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Abstract

Who did what to whom is a major focus in nat-
ural language understanding, which is right
the aim of semantic role labeling (SRL) task.
Despite of sharing a lot of processing charac-
teristics and even task purpose, it is surpris-
ingly that jointly considering these two related
tasks was never formally reported in previ-
ous work. Thus this paper makes the first at-
tempt to let SRL enhance text comprehension
and inference through specifying verbal pred-
icates and their corresponding semantic roles.
In terms of deep learning models, our embed-
dings are enhanced by explicit contextual se-
mantic role labels for more fine-grained se-
mantics. We show that the salient labels can
be conveniently added to existing models and
significantly improve deep learning models in
challenging text comprehension tasks. Exten-
sive experiments on benchmark machine read-
ing comprehension and inference datasets ver-
ify that the proposed semantic learning helps
our system reach new state-of-the-art over
strong baselines which have been enhanced by
well pretrained language models from the lat-
est progress.

1 Introduction

Text comprehension is challenging for it requires
computers to read and understand natural language
texts to answer questions or make inference, which
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is indispensable for advanced context-oriented dia-
logue (Zhang et al., 2018d; Zhu et al., 2018) and in-
teractive systems (Chen et al., 2015; Huang et al.,
2018; Zhang et al., 2019a). This paper focuses on
two core text comprehension (TC) tasks, machine
reading comprehension (MRC) and textual entail-
ment (TE).

One of the intrinsic challenges for text compre-
hension is semantic learning. Though deep learn-
ing has been applied to natural language process-
ing (NLP) tasks with remarkable performance (Cai
et al., 2017; Zhang et al., 2018a; Zhang and Zhao,
2018; Bai and Zhao, 2018; Zhang et al., 2019b; Xiao
et al., 2019), recent studies have found deep learn-
ing models might not really understand the natural
language texts (Mudrakarta et al., 2018) and vulner-
ably suffer from adversarial attacks (Jia and Liang,
2017). Typically, an MRC model pays great atten-
tion to non-significant words and ignores important
ones. To help model better understand natural lan-
guage, we are motivated to discover an effective way
to distill semantics inside the input sentence explic-
itly, such as semantic role labeling, instead of com-
pletely relying on uncontrollable model parameter
learning or manual pruning.

Semantic role labeling (SRL) is a shallow seman-
tic parsing task aiming to discover who did what
to whom, when and why (He et al., 2018; Li et al.,
2018a, 2019), providing explicit contextual seman-
tics, which naturally matches the task target of text
comprehension. For MRC, questions are usually
formed with who, what, how, when and why, whose
predicate-argument relationship that is supposed to
be from SRL is of the same importance as well. Be-



Passage

...... Harvard was a founding member of the Association of American Universities
in 1900. James Bryant Conant led the university through the Great Depression
and World War II and began to reform the curriculum and liberalize admissions
after the war. The undergraduate college became coeducational after its 1977
merger with Radcliffe College.......

Question

What was the name of the leader through the Great Depression and World War I1?

SRL
led ,
VERB
ey oy p e 4
James Bryant Conant  the university the Great Depression and World War II
ARGO ARGI ARG2

Answer

James Bryant Conant

Figure 1: Semantic role labeling guides text comprehen-
sion.

sides, explicit semantics has been proved to be ben-
eficial to a wide range of NLP tasks, including dis-
course relation sense classification (Mihaylov and
Frank, 2016), machine translation (Shi et al., 2016)
and question answering (Yih et al., 2016). All the
previous successful work indicates that explicit con-
textual semantics may hopefully help into reading
comprehension and inference tasks.

