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Abstract. This paper proposes an on-line error detecting method for
a manually annotated corpus using min-max modular (M3) neural net-
works. The basic idea of the method is to use guaranteed convergence
of the M3 network to detect errors in learning data. To confirm the ef-
fectiveness of the method, a preliminary computer experiment was per-
formed on a small Japanese corpus containing 217 sentences. The results
show that the method can not only detect errors within a corpus, but
may also discover some kinds of knowledge or rules useful for natural
language processing.

1 Introduction

To enable machines to deal with considerably varied natural language texts, it
is next to impossible to pre-code all knowledge necessary for them. One solution
to this problem is to compile the knowledge needed by the system directly from
corpora: very large databases for natural language texts to which several kinds of
tags, such as part of speech (POS) and syntactic dependency, have been added
instead of one that consists only of plain texts. Corpora have been used success-
fully in constructing various fundamental natural language processing systems
including a morphological analyzer and parser, which can be widely applied in
many areas of information processing including preprocessing for speech synthe-
sis, post-processing for OCR and speech recognition, machine translation, and
information retrieval and text summarization. Manually annotating very large
corpora (the Penn Treebank, e.g., consists of over 4.5 million words of American
English with 135 POSs.), however, is a very complex and costly endeavor.

For this purpose, many automatic POS tagging systems using various ma-
chine learning techniques have been proposed(e.g., [1,2]). In our previous work,
we have developed a neuro and rule-based hybrid tagger, which reached a prac-
tical level in terms of tagging accuracy that requires less training data compared
to the other methods [3]. To further improve our systems’ tagging accuracy, we
can use two approaches; one is to increase the amount of training data and the
other is to improve the quality of the corpus to be used for training. However,
since in the first approach multilayer perceptrons were used in our tagger, it
will suffer from an unconvergent problem. To overcome this inherent drawback,
we have adopted a min-max modular (M3) neural network [4] that can solve
large and complex problems by decomposing them into many small and simple
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subproblems [5]. For the second approach, a POS-error-detecting technique is
needed, which is the main issue of this paper.

Words are often ambiguous in terms of their POSs, which have to be dis-
ambiguated (tagged) using context of the sentence. POS tagging, however, no
matter using manual or automatic methods, usually involves errors. The POSs
in manually annotated corpora can basically have three kinds of errors: simple-
mistake type (e.g., POS “Verb” is inputed as “Varb”), incorrect-knowledge type
(e.g., word fly is always tagged as “Verb”), and inconsistent-type (e.g., word
like in sentence “Time flies like an arrow” is correctly tagged as “Preposition”,
but in the sentence “The one like him is welcome” it is tagged as “Verb”). The
simple-mistake type can be easily detected by only referring to an electronic
dictionary. The incorrect-knowledge type, however, is hardly possible to detect
using automatic methods. If we consider tagging words with correct POSs as
classification or input-output mapping problems of mapping words under the
context of POSs, then the inconsistent-type errors can be considered as sets
of data with the same input but different outputs (classes), which can be dealt
with using the statistical methods proposed so far or the neural-network method
proposed in this paper. The work that has been done so far to develop a detec-
tion technique with statistical approaches [6,7] was for off-line use, that is, the
detection must be performed ahead of the learning. Off-line detection, however,
is expensive for very large corpora because detection must be performed word
by word through the whole corpus with no preprocessing to first focus on a few
blocks of words or sentences that are certain to include errors, as can be done
by the proposed method.

Since the M3 network consists of modules dealing with very simple and small
subproblems, the modules can be constructed with very simple multilayer per-
ceptrons by only either using very few or no hidden units. This means that such
modules will basically not suffer from unconvergent problems. In other words,
if a module cannot converge, we may basically consider that the module is try-
ing to learn the data, including the inconsistent-type errors. This type of error
within an annotated corpus may therefore be detected on-line, in the sense that
the detection is performed while learning, that is, by picking out the uncoverged
modules and then determining the inconsistent data from the data sets being
learned. Since the unconverged modules compared to the converged ones will be
very limited when using a corpus of high quality, and the data set each module
learns is very small, this on-line error-detecting method will be extremely cost-
effective for very large corpora. By using such an on-line error detection method,
the quality of the corpus while it is being learned can be improved immediately
by a light manual intervention, and the new data can be immediately used to
re-train the unconverged modules.

2 The M3 Network

This section describes in brief the key question for M3 Network solving classifi-
cation problems: i.e., how a large and complex K-class problem is decomposed
into many smaller and simpler two-class problems, which are individually solved
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by using modules independent of each other, and how they are integrated to
obtain the final solution (for details see [4]).

