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ABSTRACT
Spectral clustering is one of the most popular clustering ap-
proaches with the capability to handle some challenging clus-
tering problems. Only a little work of spectral clustering fo-
cuses on the explicit linear map which can be viewed as the
distance metric learning. In practice, the selection of the affin-
ity matrix exhibits a tremendous impact on the unsupervised
learning. In this paper, we propose a novel method, dubbed
Adaptive Affinity Matrix (AdaAM), to learn an adaptive affin-
ity matrix and derive a distance metric. We assume the affinity
matrix to be positive semidefinite with ability to quantify the
pairwise dissimilarity. Our method is based on posing the op-
timization of objective function as a spectral decomposition
problem. The provided matrix can be regarded as the optimal
representation of pairwise relationship on the manifold. Ex-
tensive experiments on a number of image data sets show the
effectiveness and efficiency of AdaAM.

Index Terms— Affinity Learning, Feature Projection, Di-
mensionality Reduction, Spectral Clustering

1. INTRODUCTION

Spectral clustering methods which are based on eigendecom-
position demonstrate splendid performance on many real-
world challenge data sets. During the past decades, a series of
spectral clustering methods have been proposed: Multidimen-
sional Scaling (MDS) [1], Local Linear Embedding (LLE)
[2], Isomap [3], Laplacian Eigenmaps [4] and variant of Spec-
tral Clustering [5]. There are three shortages of spectral clus-
tering methods mentioned above. First, these approaches
only provide the embedding map of the training data. The
out-of-sample extension is not straightforward. Second, The
complexity of these approaches relies on the number of data
points. Third, the performance of spectral clustering methods
highly depend on the robustness of the affinity graph.

Many important progresses [6, 7, 8, 9, 10, 11, 12, 13, 14]
have been made to mitigate the above issues of the spectral
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clustering. Locality Preserving Projections (LPP) proposed
in [7] introduces a linear projection obtained from Laplacian
Eigenmaps. Their work provides a linear approximation of
the embedding mapping, which reduces the time complexity
and achieves out-of-sample extension straightforwardly. The
linear embedding gives a metric learning perspective of the
spectral clustering. Nie, Wang, and Huang proposed the Pro-
jected Clustering with Adaptive Neighbors (PCAN) in [14]
where they regard the pairwise similarity as an extra vari-
able to be solved in the optimization problem and they set a
penalty of the rank of graph Laplacian to restrict specific con-
nected components in the affinity matrix. With this frame-
work, PCAN alternately update affinity matrix and projec-
tion. Although some affinity learning algorithms have been
proposed in recent years, the technique of choosing an appro-
priate affinity matrix is still remained to be addressed.

Our goal is to extract more adaptive similarity information
with minimal extra time consumption for the linear approxi-
mation of spectral clustering. Such information will take the
objective of locality preserving rather than only the distance
between images into consideration. Inspired by the recent
progress on scalable spectral clustering [10] and data sim-
ilarity learning [14], we propose a novel approach dubbed
Adaptive Affinity Matrix (AdaAM). Our affinity matrix is rel-
atively dense and can capture both global and local informa-
tion. Specifically, AdaAM decomposes the affinity graph into
a product of two low-rank identical matrices. As the ideal
case described in [5], if we assume the pairwise affinity in the
same class are exceedingly similar, the affinity matrix may
turn into a low-rank matrix. We optimize the decomposed
matrix with the similar scheme of spectral clustering. The
affinity graph obtained by optimization is used as an interme-
diate affinity matrix, firstly. With the combination of the in-
termediate affinity matrix and the k-NN affinity graph derived
by the heat kernel, we figure out a final adaptive affinity ma-
trix from a naive spectral clustering. We conduct the affinity
graph with the data projection and apply LPP to this specific
graph to learn a metric for clustering.

We illustrate the effective and efficiency of the proposed
approach for clustering on image data sets. We show the ad-
vantage of AdaAM for challenging data sets by comparing
our approach with k nearest neighborhood heat kernel (kNN)



[4] and some other state-of-the-art algorithms in Section 3.
Our main contribution is that we integrate the affinity ma-

trix learning into the framework of spectral clustering with the
same paradigm, and we employ the low rank trick to make our
approach more efficient.

