
The Guide and Specification of Fatworm Project

(the third version)

Department of Computer Science and Engineering,

Shanghai Jiao Tong University,

Shanghai 200240, P. R. China

Designed By

02-ACMer: Li Lei { lilei@cs.cmu.edu }
Yang Linji {dragonylj@sjtu.edu.cn}
Zhang Yaodong {zhydong@sjtu.edu.cn}

03-ACMer: Ma Rong {marong1204@gmail.com }
Zhou Muxin {muxin.zhou@gmail.com }
Qian Feng { fengqian@umich.edu }
Qu Wentao { thomas.qu@gamil.com }

04-ACMer: Li Mu {limu.cn@gmail.com }
Lian Xiaochen {lianxiaochen@gmail.com}
Sun Xiaorui {sunsirius@hotmail.com }

March 9, 2008

1 Project Overview

The project for this course is to build a database management system(DBMS),
which would be the best way for you to understand the basic concepts of DBMS.
As we know, a database system for business use would be extremely large and
hard to implement, therefore, we give some restrictions and specifications to
help you get started. However, any additions or improvement are encouraged,
and certainly will make you receive a higher score. Although we do not carry
out a whole featured DBMS, the project is still too large for only one student’s
work. Due to this reason, we will do teamwork. Each team should contain 3 or
2 students, formed by free will. Finally, some suggestions for doing well in this
course project:

1. Read the specifications carefully until you pretty much understand it.

2. Do not code until you understand what you are doing. Design is the first
and most important thing you should consider.

3. If you get stuck, feel free to talk to others or TAs.

2 Architecture

In this section, we give a brief impression of the entire system. Java Database
Connectivity(JDBC) API is a standard SQL database access interface. This
API provides programmers with universal access to a wide range of database
management systems, including our Fatworm. In this way, the whole system
should be built on the JDBC standards, which is illustrated in Figure 1.

The entire system can be divided into five layers: storage, indexing, SQL
parsing and engine, database manager, access interfaces. Also, there are some
assistant components in these layers, such as buffer, heap file, concurrency con-
trol and so on. The following sections will give you a detailed description on
these layers.

1

3 Storage Layer

3.1 Overview

The storage part of Fatworm is implemented as a single file on hard disk.
Similar to the virtual memory in operating systems, we divide the single file
with pages, which can be recognized as the simply page-sized blocks of bytes
within this single file. The higher-level structures, such as B+ tree index, do
not know how their data are recorded on the hard disk but only know a page id
as the entry point of accessing their data. Due to the fixed size of a page, some
operations would require a collection of pages. How to load the needed pages
or do buffering is the core problem that the buffer part should focus on. In
summary, the storage layer should take care of the allocation and deallocation
of pages within a database, which means an allocation strategy is required, such
as using bitmap. It also performs reads and writes of pages to and from hard
disk, and provides a logical and friendly interface of reading or writing data
within the context of a database management system. Bitmap can be used to
decide which page should be allocated or deallocated. There are various ways
of designing a bitmap strategy. Here, we give an example: suppose eight bits
are a group in the bitmap table, and there are a lot of groups in the table.
When we read (10000000)2 from a group 3 in bitmap, it means that except
page (3− 1)× 8 + 1, the pages from (3− 1)× 8 + 2 to (3− 1)× 8 + 8 are free.

3.2 Functions

The storage layer should provide the following functions:

• create or delete a database

• open or close a database

• page allocation strategy

• buffer management

3.3 Buffer Strategy

Here is an example of buffer strategy. Suppose we construct a single buffer
pool for all of the databases which has already opened. In this buffer pool,
a globe hash table is used to store all the key-value pairs. Since all opened
databases share one buffer pool, we use database id(DID) and page id(PID) as
their key and use the whole page content as the value of the hash table. When
the system starts, there are 1024 entries in this hash table. For this reason,
when a database contains more than 1024 pages or more than one databases
are opened at the same time, the buffer should use LFU algorithm to replace
the unused page.

Buffer strategy may also support the pre-fetch technology. Requiring a page
but in the buffer pool will lead to a page fault. When a page fault is occurred,
the system need to load the page from disk into the buffer pool. During this
procedure, the buffer-management not only loads the required page into buffer
pool but also loads pages around it because of the locality assumption of the
data.

2

4 Indexing Layer

4.1 Overview

Heap file structure is one of the common components in a database system,
which provides the ability of sequential access of the records, as well as insertion,
deletion, updating and etc basic features. Index provides fast access to the
specific record when given a certain condition. In the implementation, please
adopt the B+ Tree indexing. The index entry is formed as 〈key, rid〉. Key can
be integer, string, date, time or float. Indexing should have five functions:

• create an index

• drop an index

• insert an entry by an index

• delete an entry by an index

• search though an index

The most important functions are insert, delete and search, among which delete
is the most complex because you have to keep the tree balance after delete an
entry.