Some work studied question answering (QA)
driven SRL, like QA-SRL parsing (He et al., 2015;
Mccann et al., 2018; Fitzgerald et al., 2018). They
focus on detecting argument spans for a predicate
and generating questions to annotate the seman-
tic relationship. However, our task is quite differ-
ent. In QA-SRL, the focus is commonly simple and
short factoid questions that are less related to the
context, let alone making inference. Actually, text
comprehension and inference are quite challenging
tasks in NLP, requiring to dig the deep semantics
between the document and comprehensive question
which are usually raised or re-written by humans,
instead of shallow argument alignment around the
same predicate in QA-SRL. In this work, to allevi-
ate such an obvious shortcoming about semantics,
we make attempt to explore integrative models for
finer-grained text comprehension and inference.

In this work, we propose a semantics enhance-
ment framework for TC tasks, which boosts the
strong baselines effectively. We implement an easy

and feasible scheme to integrate semantic signals in
downstream neural models in end-to-end manner to
boost strong baselines effectively. An example about
how contextual semantics helps MRC is illustrated
in Figure 1. A series of detailed case studies are
employed to analyze the robustness of the seman-
tic role labeler. To our best knowledge, our work is
the first attempt to apply explicit contextual seman-
tics for text comprehension tasks, which have been
ignored in previous works for a long time.

The rest of this paper is organized as follows. The
next section reviews the related work. Section 3
will demonstrate our semantic learning framework
and implementation. Task details and experimental
results are reported in Section 4, followed by case
studies and analysis in Section 5 and conclusion in
Section 6.

2 Related Work

2.1 Text Comprehension

As a challenging task in NLP, text comprehension
is one of the key problems in artificial intelligence,
which aims to read and comprehend a given text, and
then answer questions or make inference based on
it. These tasks require a comprehensive understand-
ing of natural languages and the ability to do fur-
ther inference and reasoning. We focus on two types
of text comprehension, document-based question-
answering (Table 1) and textual entailment (Table 2).
Textual entailment aims for a deep understanding of
text and reasoning, which shares the similar genre
of machine reading comprehension, though the task
formations are slightly different.

In the last decade, the MRC tasks have evolved
from the early cloze-style test (Hill et al., 2015; Her-
mann et al., 2015; Zhang et al., 2018c,b) to span-
based answer extraction from passage (Rajpurkar
et al., 2016, 2018). The former has restrictions that
each answer should be a single word in the docu-
ment and the original sentence without the answer
part is taken as the query. For the span-based one,
the query is formed as questions in natural language
whose answers are spans of texts. Various atten-
tive models have been employed for text representa-
tion and relation discovery, including Attention Sum
Reader (Kadlec et al., 2016), Gated attention Reader
(Dhingra et al., 2017) and Self-matching Network



Passage There are three major types of rock: igneous, sedi-
mentary, and metamorphic. The rock cycle is an im-
portant concept in geology which illustrates the re-
lationships between these three types of rock, and
magma. When a rock crystallizes from melt (magma
and/or lava), it is an igneous rock. This rock can be
weathered and eroded, and then redeposited and lithi-
fied into a sedimentary rock, or be turned into a meta-
morphic rock due to heat and pressure that change
the mineral content of the rock which gives it a char-
acteristic fabric. The sedimentary rock can then be
subsequently turned into a metamorphic rock due to
heat and pressure and is then weathered, eroded, de-
posited, and lithified, ultimately becoming a sedimen-
tary rock. Sedimentary rock may also be re-eroded
and redeposited, and metamorphic rock may also un-
dergo additional metamorphism. All three types of
rocks may be re-melted; when this happens, a new
magma is formed, from which an igneous rock may
once again crystallize.

What changes the mineral content of a rock?

heat and pressure.

Question
Answer

Table 1: A machine reading comprehension example.

Premise | A man parasails in the choppy water. Label

Most of existing NLI models apply attention
mechanism to jointly interpret and align the premise
and hypothesis, while transfer learning from exter-
nal knowledge is popular recently. Notably, Chen
et al. (2017) proposed an enhanced sequential infer-
ence model (ESIM), which employed recursive ar-
chitectures in both local inference modeling and in-
ference composition, as well as syntactic parsing in-
formation, for a sequential inference model. ESIM
is simple with satisfactory performance, and thus
is widely chosen as the baseline model. Mccann
et al. (2017) proposed to transfer the LSTM encoder
from the neural machine translation (NMT) to the
NLI task to contextualize word vectors. Pan et al.
(2018) transferred the knowledge learned from the
discourse marker prediction task to the NLI task to
augment the semantic representation.

