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Abstract— In this paper, we utilized EEG signal to classify
two emotions—happiness and sadness. These emotions are
evoked by showing subjects pictures of smile and cry facial
expressions. We propose a frequency band searching method
to choose an optimal band into which the recorded EEG signal
is filtered. We use common spatial patterns (CSP) and linear-
SVM to classify these two emotions. To investigate the time
resolution of classification, we explore two kinds of trials with
lengths of 3s and 1s. Classification accuracies of 93.5%±6.7%
and 93.0%±6.2% are achieved on 10 subjects for 3s-trials and
1s-trials, respectively. Our experimental results indicate that the
gamma band (roughly 30–100 Hz) is suitable for EEG-based
emotion classification.

I. INTRODUCTION

Emotions play an essential role in many aspects of our
daily lives, including decision making, perception, learning,
rational thinking and actions. Assessing emotions is a key
to understanding human being. Therefore, emotion classi-
fication1 provides a great step towards aiding people, e.g.
disable care, brain-computer interfaces.

A. Emotion model

As mental and physiological states, emotions associate
with a wide variety of feelings, thoughts, and behaviors. The
modern study of emotions began in the 19-century. Various
models and theories have been proposed in psychology, cog-
nition, neuroscience and other disciplines. There is, however,
much controversy concerning how emotions are to be defined
and discriminated. Whether emotions are cognitive or non-
cognitive is one major question of interest. The former claims
that cognitive activities are necessary for an emotion to
occur [1]. while the latter argues that emotional experience
is largely due to the experience of bodily changes [2].

Another question is about whether emotions are distinctive
discrete states or continuous ones? One opinion is to divide
emotions into basic and complex ones, where the latter
are blended with the former [3]. Another opinion is to let
emotions vary along several scales with respect to the rela-
tions between them. A well-known continuous model is the
valence-arousal model [4], in which the valence dimension
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represents the scale from pleasant to unpleasant and the
arousal dimension states the intensity of excitement.

B. The Gamma Band
The EEG under different frequency band has gained much

research interest. Typically, low frequencies are related to
vigilance and motion (e.g., alpha, mu) while high EEG
frequencies, e.g. gamma, are relevant to high cognitive pro-
cesses. Recent years, researches continue to suggest connec-
tions between gamma band activities (GBA) and emotions
[5][6]. Further, ERD/ERS responses to pictures of facial
expressions in the gamma band have been reported [7], which
showed ERD decreased during 150–350 ms after presenting
the stimuli.

II. RELATED WORKS

In neuroscience and psychology, event related potential
(ERP) is popularly used to research the brain rapid pro-
cessing of affective stimuli [8]. While in computer science,
researches are focused on detecting human emotions from
affective displays or physiological signals. Several studies
[9] have utilized facial expressions, the tone of voice, and
body movement to recognize emotions. However, those sig-
nals share an disadvantage—they are not reliable affective
displays. Some emotions can occur without corresponding
facial emotional expressions, or emotional voice changes and
body movements, especially when the emotion density is not
very high. On the contrary, such displays could be faked
easily, e.g. when people are lying.

Many studies [10] utilized signals from peripheral neu-
rons system, e.g. electrocardigonram, and skin impedance.
Nevertheless, EEG, the signal directly recorded from central
neurons system, has not received much interest. There are
only a few studies using EEG to classify emotions. Choppin
[11] used neural network to classify EEG signals from three
emotions and got 64% classification accuracy. Chanel [12]
also confirmed that EEG and other physiological signals can
be used to recognize emotions along one arousal dimension.
The classification results are around 70% using two classes
and 60% using three classes. Bos [13] classified arousal and
valence emotions and received average accuracy of 70% for
two classes.

III. METHOD

A. Subjects
The study protocal conformed with local ethics guidelines.

10 subjects (2 females; mean age 25; all normal sight and
right handed) participated in our experiment, all were paid
for participation. Subjects were informed about the purpose
of this experiment.



B. Stimuli

Fig. 1. Excerpt of a sequence of stimuli. The first two are smile facial
pictures and the last two are cry facial pictures.

The stimuli, an excerpt is shown in Fig. 1, consisted of two
kinds of emotional facial expression pictures—smile and cry.
The smiling people were mainly Asian actors and the others
pictures were taken of people who lost family members.
Pictures were resized into similar size.

We chose this kind of stimuli to evoke emotions for two
reasons. One is, the main channels humans use to transmit
emotions are facial expressions, which are universal and
reliable to evoke other people’s emotions. The other is that
smile and cry expressions are easier to touch humans than
other facial expressions [3].

The emotional contents of these pictures were measured
by self-assessment manikin (SAM) [14], which contained
9 scales for both valence and arousal dimensions. We re-
quired each subject to label every picture using SAM after
the experiments. The results of valence-arousal scales were
(2.51± 0.91, 4.60± 1.41) and (7.41± 1.03, 4.37± 1.94) for
smile and cry pictures, respectively.