4.2 Functions

We may adopt the linked directory page method to implement the heap
file, which is widely used in Operation System such as Microsoft Windows.
Suppose each directory page has 8K bytes space, the first 4 bytes of which
are intentionally preserved to the next page pointer, and other bytes of which
are all used to store the ID of content pages. The content page has a head
area, which indicates the necessary information of this page, such as the length
of each slot, the length of head and etc, and a body area, which stores the
data of each slot, that is the data of each record. The B+ Tree is a balanced
tree and its nodes are BTPages. For instance, in one specific design: there
are three types of BTPages: BTHeaderPage, BTIndexPage and BTLeafPage.
In BTHeaderPage, some important information about the B+ tree is recorded
in the BTHeaderPage, such as the root page id of the tree and the key type.
BTIndexPage is the internal node and only contains index to the child B+ tree
page. BTLeafPage is the leaf node and contain index entries with rids. A typical
B+ tree provides three operations: searching, inserting and deleting1, see [1] for
detail.

5 SQL Parsing and Engine Layer

5.1 Overview

In this part of design, you are first asked to implement a highly efficient and
accurate fatworm SQL grammar parser as well as an algebra tree transformer
and a simple optimizer (which is optional). It is a convenience that lexical

1deleting a B+ tree node with balance is not a basic required feature.

3

analysts such as JLEX or JFLEX should be used to build up a abstract grammar
tree(AGT), and in succession an algebra tree transformer applied to the AGT
will finish the stage of parser.

Secondly, the Engine’s responsibility is to execute the SQL statement. Given
a SQL statement, the Engine first parses it with SQL parser and then according
to the parsed result, execute either query or update. Engine interacts with the
indexing layer and parsing layer. You should design the interfaces of indexing
layer carefully to make your engine called easily.

5.2 SQL Parser

It is NOT required to make your parser parse everything and reject wrong
grammar. You can write a parser that can parse correctly when the input query
is correct from the perspective of syntax. You can always assume that the input
query is correct, because this is not a project of compiler. Your parser should
support the SQL statements in the appendix at least.

5.3 Engine

The design of your SQL Engine is left BLANK here and should be completed
all by yourselves. It is wise to transform the grammar tree to an algebra tree(for
the definition of algebra tree, please refer to GOOGLE), and then transform the
algebra tree to an execution tree (one may wish transform the grammar tree
to execution tree directly, it’s also OK). However, here are some design pattern
you may consider to apply(see [2]):

• Composite Pattern to present a tree structure.
For example, the boolean expression of the where-condition may be con-
sidered as a tree structure naturally. You may define an abstract class
WhereNode which is the common interface and implements the default be-
havior. And certainly you should define the other composite class such as
AndWhereNode(to present an binary conjunction operation), NotWhereN-
ode(to present a negation operation) to implement child-related operations
as their names. Finally, you may define some leaf class to implement the
primitive behavior such as comparison to a literal, arithmetic operation
and so on.

• Visitor Pattern to represent different operations to be performed on the
elements of a fixed structure.
As the example shown above, you may realize there are several visit oper-
ation will be performed on the WhereNode-tree for different propose. In
most cases, the visitor traverses the tree in the propose of evaluating the
condition, however, a SQL-optimizer may traverses the WhereNode-tree
to reorder the execution plan. So you may define these different visitor
class such as ExecutionVisitor, OptimizationVisitor, PrettyPrintVisitor or
TypeCheckingVisitor to gather related traversal operations and separates
unrelated ones.

• Iterator Pattern to provide a way to access the element of the heap
file(or index) without exposing its underlying representation.
For instance, to traverse a single table, we may choose SingleIterator, to

4

traverse a table which is jointed by other tables, we may choose JointIt-
erator, to traverse a B+ tree index, we may choose BTreeIterator. These
iterators’ behavior are hidden to Engine, Engine only uses the interface—
RowIterator to access the intended sequential file abstractly.

WARNING: The proper design will help you code clear and bug-free, but
an over design will bring your team to the HELL!

5.3.1 Query Processing

Once the query plan is chosen, the Engine evaluated with that plan, and the
result of the query can be seen as a table (or a relation). Generally speaking,
you may process simple selection operations by performing a linear scan, by
doing a binary search, or by making use of index. Further more, you may
handle complex selections by computing unions and intersections of the results
of simple selection. Some issues are listed as following(you may refer to [3] for
details).