2.2 Semantic Role Labeling

Neutral
Contra.
Entailment

The man is competing in a competition.
The man parasailed in the calm water.
The water was choppy as the man parasailed.

Hypo.

Table 2: A textual entailment example.

(Wang et al., 2017).

With the release of the large-scale span-based
datasets (Rajpurkar et al., 2016; Joshi et al., 2017;
Rajpurkar et al., 2018), which constrain answers to
all possible text spans within the reference docu-
ment, researchers are investigating the models with
more logical reasoning and content understanding
(Wang et al., 2018). Recently, language models also
show their remarkable performance in reading com-
prehension (Devlin et al., 2018; Peters et al., 2018).

For the other type of text comprehension, natural
language inference (NLI) is proposed to serve as a
benchmark for natural language understanding and
inference, which is also known as recognizing tex-
tual entailment (RTE). In this task, a model is pre-
sented with a pair of sentences and asked to judge
the relationship between their meanings, including
entailment, neutral and contradiction. Bowman et al.
(2015) released Stanford Natural language Inference
(SNLI) dataset, which is a high-quality and large-
scale benchmark, thus inspiring various significant
work.

Given a sentence, the task of semantic role label-
ing is dedicated to recognizing the semantic rela-
tions between the predicates and the arguments. For
example, given the sentence, Charlie sold a book to
Sherry last week, where the target verb (predicate) is
sold, SRL system yields the following outputs,

[Arco Charlie] [ sold] [4rg1 a book]
[4RrG2 to Sherry] [ ans—7arp last week].

where ARGO represents the seller (agent), ARG1
represents the thing sold (theme), ARG?2 represents
the buyer (recipient), AM — T'M P is an adjunct in-
dicating the timing of the action and V' represents
the predicate.

Recently, SRL has aroused much attention from
researchers and has been applied in many NLP tasks
(Mihaylov and Frank, 2016; Shi et al., 2016; Yih
et al,, 2016). SRL task is generally formulated
as multi-step classification subtasks in pipeline sys-
tems, consisting of predicate identification, pred-
icate disambiguation, argument identification and
argument classification. Most previous SRL ap-
proaches adopt a pipeline framework to handle these
subtasks one after another. Notably, Gildea and Ju-
rafsky (2002) devised the first automatic semantic
role labeling system based on FrameNet. Traditional
systems relied on sophisticated handcraft features or
some declarative constraints, which suffer from poor
efficiency and generalization ability. A recently ten-



dency for SRL is adopting neural networks methods
thanks to their significant success in a wide range of
applications. The pioneering work on building an
end-to-end neural system was presented by (Zhou
and Xu, 2015), applying an 8 layered LSTM model,
which takes only original text information as input
feature without using any syntactic knowledge, out-
performing the previous state-of-the-art system. He
et al. (2017) presented a deep highway BiLSTM ar-
chitecture with constrained decoding, which is sim-
ple and effective, enabling us to select it as our ba-
sic semantic role labeler. These studies tackle ar-
gument identification and argument classification in
one shot. Inspired by recent advances, we can easily
integrate semantics into text comprehension.

3 Semantic Role Labeling for Text
Comprehension

For both downstream text comprehension tasks, we
consider an end-to-end model as well as the seman-
tic learning model. The former may be regarded as
downstream model of the latter. Thus, our seman-
tics augmented model will be an integration of two
end-to-end models through simple embedding con-
catenation as shown in Figure 2.

