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Abstract— In some tasks that require sustained attention,
vigilance levels of the operator might become very important.
EEG has been proved very effective for measuring vigilance.
However, many difficulties exist in this field such as how to label
the EEG data, how to remove the noise from the EEG data and
so on. In this paper, we introduce a very useful signal transform
method, Common Spatial Pattern, to process the EEG data. Also
we use unsupervised learning methods for analyzing the EEG
data under two extreme cases, sleeping and awake, and discard
other middle vigilance states. The results of our experiments are
quite promising and give a direction for the vigilance labelling
and feature selection in the future work.

I. INTRODUCTION

During the past few decades, studies on vigilance (alertness)
have shown that vigilance estimation is very useful to our
daily lives. For many human machine interaction systems, the
operators should retain vigilance above a constant level. For
example, airway dispatchers, pilots and long-distance truck
drivers need to retain a high level of vigilance. However, many
studies of vigilance research during the past few decades have
shown that, for most or all operators engaged in attention-
intensive and monotonous tasks, retaining a constant level of
alertness is rare if not impossible. As a result, we need a
effective method to measure the current vigilance level of the
operator.

Previous studies have shown that information regarding
alertness and cognition is available in electroencephalographic
(EEG) recordings [1][2]. Comparing with other techniques
such as face recognition, EEG signals can reflect the vigilance
levels much sooner and more accurately. Figure 1 shows
the framework of vigilance monitoring system for simulated
driving environment. In the figure, EEG signals of the subject
are collected and transferred to the computer for analyzing.
Then the feedback from the computer is shown on the screen.

In EEG-based vigilance research field, most effort focuses
on the evoked potential (EP) response under different vigilance
levels [3]-[10]. Recently, the group mean performance of EEG
signals under different vigilance levels is used. According to
the mean performance during a fixed time period, vigilance
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Fig. 1. The framework of vigilance monitoring system for simulated driving
environment.

levels can be estimated. Then the relation between EEG
and vigilance is analyzed. However, during these vigilance
experiments, the time window for calculating the mean per-
formance is usually too long to estimate the vigilance levels
in time. Besides, vigilance levels can be estimated according
to the power spectral density (PSD) distribution or the energy
changes of specific rhythm. Comparing to other methods, these
analyzing methods are much more expensive and difficult
to implement. The technical challenges involve in estimating
vigilance levels using EEG signals include getting enough
accurate EEG signals corresponding to each vigilance levels,
variations between subjects, sensor characteristics, subject
reaction to the environmental sounds and lights, techniques
used to analyze the EEG data, and so on.

This research shows that indeed there is relationship be-
tween the vigilance level and the EEG signals. Vigilance
analysis based on EEG signals is divided into the following
four steps [16]. Firstly, obtain large amount of EEG data
and the corresponding vigilance levels. Secondly, perform
preprocessing to the EEG data such as noise reduction and



artifacts removal. Thirdly, transform the EEG signals and ex-
tract features from these signals. At last, analyze the vigilance
levels these signals belong to. The detailed techniques used in
this paper are discussed below.

In this paper, we use unsupervised learning methods to
analyze the spatio-temporal features of the EEG data and
try to differentiate the EEG signals of different vigilance
levels. Firstly, we mainly use Common Spatial Patterns (CSP)
[11][12] to select the vigilance related features. Then, we use
several clustering methods trying to distinguish EEG signals
of different vigilance levels. At last we compare and analyze
the results of the experiment.

This paper is organized as follows. In section II, the methods
used for vigilance analysis are described. In section III,
experimental setup and results are presented. Finally, some
conclusions are drawn in section IV.

II. METHODS

The whole process in our experiments consists of three
main parts. Firstly EEG signals are preprocessed for artifact
and noise reduction. We remove the noise caused by the eye
blinking and muscle movement and discard other abnormal
EEG data. This is achieved by using Editor4.3 from the
NeuroScan System. Then related features are extracted, and
the appropriate features are selected. Finally, we use several
clustering methods such as normalized cut and bipartite graph
soft clustering to cluster the data.

A. EEG Preprocessing

Originally, the EEG signals contain a lot of artifacts and
unrelated signals. Generally speaking, there are two types of
artifacts [13]. The first type is the extra cerebral source artifact
which is recorded together with EEG, such as electrooculo-
gram (EOG), electromyography (EMG), and ECG. The second
type is the technical artifact resulting from the EEG recording
system, such as signal drift and decay.

In our experiments, the 128-channels NeuroScan System
SynAmps is used to record EEG signals. The extra cerebral
source artifacts mainly consist of EOG and EMG induced
by movement. The EOG signals are removed by Scan4.3
software installed in the NeuroScan System. And obvious
EMG signals are rejected by hand. For the high performance
of the NeuroScan System, the technical artifacts could be
ignored except the signal drift which could also be corrected
by Scan4.3 software.

B. Feature Extraction and Selection

Besides the artifacts we talked about in the last section,
there exist a lot of background signals which are unrelated to
vigilance change. So we need a decomposition method which
can extract the EEG signals we interested in. As we know,
there are a lot of classical or effective decomposition methods.
But unfortunately, as the energy of background signals is much
greater than the energy of the signals we interested in, most
of them are not suitable under this situation. Here we use

Common Spatial Patterns (CSP) [11][12] to extract signals of
two distinct vigilance states of the subjects.