C. Protocol

The pictures covering a visual angle of approximately
6 × 6◦ were shown on a black background. Each picture
was presented for 6 seconds, before a small horizontal bar
was presented for 1s to require attention. Between two trials,
there was a 3s long black screen to allow subjects to rest.
To prevent subjects from feeling discomfort due to high
frequency change of different emotional pictures, we did
not adopt a completely random stimuli sequence. Instead,
we divided the pictures into groups, each group consisted
of 5 randomly chosen pictures from the same class. Then
we randomly ordered 12 groups into a stimuli sequence as
a session. Each experiment consisted of 2 sessions, between
the sessions there was a 10 minute long rest to make sure
subjects could maintain high attention during each session.

The experiment was carried out in an illuminated and
sound proof room. The temperature of the room was about
27 degrees and the humidity was between 40% and 60%.
During the experiment, subjects were asked to focus their
attention only on the facial expressions.Additionally, they
were also required to keep their head and body steady during
the presentation of the pictures.

D. Data recording

Subjects were fitted with a 62-channel electrode cap dur-
ing the experiment. The Ag/AgCl electrodes were mounted
inside the cap with bipolar references behind the ears. The

electrodes were arranged according to the international 10-
20 system. The contact impedance between electrodes and
skin was kept to a value less than 10kΩ. The EEG data were
recorded with 32-bit quantization level at a sampling rate of
1000Hz.

IV. METHOD

A. Artifact Detection

The time wave and energy of each trial (the segment of
EEG when one picture was present) were visually checked.
Trials seriously contaminated by electromyogram (EMG)
were removed manually. Those trials typically showed larger
amplitude wave and energy (about 10 times), compared to
normal ones. We removed an average of 3 trials from each
experiment.

B. Filter

The EEG signal was filtered into a specific frequency
band after removing artifacts. We utilized Fourier transform
(FT) to do filtering instead of using the widely used IIR or
FIR filters. We firstly transformed the signal into frequency
domain, then set the unwanted frequency components to
zero. After that, we performed inverse FT to transform the
signal back to time domain if necessary.

Since we did not know the optimal band to filter, we
needed to search various ones. The IIR or FIR approach
needs to perform filtering every time for each bands, there-
fore the time complexity is high. For FT, however, we only
need to perform it once. [15]. This is why we used FT instead
of IIR and FIR.

C. Common Spatial Patterns

Common Spatial Patterns (CSP) [16] is a surpervised
dimension reduction method, which is suitable to extract
ERD/ERS features. CSP searches directions to maximize
the variances of two kinds of signals after being projected
to these directions. More specifically, denoted by D
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which is a channel × 1 vector, to minimize or maximize
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. This optimization problem equals to the general-
ized eigenvalue equation, Σ(1)w = λΣ(2)w. The eigenvalue
λ stands for the ability of the direction w to disciminate
these two classes trials—strong when λ is large or small and
weak when λ is near 1. Let w1, · · · , wc be the directions
according to the eigenvalues sorted in ascending order, where
c is the number of channels. Then, m directions W =
[w1, · · · , wm
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2 +1, · · · , wc] are selected to deduce the
dimension.



D. Classification

After deducing the dimension using CSP, we fed the
logarithm of variance of the dimension-deduced trials as the
features into a linear support vector machine (linear-SVM)
[17]. Let the feature of a trial D be f , then f was computed
as

f = log(Var(DW )) = log(diag(WT ΣW )),

where Var(·) computed the variance of each column, and
diag(·) denoted the diagonals of a matrix.

To obtain reliable classification result, we randomly di-
vided the trials into training set and testing set with ratio
7 : 3. The parameters, frequency band and m, were selected
using 5-fold cross validation on the training set. After that,
we performed CSP on the training set and calculated the
features for both training set and testing set. The former was
fed into a linear-SVM and the latter was used to test the
classification accuracy.

Fig. 2. Classification accuracies using different frequency bands for two
subjects. The low and high cut-offs are presented in X-axis and Y-axis,
respectively. The intensity represents the accuracy.

V. RESULTS

We divided the original 6s length trials into two kinds of
short trials, 3s and 1s, to increase the number of classification
trials and demonstrate our ability of classifying emotions
with high time resolution. Thus, each experiment consisted

of around 240 trials (several EMG contaminated ones were
removed, Sec. IV-A) for 3s-trials and around 720 trials for
1s-trials.