In detail, we apply semantic role labeler to an-
notate the semantic tags (i.e. predicate, argument)
for each token in the input sequence so that explicit
contextual semantics can be directly introduced, and
then the input sequence along with the correspond-
ing semantic role labels is fed to downstream mod-
els. We regard the semantic signals as SRL embed-
dings and employ a lookup table to map each label to
vectors, similar to the implementation of word em-
bedding. For each word z, a joint embedding e’ (w)
is obtained by the concatenation of word embedding
e"(z) and SRL embedding e*(x),

el (w) = e¥(x) ® e (x)

where & is the concatenation operator. The down-
stream model is task-specific. In this work, we fo-
cus on the textual entailment and machine reading
comprehension, which will be discussed latter.

3.1 Semantic Role Labeler

Our concerned SRL task includes two subtasks:
predicate identification and argument labeling.

Downstream Model

(09) (09) (09)

Semantic Role Labeler

OWord embedding O SRL embedding

Figure 2: Overview of the semantic learning framework.

While the CoNLL-2005 shared task assumes gold
predicates as input, this information is not available
in many applications, which requires us to identify
the predicates for a input sentence at the very be-
ginning. Thus, our SRL module has to be end-to-
end, predicting all predicates and corresponding ar-
guments in one shot.

For predicate identification, we use spaCy' to to-
kenize the input sentence with part-of-speech (POS)
tags and the verbs are marked as the binary predi-
cate indicator for whether the word is the verb for
the sentence.

Following (He et al., 2017), we model SRL as a
span tagging problem” and use an 8-layer deep BiL-
STM with forward and backward directions inter-
leaved. Different from the baseline model, we re-
place the GloVe embeddings with ELMo represen-
tations’ due to the recent success of ELMo in NLP
tasks (Peters et al., 2018).

In brief, the implementation of our SRL is a series
of stacked interleaved LSTMs with highway con-
nections. The inputs are embedded sequences of
words concatenated with a binary indicator contain-
ing whether a word is the verbal predicate. Addition-
ally, during inference, Viterbi decoding is applied to
accommodate valid BIO sequences. The details are

"https://spacy.io/

2 Actually, the easiest way to deal with segmentation or se-
quence labeling problems is to transform them into raw labeling
problems. A standard way to do this is the BIO encoding, repre-
senting a token at the beginning, interior, or outside of any span,
respectively.

3The ELMo representation is obtained from https://
allennlp.org/elmo. We use the original one for this work
whose output size is 512.
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Figure 3: Semantic role labeler.
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BiLSTM

Embedding

1 ELMo

1 PIE natural language
as follows.

Word Representation The word representation of
our SRL model is the concatenation of two vectors:
an ELMo embedding e) and predicate indicator
embedding (PIE) e, ELMo is trained from the in-
ternal states of a deep bidirectional language model
(BiLM), which is pre-trained on a large text corpus
with approximately 30 million sentences (Chelba
et al., 2014). Besides, following (Li et al., 2019)
who shows the predicate-specific feature is helpful
in promoting the role labeling, we employ a pred-
icate indicator embedding e(P) to mark whether a
word is a predicate when predicting and labeling the
arguments. The final word representation is given
by e = e) @ eP), where @ is the concatenation op-
erator. The downstream model will take such a joint
embedding as input for specific task.

Encoder Ascommonly used to model the sequen-
tial input, BiLSTM is adopted for our sentence en-
coder. By incorporating a stack of distinct LSTMs,
BiLSTM processes an input sequence in both for-
ward and backward directions. In this way, the BiL-
STM encoder provides the ability to incorporate the
contextual information for each word.

Given a sequence of word representation S =
{e1,e2, -+ ,e,} as input, the hidden state h =
{hi,hg,---  h,} is encoded by BiLSTMs layer
where each LSTM uses highway connections be-
tween layers and variational recurrent dropout. The

encoded representation is then projected using a fi-
nal dense layer followed by a softmax activation to
form a distribution over all possible tags. The pre-
dicted semantic role Labels are defined in PropBank
(Palmer et al., 2005) augmented with B-I-O tag set
to represent argument spans.

