals
were rewarded by water whenever they discriminate ‘target’ tone and cross the
light beam in the water tube.

A total of 2,127 non-averaged single-trial hippocampal EEG signals were
recorded from the rats. Each of the EEG signals is 6 sec in duration and belongs
to one of the four classes, namely FR, FW, OR, and OW, where ‘FR’ means
frequent tone and right behavior (no go), ‘FW’ frequent tone and wrong behavior
(go), ‘OR’ odd tone and right behavior (go), and ‘OW’ odd tone and wrong
behavior (no go). Figure 1 illustrates four non-averaged single-trial EEG signals
belonging to FR, FW, OR, and OW, respectively. In the simulations below, we
use 1,491 EEG signals for training and the rest of 636 EEG signals for testing.
Table 1 shows the distributions of the training and test data sets.

Table 1. Distributions of the training and test data

FR FW OR OW
Training 1027 136 307 21
Test 430 68 128 10

3 Method

3.1 Feature Extraction with Wavelet Transform

In order to quantify changes in single-trial hippocampal EEG signals in both
frequency and amplitude, we use wavelet transform techniques [9] to extract
the features of EEG signals. The original EEG signals were convolved by the
Morlet wavelet w(t, wo) with Gaussian shape both in the time domain and in
the frequency domain around its central frequency wo:

W (t, wo) = exp
(

jw0t − t2

2

)
(1)
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Fig. 1. Four EEG signals belonging to FW, FR, OR, and OW, respectively.

These wavelets can be compressed by a scale factor a and a shifted in time by a
parameter b. Convolving the signal and the shifted and dilated wavelet leads to
a new signal,

Sa(b) =
1√
a

∫
W

(
t − b

a

)
x(t)dt (2)

where W is the conjugate of the complex wavelet and x(t) is the hippocampal
EEG signal.

The new signals Sa(b) are computed for different scaling factors a. In order to
generate maps of hippocampal theta activity, the features of EEG signals were
extracted between 5 Hz and 12 Hz out of the time-frequency maps. By selecting
different numbers of samples in the time domain and using the same five wavelet
coefficients in the theta frequency bandwidth, two sets of data were created,
which have 200 and 2,000 features, respectively. Figure 2 shows the contour
plots of the time-frequency representations of the four EEG signals illustrated
in Fig. 1 with 2,000 features.

3.2 Task Decomposition

By using the task decomposition method proposed in our previous work [4], a
K-class classification problem can be divided into

(
K
2

)
two-class subproblems as

follows:

Tij = {(X(i)
l , 1 − ε)}Li

l=1 ∪ {(X(j)
l , ε)}Lj

l=1 (3)
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Fig. 2. The contour plots of the time-frequency representations of the four EEG signals
illustrated in Fig. 1. Here, the number of features is 2,000.

where i = 1, · · · , K, j = i + 1, · · · , K, ε is a small real positive number, X
(i)
l ∈

Xi and X
(j)
l ∈ Xj are the training inputs belonging to class Ci and class Cj ,

respectively, Xi is the set of training inputs belonging to class Ci, Li denotes the
number of data in Xi,

∑K
i=1 Li = L, and L is the total number of training data.

If some of the two-class problems defined by (3) are still large and hard to
be learned, each of these subproblems can be further decomposed into a number
of two-class problems as small as the user needs. Assume that Xi is partitioned
into Ni (1 ≤ Ni ≤ Li) subsets in the form

Xij = {X
(ij)
l }L

(j)
i

l=1
(4)

where j = 1, · · · , Ni, i = 1, · · · , K, and ∪Ni
j=1Xij = Xi. According to the above

partition of Xi, the two-class problem Tij defined by (3) can be further divided
into Ni × Nj much smaller and simpler two-class subproblems as follows:

T (u, v)
ij = {(X(iu)

l , 1 − ε)}L
(u)
i

l=1 ∪ {(X(jv)
l , ε)}L

(v)
j

l=1 (5)

where u = 1, · · · , Ni, v = 1, · · · , Nj , i = 1, · · · , K, j = i + 1, · · · , K, X
(iu)
l ∈ Xiu

and X
(jv)
l ∈ Xjv are the training inputs belonging to class Ci and class Cj ,

respectively. From (3) and (5), we see that a K-class problem can be decomposed
into

∑K
i=1

∑K
j=i+1 Ni × Nj two-class subproblems in a top-down approach.
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According to (3), the four-class EEG classification problem is divided into(4
2

)
= 6 two-class subproblems, namely T1,2, T1,3, T1,4, T2,3, T2,4, and T3,4. From

Table 1, we see that the number of training data for the smallest two-class sub-
problem T2, 4 is 157, while the number of training data for the largest two-class
subproblem T1, 3 is 1,334. Although these two-class subproblems are smaller than
the original problem, they are not adequate for massively parallel computation
and efficient learning due to the following reasons. a) The subproblems are rather
‘load imbalanced’. Since the speed of parallel learning is limited by the speed of
the slowest subproblem, the unduly burdening of even a single subproblem can
dramatically degrade the overall performance of the learning. b) Some of the
subproblems are still too big for training. c) Some of the subproblems are very
imbalanced, i.e., the training set contains many more data of the ‘dominant’
class than the other ‘subordinate’ class.