2. ADAPTIVE AFFINITY MATRIX

2.1. Notation

In this paper, we write all matrices as uppercase (English or
Greek alphabet) and vectors are written as lowercase. The
vector with all elements one is denoted by 1. H is the cen-
tering matrix denoted by H = I − 1

n11
T. The origin data

matrix is denoted by X ∈ Rn×d, where n is the number of
the data points and d is the dimension of the data. X is as-
sumed to be normalized with zero mean, i.e. X = HX . The
denotation xi means the i-th data point vector. We also de-
note the linear projection by A and denote the metric matrix
by M = ATA. Hence the Mahalanobis distance based on
is dism(xi, xj) = (xi − xj)TM(xi − xj). The k-NN heat
kernel matrix is denoted by W ∈ Rn×n with

wij =

{
exp(−‖xi−xj‖2

t ), xi ∈ Nk(xj) or xj ∈ Nk(xi)

0, otherwise

(1)
whereNk(x) is the set of k nearest neighbors of x. The corre-
sponding Laplacian matrix is denoted by L = D−W , where
D is the diagonal matrix with dii =

∑
j wij . We also de-

note both intermediate increment and final adaptive affinity
matrix as ∆, the corresponding diagonal weight matrix and
Laplacian matrix as D∆ and L∆ = D∆ −∆.

2.2. Intermediate Affinity Matrix

We separate our algorithm into two parts, intermediate affinity
matrix and final adaptive affinity matrix. In this section, we
will introduce the first part. For the i-th data point xi, we
connect any the data point xi to the data point xj with the
similarity δij . With the hope that small Euclidean distance
between two data points leads to a large similarity, we aim to
choose δij to minimize the following objective function

min

n∑
i,j

‖xi − xj‖22 δij (2)

under appropriate constraints, where δij is the ij-th element
of the intermediate affinity matrix ∆.

Different from PCAN [14], we reformulate the equation
with graph Laplacian,

min tr(XTL∆X) (3)

under some constraints.

With a straightforward thought we can decompose the
Laplacian into two identical matrices, since the graph Lapla-
cian is a positive semidefinite matrix in general. We show this
thought is not appropriate in our framework as follows.

If we assume that

L∆ = UUT (4)

where U ∈ Rn×s is a column orthogonal matrix with UTU =
I . With the relaxing of the constraints, we finally need to
solve the problem

U = arg min
UTU=I

tr(XTUUTX)

⇒ U = arg min
UTU=I

tr(UTXXTU)
(5)

If we assume the product of matrix X to be K (i.e.
K = XXT ), the Eq. (5) gives a simple form of the Laplacian
Eigenmaps

This optimization problem can be solved by selecting
eigenvectors of matrix K corresponding to several smallest
eigenvalues. However, K is a low-rank matrix generally with
d � n and the eigenvectors of K minimizing the objective
function in Eq. (5) is in the null space of X . Hence, the solu-
tion of above problem is not unique. Inspired by LSC [10] we
assume the affinity matrix to be a positive semidefinite ma-
trix and decompose it into the product of a matrix P ∈ Rn×t

with orthogonal columns and PT instead of decomposing the
Laplacian matrix, where t is the expected rank of ∆.

Therefore we reformulate Eq. (3) as

min
PTP=I

tr(XTD∆X) + tr(XT (−PPT )X) (6)

where we abandon the properties that connected weight is
non-negative and the graph Laplacian is positive semidefinite.
The negative connected weights in ∆ can be used to measure
the dissimilarity between data points. We will show that the
solution of this optimization problem makes D∆ equal to 0.

For the first part of Eq. (6), we can write it as

min

n∑
i=1

‖xi‖22 d∆ii

s.t. PTP = I

d∆ii = (PPT 1)i

(7)

Let z = (‖x1‖22, ‖x2‖22, ..., ‖xn‖22)T . With a Lagrange
multipliers λ, the one dimensional situation of problem (7)
can be rewritten as

min zT ppT 1− λ(pT p− 1) (8)

Finally, the minimization problem (7) reduces to finding
the eigenvector corresponding to the minimum eigenvalue of
the problem 1zT p = λp. Because the matrix 1zT has rank



1 2 3 4 5 6 7 8 9 10
0.67

0.675

0.68

0.685

0.69

0.695

0.7

0.705

0.71

Number of Iterations

A
c
c
u

ra
c
y

(a)

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

x 10
6

Magnitude

F
re

q
u

e
n

c
y

(b)