2.1 Problem Decomposition

Suppose T is a set of learning data for a K-class problem; i.e.,

T = {(Xl, Yl)}L
l=1, (1)

where Xl ∈ Rn is an input vector, Yl ∈ RK is a desired output, and L is the
number of learning data. In general, any K-class problem can be decomposed
into

(
K
2

)
two-class problems:

Tij = {(X(i)
l , 1 − ε)}Li

l=1 ∪ {(X(j)
l , ε)}Lj

l=1, i = 1, · · · , K, j = i + 1, · · · , K (2)

where ε is a small positive number, and X
(i)
l and X

(j)
l are input vectors belonging

to Ci and Cj .
In the

(
K
2

)
two-class problems, those that are still too complex can be fur-

ther decomposed. First, each larger set of input vectors, e.g., X
(i)
l [see Eq. (2)],

belonging to each class is divided by a random method into Ni (1 ≤ Ni ≤ Li)
subsets χij ; i.e.,

χij = {X
(ij)
l }L

(j)
i

l=1 , j = 1, · · · , Ni, (3)

where L
(j)
i is the number of input vectors in subset χij . If by using such subsets,

the two-class problem defined by Eq. (2) can be decomposed into Ni×Nj smaller
and simpler problems as follows.

T
(u,v)
ij = {(X(iu)

l , 1−ε)}L
(u)
i

l=1 ∪{(X(jv)
l , ε)}L

(v)
j

l=1 , u = 1, · · · , Ni, v = 1, · · · , Nj , (4)

where X
(iu)
l ∈ χiu and X

(jv)
l ∈ χjv belong to Ci and Cj , respectively.

Thus, if all the two-class problems defined by Eq. (2) are further decomposed
into those defined by Eq. (4), the original K-class problem is decomposed into∑K

i=1
∑K

j=i+1 Ni × Nj two-class problems. If the learning data set only includes

two different elements, i.e., L
(u)
i = 1 and L

(v)
j = 1, then the two-class problem

defined by Eq. (4) is obviously a linearly separable problem.

2.2 Module Integration

After learning the decomposed subproblems using the individual modules, they
next have to be integrated to give a final solution for the original problem.
This section focuses on how the modules are integrated. To read why such an
integration can solve problems, see Ref. [4].

For integration, three units called MIN, MAX, and INV are used. Here, deno-
tations Mij and M(u,v)

ij are used to indicate the modules for learning subproblems

Tij [Eq. (2)] and T
(u,v)
ij [Eq. (4)], respectively. In the case that K-class problem
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T [Eq. (1)] is solved by decomposing into
(
K
2

)
two-class problems Tij [Eq. (2)],

first the following combination is performed with the MIN unit that selects the
minimum value from the multiple inputs:

MINi = min(Mi1, · · · , Mij , · · · , MiK), i = 1, · · · , K (i 	= j) (5)

where for convenience, the denotation for the MIN unit is used to express its
output and the denotations for the modules are used to express their outputs.
Thus, the final solution is obtained from these K outputs of the MIN units:

C = arg max
i

{MINi}, i = 1, · · · , K, (6)

where C is the class that the input data belongs to. In the case that two-class
problem Tij is further decomposed into T

(u,v)
ij [Eq. (4)], the module M(u,v)

ij learn-

ing T
(u,v)
ij is combined first with the MIN unit:

MIN(u)
ij = min(M(u1)

ij , · · · , M(uNj)
ij ), u = 1, · · · , Ni, (7)

and then module Mij is formed by using the MAX unit which selects the maxi-
mum value from the multiple inputs:

Mij = max(MIN(1)
ij , MIN(2)

ij , · · · , MIN(Ni)
ij ). (8)

The module Mij formed in such a way is then integrated into Eq. (5). Since the
two-class problem Tij is the same as Tji, Mji is constructed by Mij and an INV
unit which reverses the input value.

3 Error Detection Using M3 Network

Since the error detection is performed on-line during the learning of a POS
tagging problem, to describe how error detection can be performed we have
to first describe what is the POS tagging problem, and how the POS tagging
problem is decomposed and learned by M3 networks.

3.1 POS Tagging Problem

Suppose there is a lexicon V = {w1, w2, · · · , wv}, where the POSs that can be
served by each word are listed, and there is a set of POSs, Γ = {τ1, τ2, · · · , τγ}.
The POS tagging problem is thus to find a string of POSs T = τ1τ2 · · · τs (τi ∈ Γ ,
i = 1, · · · , s) by following procedure ϕ when sentence W = w1w2 · · ·ws (wi ∈ V ,
i = 1, · · · , s) is given.