Model Implementation The training objective is
to maximize the logarithm of the likelihood of the
tag sequence, and we expect the correct output se-
quence matches with,

ey

y* = argmaz s(x,y)
geC
where C is candidate label set.

Our semantic role labeler is trained on English
OntoNotes v5.0 dataset (Pradhan et al., 2013) for
the CoNLL-2012 shared task, achieving an F1 of
84.6%"* on the test set. At test time, we perform
Viterbi decoding to enforce valid spans using BIO
constraints>. For the following evaluation, the de-
fault dimension of SRL embeddings is 5 and the case
study concerning the dimension is shown in the sub-
section dimension of SRL Embedding.

The model is run forward for every verb in the
sentence. In some cases there is more than one pred-
icate in a sentence, resulting in various semantic role

“This result is comparable with the state-of-the-art (Li et al.,
2019).

The BIO format requires argument spans to begin with a B
tag.



sets whose number is equal to the number of predi-
cates. For convenient downstream model input, we
need to ensure the word and the corresponding label
are matched one-by-one, that is, only one set for a
sentence. To this end, we select the corresponding
BIO sets with the most non-O labels as the seman-
tic role labels. For sentences with no predicate, we
directly assign O labels to each word in those sen-
tences.

3.2 Text Comprehension Model

Textual Entailment Our basic TE model is the
reproduced Enhanced Sequential Inference Model
(ESIM) (Chen et al., 2017) which is a widely used
baseline model for textual entailment. ESIM em-
ploys a BiLSTM to encode the premise and hypoth-
esis, followed by an attention layer, a local inference
layer, an inference composition layer. Slightly dif-
ferent from (Chen et al., 2017), we do not include
extra syntactic parsing features and directly replace
the pre-trained Glove word embedding with ELMo
which are completely character based. Our SRL
embedding is concatenated with ELMo embeddings
and the joint embeddings are then fed to the BiL-
STM encoders.

Machine Reading Comprehension Our baseline
MRC model is an enhanced version of Bidirectional
Attention Flow (Seo et al., 2017) following (Clark
and Gardner, 2018). The token embedding is the
concatenation of pre-trained GloVe word vectors,
a character-level embedding from a convolutional
neural network with max-pooling and pre-trained
ELMo embeddings (Peters et al., 2018). Our seman-
tics enhanced model takes input of concatenating
the token embedding with SRL embeddings. The
embeddings of document and question are passed
through a shared bi-directional GRU, followed by
a BiDAF attention (Seo et al., 2017). The con-
textual document and question representations are
then passed to a residual self-attention layer. The
above model is denoted as ELMo. Table 5 shows
the results on SQuAD MRC task®. The SRL embed-
dings give substantial performance gains over all the

SFor BERT evaluation, we only use SQuAD training set in-
stead of joint training with other datasets to keep the model sim-
plicity. Since the test set of SQuUAD is not publicly available,
our evaluations are based on dev set.

strong baselines, showing it is also quite effective for
more complex document and question encoding.

Model Accuracy (%)
Deep Gated Attn. BILSTM 85.5
Gumbel TreeLSTM 86.0
Residual stacked 86.0
Distance-based SAN 86.3
BCN + CoVe + Char 88.1
DIIN 88.0
DR-BIiLSTM 88.5
CAFE 88.5
MAN 88.3
KIM 88.6
DMAN 88.8
ESIM + TreeLSTM 88.6
ESIM + ELMo 88.7
DCRCN 88.9
LM-Transformer 89.9
MT-DNN 91.1
Baseline (ELMo) 88.4
+ SRL 89.1
Baseline (BERTgAsE) 89.2
+ SRL 89.6
Baseline (BERTLARGE) 90.4
+ SRL 91.3
Table 3:  Accuracy on SNLI test set. Models in the

first block are sentence encoding-based. The second
block embodies the joint methods while the last block
shows our SRL based model. All the results except ours
are from the SNLI Leaderboard. Previous state-of-the-
art model is marked by t. Since ensemble systems are
commonly integrated with multiple heterogeneous mod-
els and resources, we only show the results of single mod-
els to save space though our single model also outper-
forms the ensemble models.