Fig. 1. (a)The evaluation of the clustering performance with
different times iterative computation on the data set USPS.
The contribution to accuracy made by iteration is less than
0.5%. (b)The histogram of the element magnitude of the final
adaptive affinity matrix obtained from data set USPS.

one, there is only one nonzero eigenvalue
∑n

i=1 ‖xi‖22, which
implies λ = 0. Hence, for the P satisfying problem (7) with
arbitrary column number less than n, we have zTPPT 1 = 0.
It is equivalent to

n∑
i=1

‖xi‖22 d∆ii = 0 (9)

Generally, in real-world data set, ‖xi‖23 6= 0 always holds,
thus, the P minimizing the first part of the objective function
(6) has the propertyD∆ = 0. Meanwhile the set of all P with
the property D∆ = 0 is the solution of Eq. (7).

The matrix P , which minimizes the second part of the
objective function (6), is given by the maximum eigenvalue
to the eigen problem:

(XXT )p = λp⇒ 1XXT p = λ1p (10)

As the dataX has zero mean, we have λ1p = 1XXT p =
0. Therefore, for the maximum eigenvalue which is larger
than 0, the corresponding eigenvector always satisfies 1p = 0.
Let the minimum solution of the second part of problem (6)
be P = (p1, p2, ..., pt). We have

1TP = 0⇒ 1TPPT = 0⇒ d∆ii = 0 (11)

which means that the property D∆ = 0 holds for the optimal
solution of the second part of (6) and the solution is in the
set of the solution of Eq. (7). Therefore the solution of the
second part of Eq. (6) can also optimize the object function
(7) and the solution of the optimization problem (6) makes
D∆ equal to 0. The objective function (6) can be reduced to

P = arg max
PTP=I

tr(PTXXTP ) (12)

which has the solution as singular value decomposition of X
with complexity relies on d rather than n. We obtain the in-
termediate affinity matrix ∆ = PPT from the distribution of
origin data with similarity and dissimilarity information. The
graph Laplacian of ∆ is L∆ = D∆ −∆ = −∆.

To mitigate the impact of noise and rank reducing prob-
lem, we apply sparsification to ∆. We will discuss the sparsi-
fication further in Section 2.4.

Algorithm 1 Adaptive Affinity Matrix
Input:

Data points X ∈ Rn×d; cluster number c; neighborhood
size k; reduced dimension m;

Output:
Mahalanobis metric M and linear projection A.

1: Construct the k-NN heat kernelW , the corresponding di-
agonal weight matrix D and the Laplacian matrix L;

2: Compute the P with orthogonal columns according to
Eq. (12) for the intermediate affinity matrix ∆ = PPT ;

3: Get the linear projection matrix A according to Eq. (13);
4: Produce a new matrix P according to Eq. (16) for the

final adaptive affinity matrix ∆ = PPT ;
5: Get linear projectionA ∈ Rm×d and Mahalanobis metric
M = ATA by applying LPP to the affinity matrix ∆+D;

2.3. Final Adaptive Affinity Matrix

In this section, we formulate a naive linear spectral clustering
and provide the final adaptive affinity matrix.

With the intermediate affinity matrix ∆, we can solve the
following problem for a linear projection A:

a = arg min
aT a=1

tr(aTXT (L+ L∆)Xa) (13)

where a is the one-dimension case of A and L + L∆ is the
combination of the Laplacian of k-NN heat kernel and the
intermediate affinity matrix. The projection vector a is given
by the minimum eigenvalue of the eigen problem:

XT (L−∆)Xa = λa (14)

Subsequently, to compute L∆ of Eq. (13) given A, we
rewrite the affinity optimization problem with the linear pro-
jection matrix A as we did in Eq. (6)

P = arg min
PTP=I

(
c+ tr(ATXTD∆XA)

+ tr(ATXT (−PPT )XA)
) (15)

where we assume the final adaptive affinity matrix to be ∆ =
PPT and c = tr(ATXTLXA). The property D∆ = 0 still
holds, because of the zero mean of XA. Therefore, Eq. (15)
reduces to

P = arg max
PTP=I

tr(PTXAATXTP ) (16)

This can be solved by singular value decomposition of
matrix XA and taking the left-singular vectors which corre-
spond to the largest singular values. We apply sparsification
on the adaptive affinity matrix ∆ = PPT obtained from Eq.
(16) and attain the sparse affinity matrix.