• Product(Natural Join). If a table with m rows products with another
with n rows, the result is the Cartesian product of the two tables with
m× n rows.

• Sorting(Order By). Sort the tuples in the table. You may sort the
table larger than memory by the external sort-merge algorithm.

• Duplicate Elimination. This operator can be done by sorting or hashing
easily.

• Projection. You may implement projection easily by performing pro-
jection on each tuple, which gives a relation that could have duplicate
records, and then removing duplicate records.

• Aggregation. One way to handle the aggregation operation can be im-
plemented in the same way as duplicate elimination. you may sort the
relation based on the grouping attributes, then gather the tuples with the
same value, and apply the aggregate operation on each group to get the
result. On the other hand, instead of gathering all the tuples in a group
and then applying the operation, we can implement some operations(such
as sum, max, min, count and avg) on the fly as the groups are being
constructed. see [3] for details.

5.3.2 Insert, Delete and Update

These three kind of statement will not cost much time to code if you followed
a good design of Engine. We strongly recommended you to study some example
like [4]. A mature programmer should spend 80% time to think and 20% time
to code.

5.4 Concurrency Control

You should carefully designed a concurrency control unit which may includes
a concurrency control manager, a session and a table lock. A session is given

5

to each user who has successfully entered the database system and all of the
operations of the user are related to his session. Different user can open the
same database in the same time and they also can read from the same table
concurrently. The only constraint is that they cannot access the same table
when someone do writing operations on it. So you can set up a table lock to
solve this problem. 2

Table lock is the kind of lock which support two kinds of locking operation,
read lock and write lock. For example, when a table has a write lock, no oper-
ations are allowed on it. When a table has a read lock, only read requirements
are allowed. If a user want to do some writing operations on it, he must wait
until the previous read lock is released.

When user requires a transaction,3 at this time all the table involved in this
transaction must be locked. Unfortunately, a dead lock may be occurred. You
can use the simplest method to avoid this problem. For instance, there are three
tables A, B and C which are required to be locked. If we get the locks of A
and B but table C already has a write lock, we should wait for the table C.
When a time interval(maybe 100ms) is passed, we release the locks of A and B,
which means the first trying of locking is failed and we have to wait for another
interval(50ms) to try again.

Certainly, you are encouraged to use a more reliable and efficient algorithm
to avoid dead locking.

6 Database Manager Layer

6.1 Overview

The database manager is the abstraction of the whole system. It is the
bridge between access interface and the Engine. Since we allow open more than
one database at the same time, the database manager should also maintain
all opened databases in current system. For example, when a require comes
from the out connections, the database manager holds the session and send the
require to the intended database.

There will be some meta-tables constructed at the initialization of a database,
because the information such as the table description, the index description and
the relation description should be recorded. Only the database manager has the
right to modify these meta-tables, when the users ask for creating or dropping
a table.

Certainly, the database manager will package the result from the low-level
system, and send it to the right session.

In addition, the database manager may also include the logger, the user
manager and configuration manager. Logger4 records all the operation step by
step, so that we can identify the user’s behavior or do reconstruction when crash
happens. The user manager manages all the verified users for each database,
and the restrictions they have. Since there will be many parameters to control
the behavior and the thresholds for tuning, we may use a configuration manager
to handle these parameters and thresholds at the birth of the whole DBMS.

2Lock on table is a basic required feature, while lock on page is considered as an advanced
feature.

3Transaction is not a basic required feature.
4Logger and rollback is not a basic required feature.

6

6.2 Functions

• hold the connected sessions.

• manage any database in current system.

• package the result from Engine and produce response to interface.

7 Access Interface Layer

to be continue.

8 Grading Policy

See the course website for detail.

Feature Requirement: Summary

Part I. Required

• Data types: INT, FLOAT, CHAR(), DATETIME 5

• Components:

– Storage

∗ Buffering

– Heap File

– B+ Tree

∗ Without balanced deleting

– SQL Parser and Engine

∗ Create / Drop databases
∗ Create / Drop tables (without AUTO INCREMENT column)
∗ Insert / Delete / Update tuples in table
∗ Basic SELECT on single or multiple table(s) 6

– Database manager

∗ More than one database in system
∗ Local-access drivers (JDBC)

5Make use of java.util.Date, here are some details: http://dev.mysql.com/doc/refman/5.1/
en/storage-requirements.html

6Features that are not clearly mentioned in recommended and advanced section are all
required.