A. Frequency band selection

The cross validation results on the training set of 3s-
trials for frequency bands under 200Hz are shown in Fig. 2.
One can observe four interesting facts from the figure. First,
the high performance areas are of vertical strip shape. The
optimal strips always reach the region whose band width
are at most 50Hz. Secondly, the low cut-offs of the optimal
strips in the figure are both around 40–50 Hz, despite that
the highest accuracies are different. But we should claim
that this fact does not hold for other subjects. Actually,
the positions of the optimal strips vary accross subjects.
Thirdly, the high cut-offs of bands which give satisfied
accuracy are always above 30 Hz; this holds for all subjects.
Fourthly, for some subjects, the suitable bands could be
high—both low and high cut-off frequency— up to the range
100Hz–150Hz for some subjects. We did not expect this
surprising phenomenon. Finally, one can clearly note that
the accuracy varies much with the frequency band and the
suitable frequency band distribution varies across subjects.
Therefore, searching the suitable band for each subject is
necessary.

Inspired from the observations, we propose a band se-
lection method. The basic idea is that, if we have chosen
a suitable low cut-off, then we can consider only serveral
high cut-offs which are not very far away from the low
cut-off. Since it is not practical to search every low cut-
off for each experiment, we only choose several bands
with the low cut-off of {31, 36, · · · , 91} Hz and a width
of {5, 10, · · · , 50} Hz. Denote r(i, j) the cross validation
results on these bands, where i = 1, · · · , 25 and j =
1, · · · , 10. We calculate the mean result for each low cut-
off, that is, r(i) = 1

10

∑
j r(i, j). Then we select the low

cut-off with maximal r(i), namely argmaxir(i). At last we
select the band width such that argmaxjr(i, j). Thus, we get
the optimal band.

B. Classifier parameters

We need to choose the dimension reduction m for CSP,
which is used to control the complexity of the classifier.
We used the default settings of the linear LibSVM [17].
Though SVM can efficiently avoid over-fitting, considering
the number of trials, feature dimension, and the low signal-
noise ratio of EEG signal, the curse of dimension is still
a big problem. In our method, four different values, m =
2, 4, 20, 40, were considered. We chose m with average good
cross validation performance.

C. Classification Accuracy

Using the selected parameters, we performed CSP on the
filtered training set. Next, the features of the training set were
used to train a linear-SVM. Then we obtained the testing
accuracy on the testing set features.



TABLE I
CLASSIFICATION RESULTS FOR 10 SUBJECTS. EACH EXPERIMENT CONTAINED AROUND 240 3S-TRIALS OR 720 1S-TRIALS, OF WHICH 70% WERE

USED TO SELECT PARAMETERS BY 5-FOLD CROSS VALIDATION AND THE REST WERE USED FOR TESTING. THE PARAMETERS, LOW AND HIGH CUT-OFF

FREQUENCY, NUMBER OF CSP FEATURES, AND TESTING ACCURACY WERE SHOWN IN ROWS FOR EACH SUBJECT.

Trial length = 3s Trial length = 1sSubject
Low (Hz) High (Hz) m accuracy(%) Low (Hz) High (Hz) m accuracy(%)

1 46 50 4 98.96 46 55 4 100
2 51 80 40 91.7 71 85 40 91.0
3 36 55 20 82.9 81 115 40 81.4
4 61 80 40 97.8 76 100 40 95.3
5 41 60 40 100 36 85 40 89.7
6 26 40 4 87.1 66 110 20 86.2
7 56 70 20 100 86 105 20 98.1
8 31 80 40 98.6 51 100 40 97.2
9 21 55 4 83.8 56 95 20 91.4

10 66 115 20 93.8 66 95 20 100
Total 43.5±15.1 68.5±21.5 23±16 93.5±6.7 63.5±16.0 94.5±16.9 26±13 93.0±6.2

The testing accuracy of 3s-trials, see Table I, is 93.5%±
6.7%, with 5 subjects (1, 4, 5, 7, 8) above 95%, and of 1s-
trials is 93.0% ± 6.2%, with 6 subjects (1, 4, 5, 7, 8, 10)
above 95%.

VI. DISCUSSION

Note that there are subjects whose results are greater
than 95% and ones whose results less than 85%. This phe-
nomenon is partly due to the diversity of subjects and qual-
ities of experiments—some claimed that they were totally
touched by stimuli while some others said they experienced
only little emotions.

The average optimal frequency bands are 43.5–68.5 Hz
and 63.5–94.5 Hz for 3s- and 1s-trials, respectively. Most
bands are in the gamma band. The result confirms that GBA
is related to the emotions of happiness and sadness.

Comparing the results of 3s- and 1s-trials, one can note
that using short length trials does not reduce the classification
accuracy much, but even causes improvement for several
subjects. That means 1s length EEG signals are enough to
classify emotions.

VII. CONCLUSION

In this paper, we utilized smile and cry facial expression
figures to evoke emotions from subjects. The validity of
the stimuli was tested using SAM. These two different
emotions were classified based on EEG signals. We received
93.5% ± 6.7%, and 93.0% ± 6.2% classification accuracies
on 10 subjects for 3s length and 1s length trials using CSP,
SVM and sophisticated frequency band selection strategies.
Our experimental results indicate that the ERD/ERS activities
in gamma band EEG can be used to classify happiness and
sadness with high time resolution.
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