ϕ : W p → τp, (9)
where p is the position of the word to be tagged in the corpus, and W p is a word
sequence centered on the target word wp with (l, r) left and right words:

W p = wp−l · · ·wp · · ·wp+r, (10)

where p − l ≥ ss, p + r ≤ ss + s, ss is the position of the first word of the
sentence. Tagging can thus be regarded as a classification or mapping problem
by replacing the POS with class and can therefore be handled by using supervised
neural networks trained with an annotated corpus.
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3.2 Decomposition of POS Tagging Problem

The Kyoto University Text Corpus [8] is composed of 19,956 Japanese sentences
that include a total of 487,691 words with 30,674 distinct ones. More than half
the total words are ambiguous in terms of the 175 kinds of POSs used in the
corpus. As a preliminary study to see whether the M3 Network can detect errors
in the on-line mode while learning POS tagging problem, this paper selected only
217 Japanese sentences, each of which had at least one error. These sentences
include a total of 6,816 words with 2,410 distinct ones and 97 kinds of POS tags.
By regarding POS as a class, the POS tagging problem in this case is therefore
a 97-class classification problem.

According to Sec. 2.1, this 97-class problem is first uniquely decomposed
into

(
K
2

)
= 4, 656 two-class problems. Since some of these problems are still

too large, they are further decomposed in the random method described in Sec.
2.1. As a result, two-class problem T1,2, for example, is decomposed into eight
subproblems, but problem T5,10 is not further decomposed. In such a way, the
original 97-class problem has been decomposed into total of 23,231 smaller two-
class problems.

3.3 M3 Network for Learning POS Tagging Problem

The M3 Network that learns the POS tagging problem described in the previous
section is constructed by integrating modules, as shown in Fig. 1(a). The individ-
ual module Mij is further constructed as shown in Fig. 1(b) if the corresponding
problem Tij is further decomposed. In the example shown in Fig. 1(b), since
problem T7,26 is further decomposed into N7 × N26 = 25 × 10 = 250 subprob-
lems, M7,26 is constructed by 250 modules M(u,v)

7,26 (u = 1, · · · , 25, v = 1, · · · , 10).
And, Mji (j > i) is constructed by Mij and the INV unit.

MIN

M 1, 2

M 1, 97

M 2, 1

M 2, 97

M 97, 1

M 97, 96

MINX

MIN

y1

y97

y2

M (1, 1)
7, 26

M (1, 10)
7, 26

M (25, 1)
7, 26

M (25, 10)
7, 26

MIN

MIN

MAXX

¶ � ¹ ¶ � ¹

Fig. 1. The M3 Network: (a) the entire construction and (b) a close-up module M7,26.
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Input vector X (Xl [Eq. (1)] etc.) in the learning phase is constructed from
word sequence W p [Eq. (10)]:

X = (xp−l, · · · , xp, · · · , xp+r). (11)

Element xp is a binary-coded vector with ω dimensions

xp = (ew1, · · · , ewω) (12)

for encoding the target word. Element xt (t 	= p) for each contextual word is a
binary-coded vector with τ dimensions

xt = (eτ1, · · · , eττ ) (13)

for encoding the POS that has been tagged to the word.1 The desired output is
a binary-coded vector with τ dimensions

Y = (y1, y2, · · · , yτ ) (14)

for encoding the POS that the target word should be tagged.

3.4 Detection of POS Errors within Corpus

Since each individual module in the M3 network only needs to learn a very small
and simple two-class problem, it can be constructed, for example, with a very
simple multilayer perceptron by only using either none or a few hidden units.
Thus, individual module basically does not suffer from an unconvergent problem
as long as the learning data is correct. In other words, if a module does not
converge, it may be considered that it is learning a data set, TM = (Xl, Yl)LM

l=1,
that includes some inconsistent data: i.e., there is at least one pair of data,
(Xi, Yi) and (Xj , Yj) in the data set, such that

Xi = Xj , Yi 	= Yj (i 	= j). (15)

Here, TM is used for denoting Tij [Eq. (2)] or T
(u,v)
ij [Eq. (4)].