To speed-up learning, the bigger subproblems are further decomposed into a
number of relatively smaller and simpler subproblems. According to (4), three
larger training input data sets belonging to FR, FW, and OR are randomly
broken down into 49, 6, and 15 subsets, respectively. As a result, the original four-
class EEG classification problem is divided into

∑4
i=1

∑4
j=i+1 Ni × Nj = 1, 189

balanced, two-class subproblems, where N1 = 49, N2 = 6, N3 = 15, and N4 = 1.
The number of training data for each of the subproblems is about 40.

3.3 Massively Parallel Learning

An important feature of the above task decomposition method is that each of
the two-class subproblems can be treated as a completely independent, non-
communicating subproblem in the learning phase. Consequently, all of the sub-
problems can be learned in parallel.

In comparison with existing parallel implementations of neural network
paradigms [8], the advantage of our massively parallel learning scheme is that
it can be easily implemented not only on general-purpose parallel computers,
but also on large numbers of individual serial machines and distributed Internet
applications [3].

3.4 Module Combination

After learning, all of the trained individual network modules are integrated into
an M3 network by using three integrating units, namely MIN, MAX, and INV
units, according to two simple module combination laws [4].

In contrast to the task decomposition mentioned above, the module combi-
nation process is bottom-up and involves the following two main steps.

a) The Ni × Nj network modules corresponding to the subproblems T (u,v)
ij

defined by (5) are integrated by using Ni MIN and one MAX units as follows:

MIN(u)
ij = min(M(u,1)

ij , M(u,2)
ij , · · · , M(u,Nj)

ij ) for u = 1, · · · , Ni (6)

and
Mij = max(MIN(1)

ij , MIN(2)
ij , · · · , MIN(Ni)

ij ) (7)
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Fig. 3. The min-max modular network used for solving the four-class EEG classifica-
tion problem, where thin arrowed-lines represent scalar inputs or outputs, and thick
arrowed-lines represent vector inputs. Note that only module M1,2 is plotted in detail,
and the other modules are roughly illustrated due to space requirements.

where M(u, v)
ij denotes both the name of trained module corresponding to the

subproblem T (u, v)
ij and its actual output, and MIN(u)

ij denotes the output of the
combination of Nj network modules. For example, according to (6) and (7), the
294 modules M(u,v)

12 for u = 1, · · · , 49 and v = 1, · · · , 6 are integrated into the
module M12 illustrated by the open dashed box in Fig. 3.

b) The
(
K
2

)
network modules corresponding to Tij and their

(
K
2

)
inversions

are integrated as

MINi = min(Mi1, · · · , Mij , · · · , Mik) for i = 1, · · · , K and i = j (8)

where MINi denotes the output of the combination of the K − 1 modules by
using the MIN unit. The M3 network is guaranteed to produce solutions to the
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Table 2. Performance of M3 networks and single MLPs

No. of Method No. of No. of CPU time (s.) Correct rate (%)
features modules hidden units Max Total Training Test
200 MLP 1 60 120,011 120,011 100.0 78.9
M3 1189 2 7 2,209 100.0 79.7

2000 MLP 1 80 727,355 727,355 100.0 80.5
M3 1189 5 103 11,919 100.0 81.8

original problem as follows:

C = arg max
i

{MINi} for i = 1, · · · , K (9)

where C is the class that the M3 network has assigned to the input.

4 Computer Simulations

In the simulations, 1,189 three-layer MLPs were selected as network modules
to learn the corresponding 1,189 subproblems. To compare M3 networks with
traditional MLPs, the original problems were also learned by three-layer MLPs.
All of the network modules and the three-layer MLPs were trained by standard
back-propagation algorithm [6]. All of the simulations were performed on an HP
9000 C240 workstation.

The simulation results are shown in Table 2, where ‘Max’ means the maxi-
mum CPU time required for training any networks. Figures 4(a) and 4(b) show
the distribution of the 1,189 trained network modules measured by the number
of epochs and CPU time (sec), respectively. From these figures we see that over
98% of the network modules converged within 300 epochs. From Table 2, we can
see that our method is about 17,144 and 7,061 times faster than the method
based on traditional three-layer perceptrons for learning the two EEG data sets
that have 200 and 2,000 features, respectively, providing that learning in our
method was performed in parallel. Even though all of the network modules were
trained in serial, the results show that our method is still very much faster than
the conventional method.

After the learning, the 1,189 individual trained network modules were inte-
grated into the M3 network shown in Fig. 3. Looking at Fig. 3, we see that our
method has two useful features. a) The response time of the classification system
is almost independent of the number of modules, that is, the system response
time is almost independent of the problem size. b) The system might be easily
implemented in hardware because of its modular structure.

5 Conclusions

In this paper we have presented a massively parallel method for classifying high-
dimensional EEG data based on min-max modular neural networks. The ad-
vantages of the method over existing approaches are its high modularity and
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Fig. 4. Summary of the 1,189 network modules used for classifying the EEG data with
200 features. a) Distributions of trained modules measured by the number of epochs,
and b) distributions of trained modules measured by CPU time in seconds.

parallelism, good scalability, and very fast learning speed. We have also demon-
strated that the method is superior to the traditional approach based on multi-
layer perceptrons in generalization performance. By using the proposed method,
we have begun doing computer experiments on a big data set containing 10,635
single-trial hippocampal EEG signals.
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