4 Evaluation

In this section, we evaluate the performance of SRL
embeddings on two kinds of text comprehension
tasks, textual entailment and reading comprehen-
sion. Both of the concerned tasks are quite chal-
lenging, and could be even more difficult consid-
ering that the latest performance improvement has
been already very marginal. However, we present
the semantics enhanced solution instead of heuris-
tically stacking network design techniques to give
further advances. In our experiments, we basically



Model Dev Test
Our model 89.11 89.09
-ELMo 88.51 88.42
-SRL 88.89 88.65
-ELMo -SRL  88.39 87.96

Table 4: Ablation study. Since we use ELMo as the basic
word embeddings, we replace ELMO with 300D GloVe
embeddings for the case -ELMo.

follow the same hyper-parameters for each model as
the original settings from their corresponding liter-
atures (Peters et al., 2018; Chen et al., 2017; Clark
and Gardner, 2018) except those specified (e.g. SRL
embedding dimension). For both of the tasks, we
also report the results by using pre-trained BERT
(Devlin et al., 2018) as word representation in our
baseline models 7. The hyperparameters were se-
lected using the Dev set, and the reported Dev and
Test scores are averaged over 5 random seeds using
those hyper-parameters.

4.1 Textual Entailment

Textual entailment is the task of determining
whether a hypothesis is entailment, contradiction
and neutral, given a premise. The Stanford Nat-
ural Language Inference (SNLI) corpus (Bowman
et al., 2015) provides approximately 570k hypoth-
esis/premise pairs. We evaluate the model perfor-
mance in terms of accuracy.

Results in Table 3 show that SRL embedding can
boost the ESIM+ELMo model by +0.7% improve-
ment. With the semantic cues, the simple sequen-
tial encoding model yields substantial gains, and our
single BERT srge model also achieves a new state-
of-the-art, even outperforms all the ensemble mod-
els in the leaderboard®. This would be owing to
more accurate and fine-grained information from ef-
fective explicit semantic cues.

To evaluate the contributions of key factors in our
method, a series of ablation studies are performed

"We use the last layer of BERT output. Since BERT is in
subword-level while semantics role labels are in word-level, to
use BERT in conjunction with our SRL embeddings, we need
to keep them aligned. Therefore, we use the BERT embedding
for the first subword of each word, which is slightly different
from the original BERT.

8Since March 24th, 2019. The leaderboard is here:
https://nlp.stanford.edu/projects/snli/.

on the SNLI dev and test set. The results are in
Table 4. We observe both SRL and ELMo embed-
dings contribute to the overall performance. Note
that ELMo is obtained by deep bidirectional lan-
guage with 4,096 hidden units on a large-scale cor-
pus, which requires long training time with 93.6 mil-
lion parameters. The output dimension of ELMo is
512. Compared with the massive computation and
high dimension, SRL embedding is much more con-
venient for training and much easier for model inte-
gration, giving the same level of performance gains.

4.2 Machine Reading Comprehension

To investigate the effectiveness of the SRL embed-
ding in conjunction with more complex models, we
conduct experiments on machine reading compre-
hension tasks. The reading comprehension task can
be described as a triple < D, Q, A >, where D is a
document (context), () is a query over the contents
of D, in which a span is the right answer A.

As a widely used benchmark dataset for ma-
chine reading comprehension, the Stanford Ques-
tion Answering Dataset (SQuAD) (Rajpurkar et al.,
2016) contains 100k+ crowd sourced question-
answer pairs where the answer is a span in a given
Wikipedia paragraph. Two official metrics are se-
lected to evaluate the model performance: Exact
Match (EM) and a softer metric F1 score, which
measures the weighted average of the precision and
recall rate at a character level. Our baseline includes
MQAN (Mccann et al., 2018) for single task and
multi-task with SRL, BiDAF+ELMo (Peters et al.,
2018), R.M. Reader and BERT (Devlin et al., 2018).