Thus, this type of error within an annotated corpus that is being learned
may be detected “on-line” by only picking out the unconverged modules and
then determining if the data are in conflict with each other; i.e., a set of pairs,
(Xi, Yi) and (Xj , Yj), that satisfy Eq. (15) from the data set the module is
learning with a simple program. Since the unconverged modules compared to
the converged ones will be very limited when an high-quality annotated corpus
is used and the data set each module learns is very small, this on-line error-
detective method has an extremely good cost performance, which will increase
with the size of a corpus. By using such an effective on-line error detection
method, the quality of the corpus while it is being learned can be improved by a
light manual intervention and the new data can be immediately used to re-train
the unconverged modules.
1 This coding is a simplified version of the original coding method actually used in POS
tagging system [5]. However, the detective mechanism that determines the patterns
that are in conflict with each other will be unchanged.



On-Line Error Detection of Annotated Corpus 1191

4 Experimental Results

The data described in Sec. 3.2 was used in our experiment. Because there are
30,674 distinct words and 175 kinds of POSs in the whole corpus, the dimensions
of the binary-coded vectors for word and POS, ω and τ , were set at 16 and 8,
respectively. The length (l, r) of a word sequence given to M3 network was set
at (2,2). The number of units in the input layers of all modules was therefore
[(l + r) × τ ] + [1 × ω] = 48 and all modules were basically constructed using
three-layer perceptrons whose input-hidden-output layers had 48-2-1 units, re-
spectively. Modules will stop learning as one round when the average-squared
error reaches an objective value, 0.05, or the iterations reached 5,000 epochs.
For the modules that could not reach the objective error, relearning of up to five
rounds was performed by adding hidden layers of two units each in each new
round until reaching the objective error.

Experimental results show that 82 modules within the total of 23,231 mod-
ules did not finally converge. Of these 82 modules, 81 had exactly 97 pairs of
contradictory learning data, which at first reinforced the hypothesis that the
M3 network has basically no unconvergent problems. These 97 pairs of learn-
ing data were checked by one of the authors, an NLP expert who knows both
Japanese grammar and the Kyoto University Text Corpus well. As a result, we
saw that of these 97 pairs of learning data, 94 pairs included true POS errors
and the precision rate reached nearly 97%. Table 1 shows a pair of learning data
detected from unconverged module M(1,6)

7,26 , a sub-module of M7,26 shown in Fig.
1(b). The left column shows in order of sentence and word number the positions
of the words that are being checked. Each word sequence shown in the right
column is constructed by morphemes that are separated by the denotation “,”.
Each morpheme was formed by “Japanese word (English equivalent): POS”. The
underlined Japanese word is the target word being checked. The word sequence
tagged with the symbol “*” in the head shows that the target word in this word
sequence is tagged incorrectly.

We examined the remaining three pairs that were in exact conflict with each
other, but were all are correct and found that they were all tagging word cases
“de (in , at, on, ...)” functioning as either postpositional particle or copula in
various contexts. The word “de” in Japanese, however, belongs to a very special
case in which it is not sufficient to only use n-gram word and POS information
to determine its POS, the grammar of the whole sentence has to be considered

Table 1. An example of detected pair of learning data

No. Word sequences tagged by POSs
2-18 * seijika (politician): common-noun, gawa (side): nominal-suffix, no (of):

case-postpositional-particle, odate (flattery): common-noun, ni (by): case-
postpositional-particle

124-19 shinario (scenario): common-noun, dukuri (making) : nominal-suffix, no (of):
conjunctive-postpositional-particle, houkou (direction): common-noun, o (ob-
ject): case-postpositional-particle
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instead. This result indicates that this method not only detected POS errors with
a substantially 100% precision rate, but also discovered some kind of knowledge
that is difficult to be found by us in general but is useful for natural language
processing. Since each of the 217 sentences had at least one error, respectively, the
recall rate was low. The main reason, however, was in the too small corpus, from
which too few clues could be extracted and then used to find further conflicting
data. In our future full-scale experiment using the entire corpus, the recall rate
of error detection can therefore be expected to rise dramatically with an almost
unchanged precision rate.

5 Conclusion

We proposed a cost-effective on-line error-detecting method for manually an-
notated corpus by conversely utilizing an unconvergent problem, which usually
causes us distress when using neural networks, and reinforced the hypothesis
that M3 network basically has no unconvergent problems at the same time. Al-
though the scale of the preliminary experiment was small, since the M3 network
can deal with a very large and complex classification problem, it appears that
this technique may be very useful not only in further improving our POS tag-
ging system, but also in improving the quality of various manually annotated
corpora, and may discover some kinds of knowledge or rules useful for natural
language processing.
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