CSP can be seen as a variation of Principal Components
Analysis (PCA). During the CSP processing, the EEG signals
with two different labels are firstly whitened and then projected
to the common spatial patterns. After that, the spatial patterns
corresponding to the largest difference between the two kinds
of EEG signals are chosen as the projection factors. Finally,
it uses the projection factors to decompose the EEG signals.
An illustration is shown in Fig 2.
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Fig. 2. X , Y , Z denote the common spatial patterns of whitened 2 conditions
3D data, two ellipsoids denotes the variance of two conditions data. The
variance of two conditions data is the same on Y , much different on X and
Z. So common spatial patterns X and Z should be chosen as the optimal
separating projection factors.

CSP projection can be formulated as,

Z = PV (1)

where V denotes the original signals, P denotes the projection
matrix and Z denotes the decomposed signals.

Suppose two kinds of EEG signals are denoted by Xa and
Xb, respectively. Both of them are the combinations of events-
related signals and background signals.

Xa = [Ca1, Ca2]
[

Sa

Sc1

]
, Xb = [Cb1, Cb2]

[
Sb

Sc2

]
(2)

where Sa and Sb are the events-related signals, Sc1 and Sc2

are the background signals, Cai and Cbi are the combination
coefficients. Assume that Sc1 and Sc2 are the same background
signals, then CSP can be used to extract the events-related
signals Sa and Sb.

The detailed algorithm is described as follows: Denote the
centralized multi-channels EEG signals under two conditions
as VA and VB with dimensions of K (channels) by L (sam-
ples). For convenience, we assume L > K. The covariance



matrix of EEG signals under the two conditions can be
estimated by

RA = VAV T
A , RB = VBV T

B (3)

where RA and RB are K by K matrices. Then take the sum
two covariance matrices as R and factorize it into the product
of eigenvectors and eigenvalues,

R = RA + RB (4)

R = UΣUT (5)

where U is the matrix of eigenvectors and Σ is the matrix of
eigenvalues.The whitening transformation matrix is formed as
follows.

W = Σ−1/2UT (6)

It can be shown that if RA and RB are individually trans-
formed as

TA = WRAWT , TB = WRBWT (7)

then TA and TB have the following properties: They share
common principal components, and the sum of the correspond-
ing eigenvalues for the two matrices will always be one, i.e.

TA = UCΣAUT
C , TB = UCΣBUT

C (8)

ΣA + ΣB = I (9)

The above results show that, the variance of the principal
components are maximal for condition A and minimal for
condition B. So this transformation is optimal for separating
the two kind of EEG signals. At last, the CSP decomposition
can be expreseed as

S = PV = UT
C WV (10)

where V is the EEG signals matrix, and S is the matrix of
common spatial components.

In order to separate the two kinds of EEG signals opti-
mally, the common spatial components corresponding to large
eigenvalues in one condition and small eigenvalues in another
condition should be chosen as the projection factors. So the
projection matrix should be,

PS = UT
CSW (11)

where UT
CS is the selected CSP, and PS is the final projection

matrix.
Many vigilance researches show that for spontaneous EEG

signals, vigilance changing is mainly reflected by PSD chang-
ing. Figure 3 shows the distribution of EEG energy around 3Hz
on the scalp. We can obviously see that the energy changing
from clear-headed to sleeping state is quite distinct.

So after CSP transform, we use discrete short time fourier
transform to extract the PSD of each CSP projected EEG
signals Y and take the PSD bellow 50Hz as the feature
information with frequency resolution 1Hz.

VPSD = STFT{Y } (12)

where STFT denotes short time fourier transform, and VPSD

is the PSD matrix with dimension 50×M by N (number of
time window).

EEG signals can be divided into the following 5 rhythms
[26]:
• δ rhythm 0.5-3.5Hz
• θ rhythm 4-7Hz
• α rhythm 8-13Hz
• β rhythm 14-25Hz
• γ rhythm above 26Hz

From awake state to sleepy state, EEG energy around 13Hz
(between α rhythm and β rhythm) will gradually decrease,
meanwhile EEG energy around 4Hz (between δ rhythm and
θ rhythm) will gradually increase. We choose the signals with
energy between 2Hz and 30Hz as features for further analysis.

Then we use PCA to reduce the dimension of the feature
matrix,

VR = PRVPSD (13)

where PR is the matrix of principals spatial patterns with
dimension m by 50 ×M , and VR is the m by N dimension
reduced feature matrix.

C. Clustering

We use several clustering methods such as Normalized cut
[14], soft clustering [15] and K-mean to cluster the EEG data.