7

Part II. Recommended

• Data types: BOOLEAN, TIMESTAMP, DECIMAL()

• Components:

– B+ Tree

∗ With balanced deleting
∗ Without duplicated key support 7

– SQL Parser and Engine

∗ Create / Drop tables (with AUTO INCREMENT column)
∗ Create / Drop indexes
∗ More powerful SELECT

· DISTINCT
· Alias of tables
· Subquery as Scalar Operand
· [NOT] EXISTS
· ORDER BY can accept more than one column as arguments

– Database manager

∗ Remote-access driver (JDBC)
∗ Concurrency control (locks on table)
∗ Deadlock solved

Part III. Advanced

• Data types: VARCHAR(), BLOB

• Components:

– B+ Tree

∗ With duplicated key support

– SQL Parser and Engine

∗ Even more powerful SELECT
· GROUP BY / HAVING subclauses
· Subquery as Relation Operand (ANY, ALL, IN)

∗ Query Optimization

– Support transaction

– Logger and roll back

– Database manager

∗ Concurrency control (locks on pages)

7To simplify B+ tree, duplicated key support is moved to advanced section. But a unique
index (just like primary key though without the title) is required.

8

Some Clarification

1. It’s free for your team to decide which programming language to use,
but the test case is totally based on the JDBC interface, so we strongly
recommended Java as your programming language.

2. You should code very thing by yourself. However, taking advantage of
some code-generation tool like JFLEX or JavaCup is allowed and encour-
aged.

3. It’s NOT required to do arithmetic operation on DECIMAL column. In
addition, you can set arbitrary restrict on CHAR(), DECIMAL() and
VARCHAR(), as long as it’s reasonable. For example, the length of VAR-
CHAR can’t exceed 4000. You should also write these restrict in docu-
ment.

4. You are allowed to keep metadata of table / database (or something like
that) in memory (outside buffer), since they are not very big. What you
have to load into buffer are records (in heapfile) and B+ trees.

Appendix: Syntax of FwSQL

Note: the syntax of FwSQL (Fatworm-SQL) is a simplified version of MySQL
5.1. You can go to http://dev.mysql.com/doc/refman/5.1/en/ for more details.

1. Create or Drop Database

CREATE DATABASE db-name
DROP DATABASE db-name

2. Create or Drop table

CREATE TABLE tbl-name (create-definition, ...)
DROP TABLE tbl-name [, tbl-name]
create-definition ::= column-definition | PRIMARY KEY (col-name)
column-definition ::= col-name data-type [[NOT] NULL] [DEFAULT default-value]

[AUTO INCREMENT]
date-type ::= INT | FLOAT | CHAR(M) | DATETIME | BOOLEAN | DECIMAL(M[,D])

| TIMESTAMP | VARCHAR(M) | BLOB

3. Insert

INSERT INTO tbl-name VALUES (value, ...)

4. Delete

DELETE FROM tbl-name [WHERE where-condition]

5. Update

UPDATE tbl-name SET col-name1=value [, col-name2=value ...] [WHERE where-condition]

9

6. Create or Drop index

CREATE [UNIQUE] INDEX index-name ON tbl-name (col-name)
DROP INDEX index-name ON tbl-name

7. Select

SELECT [DISTINCT] select-expr, ...
[FROM tbl-ref [, tbl-ref] ...]
[WHERE where-condition]
[GROUP BY col-name]
[HAVING having-condition]
[ORDER BY col-name [ASC | DESC], ...]

select-expr ::= value | func(col-name) | *
func ::= AVG | COUNT | MIN | MAX | SUM
col-name ::= [tbl-name.] col-name
tbl-ref ::= tbl-name [AS alias]
where-condition ::= bool-expr
bool-expr ::= value cop value

| bool-expr AND bool-expr
| bool-expr OR bool-expr
| [NOT] EXISTS (subquery)
| value cop ANY (subquery)
| value IN (subquery)
| value cop ALL (subquery)

cop ::= < | > | = | <= | >= | <>
value ::= value | col-name | const-value | value aop value | (subquery)
aop ::= + | − | ∗ | / | %
const-value ::= integer | ‘string ’ | float | ‘YYYY-MM-DD HH:MM:SS’
having-condition ::= having-value cop having-value

| having-condition AND having-condition
| having-condition OR having-condition
| bool-expr

having-value ::= value | func(col-name)

References

[1] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein,
Introduction to Algorithms, The MIT Press, 2001.

[2] Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, Design Pat-
terns, Pearson Education, 1995.

[3] Abraham Silberschatz, Henry F. Korth, S. Sudarshan, Database System
Concepts, the McGraw-Hill Companies, 2006.

[4] Source code of HSQLDB, see http://hsqldb.sourceforge.net.

10