Table 5 shows the results”. The SRL embed-
dings give substantial performance gains over all the
strong baselines, showing it is also quite effective for
more complex document and question encoding.

5 Case Studies

From the above experiments, we see our semantic
learning framework works effectively and the se-
mantic role labeler boosts model performance, veri-
fying our hypothesis that semantic roles are critical
for text understanding. Though the semantic role
labeler is trained on a standard benchmark dataset,

%Since the test set of SQUAD is not publicly available, our
evaluations are based on dev set.


https://github.com/google-research/bert

Model EM F1 RERR
Published
MQANsingle—task - 75.5 -
MQAN multi-task - 74.3 -
BiDAF+ELMo - 85.6 -
R.M. Reader 78.9 86.3 -
BERTgASE 80.8 88.5 -
BERTARGET 84.1 90.9 -
Our implementation

Baseline (ELMo) 77.5 85.2 -
+SRL 785 86.0 5.4%
Baseline (BERTgAsE) 81.3 88.5 -
+SRL 81.7 88.8 2.6%
Baseline (BERT arge) 84.2 909 -
+SRL 845 912 33%

Table 5: Exact Match (EM) and F1 scores on SQuAD
dev set. RERR is short for relative error rate reduction of
our model to the baseline evaluated on F1 score. Previous
state-of-the-art model is marked by f.

Ontonotes, whose source ranges from news, conver-
sational telephone speech, weblogs, etc., it turns out
to be generally useful for text comprehension from
probably quite different domains in both textual en-
tailment and machine reading comprehension. To
further evaluate the proposed method, we conduct
several case studies as follows.

5.1 Dimension of SRL Embedding

The dimension of embedding is a critical hyper-
parameter in deep learning models that may influ-
ence the performance. Too high dimension would

90
WM
88
86{
>
(&)
§84 —+— SNLI Dev
g 82 SNLI Test
—— SQUAD F1
80 —— SQUAD EM
78 '\./\Aﬁ —

1 2 5 10 20 50 100
Dimension of SRL embedding

Figure 4: Results on SNLI and SQuAD with different
SRL embedding dimensions.

Model Dev Test
Baseline 88.89 88.65
Word + SRL 89.11 89.09
Word + POS  88.90 88.68
Word + NE 89.14 88.51

Table 6: Comparison with different NLP tags.

cause severe over-fitting issues while too low dimen-
sion would also cause under-fitting results. To inves-
tigate the influence of the dimension of SRL embed-
dings, we change the dimension in the intervals [1,
2,5, 10,20, 50, 100]. Figure 4 shows the results. We
see that 5-dimension SRL embedding gives the best
performance on both SNLI and SQuAD datasets.

5.2 Comparison with POS/NER Tags

The study of computational linguistics is a critical
part in NLP (Zhou and Zhao, 2019; Li et al., 2018b).
In particular, Part-of-speech (POS) and named entity
(NE) tags have been broadly used in various tasks.
To make comparisons, we conduct experiments on
SNLI with modifications on label embeddings using
tags of SRL, POS and NE, respectively. Results in
Table 6 show that SRL gives the best result, showing
semantic roles contribute to the performance, which
also indicates that semantic information matches the
purpose of NLI task best.

6 Conclusion

This paper presents a novel semantic learning frame-
work for fine-grained text comprehension and infer-
ence. We show that our proposed method is simple
yet powerful, which achieves a significant improve-
ment over strong baseline models, including those
which have been enhanced by the latest BERT. This
work discloses the effectiveness of explicit seman-
tics in text comprehension and inference and pro-
poses an easy and feasible scheme to integrate ex-
plicit contextual semantics in neural models. A se-
ries of detailed case studies are employed to ana-
lyze the adopted robustness of the semantic role la-
beler. Different from most recent works focusing on
heuristically stacking complex mechanisms for per-
formance improvement, this work is to shed some
lights on fusing accurate semantic signals for deeper
comprehension and inference.
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