Intuitively, we can iterate Eq. (13) and Eq. (16) to min-
imize the value of objective function. However, as Fig. 1(a)



Table 1. Clustering accuracy on image data sets(%)
AdaAM k-NN Cons-kNN DN ClustRF-Bi PCAN-kMeans PCAN

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max
UMIST 66.06 75.65 58.16 65.39 60.27 69.22 59.15 66.96 64.63 74.44 53.79 56.52 55.30
COIL20 74.72 87.29 71.89 81.18 75.53 84.31 71.95 82.01 76.50 85.07 72.28 83.75 81.74
USPS 69.36 69.61 68.25 68.35 68.21 68.34 68.08 68.31 58.74 65.90 64.04 67.95 64.20

MNIST 60.84 61.34 48.13 48.27 47.88 48.00 49.72 49.76 51.93 52.03 58.93 58.98 59.83
ExYaleB 54.36 57.87 24.17 26.76 25.63 28.75 24.21 27.42 23.10 26.43 25.74 27.63 25.89

shows, the adaptive affinity matrix with only once iteration
performs well in practice and the continuing iterations show
no remarkable outperformance.

Since the weight of nodes in the graph plays an important
role in some algorithms and methods based on Normalized
Cuts [15] like LPP has the constraint relying on D∆. In our
approach we have D∆ = 0, therefore we add the weight ma-
trix D computed from the k-NN heat kernel to our affinity
matrix. Finally, we replace the affinity matrix in LPP with the
matrix ∆ + D to get the linear projection A and the metric
matrix M = ATA.

2.4. Sparsification Strategy

From the optimization problem (12) and (16), we can observe
that the matrices XXT and XAATXT are both low-rank
matrix. Seeing that the solution of the optimization problem
mentioned above is based on the singular value decomposi-
tion, this low-rank fact will result in that the column number
of the solution P could be far less than the rank of XXT

and XAATXT . This process will produce a low-rank affin-
ity matrix which leads to a progressively rank decreasing in
our approach. To prevent the rank decreasing happening, we
implement sparsification in our approach. The sparsification
strategy may mitigate the problem of noise edges as well.

Fig. 1 justifies our sparsification procedure by demon-
strating the histogram of the magnitude of the final adaptive
affinity matrix obtained from Eq. (16) without sparsification.
We can observe that most elements of the affinity matrix con-
centrate in the range with small magnitude, and the sparsifica-
tion procedure may reserve a portion of the affinity elements
which are more representative.

Inspired by the thought of k-NN heat kernel, we sort all
the elements of affinity matrix ∆ by decreasing magnitude
and only reserve the first t elements. We consider that the
parameter t is better to be in inverse proportion to the number
of clusters, in which case the average elements reserved for
each cluster will be proportionate to the number of data points
in each cluster. The t is selected by following equation:

t = bn
2

αc
c (17)

where b·c is the floor function, n2 is the number of elements
in ∆, c is the number of clusters and α is a coefficient.

We set α to be 2.5 for the first sparsification in the compu-
tation of the intermediate affinity matrix and set α to be 5 for
the second sparsification in the computation of the final adap-
tive affinity matrix. The α is decided by a rough parameter
search, and it gives a stable performance in most data sets.

We summarize our algorithm in Algorithm 1. We set re-
duced dimension m to be the same as the number of classes

3. EXPERIMENTS

In this section, we conduct several experiments to demon-
strate the effectiveness and efficiency of the proposed ap-
proach AdaAM.

3.1. Data Sets

We evaluate the proposed approach on five image data sets:
UMIST The UMIST Face Database consists of 575 im-

ages of 20 individuals with 220×220 pixels [16]. We use the
images resized to 40×40 pixels in our experiments.

COIL20 A data set consists of 1,440 images of 20 objects
with discarded background [17].

USPS The USPS handwritten digit database has 9,298 im-
ages of 10 digits with 16×16 pixels [18].

MNIST The MNIST database of handwritten digits has
70,000 images of 10 classes [19]. In our experiments, we
select the first 10,000 images of this database.

ExYaleB The Extended Yale Face Database B consists
of 2,414 cropped images with 38 individuals and around 64
images under different illuminations per individual [20].

The statistics of data sets are summarized in Tab. 2.