The algorithm of soft clustering is described briefly as
follows. Denote W as the matrix of pairwise data relations
with dimension N by N , and B as the matrix of relations
between data and clusters with dimension N by k (number of
clusters). The relations among Vi can be formed as,

W̃ = (BΛ−1BT ), Λ = diag(λ1, ..., λk) (14)

where λj =
∑N

i=1 Bij . If we want to get a optimal estimation
of B, the divergence between W and W̃ must be minimized.
To make the problem easy to solve, we replace BΛ−1 by H .
Then the objective function is formed as,

min{l(W,HΛHT )}, s.t.
N∑

i=1

Hip = 1 (15)

where l(·, ·) is a divergence operator. Let l(X, Y ) =∑
i,j [Xij log(Xij/Yij)−Xij + Y ij], then the objective func-

tion in Equation (15) can be reduced by the following update
rules,

H̃ip ∝ Hip

∑

j

Wij

(HΛHT )ij
λjHjp,

∑

i

H̃ip = 1 (16)

λ̃p ∝ λp

∑

ij

Wij

(HΛHT )ij
HipHjp,

∑
p

λ̃p =
∑

ij

Wij (17)

Finally, we get the data cluster relations,

B = HΛ (18)

Then the relation between data and clusters can be seen as the
probability that the data belongs to the clusters.
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Fig. 3. Distribution of EEG energy around 3Hz on the scalp.

III. RESULTS

The EEG signals we used in our experiment are acquired
though the equipment Scan4.3 of the NeuroScan System. The
subject wears a special hat with 64 electrodes connected to
the amplifier of the NeuroScan system (see Figure 4). He or
she lies on the bed in a normally illuminated and insulated
room, trying to go to sleep( see Figure 5). The temperature
of the room is kept at about 24 degrees and the humidity is
kept between 40% and 60%. 64 channels of signals including
4 channels of EOG are recorded. Each experiment lasts about
one hour. During the experiment, a period of soft and short
music is presented to the subject several times. The music
lasts 10 seconds and volume of the music is tuned such that
the subject will not be disturbed during the sleeping process.
If the subject hears the music which shows that he or she is
awake, the subject just opens his or her eyes. If not, the subject
keeps on sleeping and it means that he or she falls asleep. We
used a DV camera to record the subject’s activities. Figure 6
shows the waveforms of original EEG data. The sharp peaks
in the figure are probably caused by EMG or EOG. The EEG
signal around the time when the music is played is discarded.

In our experiments, 20 channels of EEG data recorded from
electrodes located at the center of the head are used. The
distribution of electrodes is shown in Figure 7. Electrodes are
arranged based on extended 10/20 system.

Short-time Fourier Transform is used to transform the
results of the CSP transform to the frequency field. We choose
the EEG signals of frequency between 2Hz and 30Hz to
analyze. Then PCA is used to reduce the dimensions. The
main results of these methods are shown below. We select the
EEG data when the subject is completely awake or sleeping
and discard other data when the vigilance level of the subject
is in between. Then K-mean, Normalized-Cut and soft cluster
are used to cluster the EEG data in different situations. We
make a decision on the current vigilance state of the subject
every 4 seconds.

Figure 8 shows the results of clustering the original EEG
data directly using K-mean, normalized-cut and soft cluster.
Figure 9 shows the results of clustering the data after CSP
transform and feature selection. From these figures, we can
easily find that CSP transform could greatly increase the
accuracy of the clustering. Also soft cluster outperforms the

Fig. 4. The subject wears a special hat with 64 electrodes connected to the
amplifier of the NeuroScan system. The four electrodes attached to the face
of the subject are used to record EOG.

Fig. 5. The environment of our experiments. The subject lies on the bed in
a normally illuminated and insulated room, trying to go to sleep.
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Fig. 6. The shape of the original EEG data. The sharps in the signal are probably caused by EMG or EOG.
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Fig. 7. Electrodes distribution of extended 10/20 system. Totally 64 channels of EEG signals are recorded. We use 20 channels located in the center of the
head to analyze.

other two clusters a bit.
Figure 10 shows the results of clustering the EEG data into

three levels of vigilance.

IV. CONCLUSION

In this paper, we analyze the EEG data and extract features
corresponding to two distinct vigilance levels: awake and
sleeping, and avoid the middle levels. Also we introduce
common spatial pattern and other signal processing methods to
analyze EEG data for the vigilance estimation. From Figure 9
we can see that the two extreme states, sleeping and awake,
can be discriminated precisely. From Figure 10, even different
sleeping levels can be described to some extend. The level two
and three can be seen as different waking levels. As a result,
common spatial pattern and the power spectrum analysis can
be good tools for analyzing the EEG signals.

Previously, researchers only analyzed the statistical rela-
tionship between the vigilance state and the EEG signals.
In this paper, we use unsupervised learning method to ana-
lyze the EEG data of two extreme cases and discard other
middle vigilance states in order to discover the distribution
of the EEG data by using spatio-temporal filters and signal
decomposition methods. This paper reports our preliminary
results for estimating different vigilance levels with EEG
signals. The results are quite promising and give a direction
for the vigilance labeling and feature selection for the real
time vigilance estimation system in the future.
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Fig. 8. Cluster the original EEG data into two levels using (a) K-Mean
algorithm, (b) Normalized-Cut algorithm; (c) Soft clustering algorithm. X-
axis represents the time and Y-axis is the vigilance levels. The top line stands
for the sleeping state and the bottom line stands for the waking state.
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