Table 2. Statistics of five benchmark data sets
Data set # of instances # of features # of classes
UMIST 575 1600 20
COIL20 1440 1024 20
USPS 9298 256 10

MNIST 10000 784 10
ExYaleB 2414 1024 38

3.2. Compared Algorithms

We compare our approach with the other affinity learning al-
gorithms described in Section Related Work. We adopt LPP
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Fig. 2. Comparison between different with different of neigh-
borhood size k

to the affinity matrices generated by these state-of-the-art ap-
proaches to obtain the distance metric.

Con-kNN Cons-kNN Consensus k-NNs [12] with the
aim of selecting robust neighborhoods.

DN Dominant Neighborhoods proposed in [11].
ClustRF-Bi A spacial case of ClustRF-Strct [13], which

is also proposed in [21, 22]. Due to the huge memory re-
quirement of ClustRF-Strct on the data set with thousands in-
stances, we implement this special case in our experiments.

PCAN Projected Clustering with Adaptive Neighbors
proposed in [14]. Because PCAN is an algorithm which can
generate the linear projection and clusters simultaneously, we
denote the method combining the projection of PCAN and
k-Means as PCAN-kMeans and we also show the clustering
result of PCAN in Tab. 1 for reference.

We also compare our approach with the k-NN heat kernel
affinity matrix. We use k-NN to denote this typical approach.

3.3. Parameter Selection and Experiment Details

Because there is no validation data set in unsupervised learn-
ing tasks, for more general case, we impose the same pa-
rameter selection criteria on all the algorithms in our ex-
periments. We set the size of neighborhood to be k =
Round(log2(n/c)), where n is the number of data instances
and c is the number of classes. We also set the projected di-
mension, which is equal to the rank of metric matrix, to be the
same as the number of classes [5]. All the other parameters in
our approach are fixed in every experiment.

We denote 10 times of k-Means as a round and select
the clustering result with the minimal within-cluster sum as
the result of each round of k-Means. We apply 100 rounds
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Fig. 3. Time consumption of six approaches with different
number of data instances

k-Means to each algorithms for the evaluation of the perfor-
mance (Tab. 1), 10 rounds k-Means for the experiment of the
sensitivity to the neighborhood size k (Fig. 2) and one round
k-Means for the experiment of execution time (Fig. 3).

3.4. Experiment Results

In the experiment of clustering accuracy, we evaluate the pro-
jection ability of AdaAM with other five algorithms on five
benchmark data sets mentioned above. Tab. 1 gives the av-
erage and the maximal accuracy of 100 rounds k-Means of
each model. From Tab. 1, we can observe that superiority
of AdaAM on the task of the unsupervised metric learning.
In most case, AdaAM performs much better than the other
approaches. Our approach attains four best results of the av-
erage accuracy and five best maximal accuracy on five data
sets. We can also observe that the proposed AdaAM deci-
sively outperforms other five methods on ExYaleB data set.
Different from the other data sets, the image data in ExYaleB
are properly aligned and under different illumination. This
difference makes some images more similar to the image in
different class under the same illumination, which result in a
high rank affinity matrix. Our approach is based on a low rank
approximation of the optimal affinity matrix with the ability
to handle such noises in the affinity matrix.

Since the neighborhood size k selection criteria is fixed
in the experiment of accuracy, which may cause the loss of
the best performance, we show the trend of accuracy accord-
ing to the size of neighborhood in Fig. 2. Fig. 2 shows that
AdaAM attains the best result in most cases and the sensitiv-
ity to the size of neighborhood is better or comparable to the
other models. Since our approach is based on the low rank
approximation of the optimal affinity matrix, it requires more
information from the pairwise similarity. Hence, for small k,
baseline methods are sometimes better than our approach.

Fig. 3 illustrates the efficiency of AdaAM by the semi-
log graph of execution time with different number of data
points selected from MNIST. It can be observed that our ap-



proach is a inexpensive algorithm in practice with much lower
time consumption to PCAN-kMeans, ClustRF-Bi and DN.
We also show that AdaAM keeps approximately double time
consumption to Cons-kNN with the much better performance.

4. CONCLUSION

In this paper, we present a novel affinity learning approach for
unsupervised metric learning, called Adaptive Affinity Ma-
trix (AdaAM). In our new affinity learning model, the affinity
matrix is learned from the same framework of spectral cluster-
ing. More specifically, we show that the affinity learning can
be reduced to a singular value decomposition problem. With
the affinity matrix learned, the distance metric can be derived
by some off-the-shelf approaches based on the affinity graph
like LPP. Extensive experiments on clustering image data sets
demonstrate the superiority of the proposed method AdaAM.
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