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Abstract. This paper aims to improve the response performance of
min-max modular classifier by a module selection policy for two-class
classification during recognition. We propose an efficient base classifier
selection algorithm. We show that the quadratic complexity of original
min-max modular classifier can fall onto the level of linear complexity
in the number of base-classifier modules for each input sample under
presented selection scheme. The experimental results indicate the effec-
tiveness of our algorithm and verify our theoretical analysis.

1 Introduction

Two-class classification is one kind of basic classification problem. Many essential
classification schemes often start from binary classifier and then adapt to multi-
class classifiers. Therefore, an improvement on two-class problem processing will
earn important value to pattern classification.

In this paper, we consider a decomposition policy of two-class classification
task, which is one of two processing stages in min-max modular (M3) neural
network[1]-[2]. The policy is based on partition of training set, which make it
possible that a large-scale two-class problem is divided into some smaller scale
two-class subproblems for parallel processing.

However, one hand, it is obvious that such partition will yield much many
modules, which cause serious performance problems. On the other hand, only
partial sub-classifier modules will actually function for each input sample in
classification. This activates us that it is possible to optimize the original combi-
nation procedure of classifiers only to check those necessary modules, instead of
all produced sub-classifier modules for an input sample. This is to say, an addi-
tional module selection procedure can be introduced for improving the response
performance of the classifier.

In this paper, we will present an efficient module selecting policy named
symmetrical selection algorithm to improve the response performance of min-
max modular classifier.
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2 Task Decomposition and Module Combination

Consider a two-class classification problem, whose output coding of class labels
are denoted by C0 and C1(as two values, C1 > C0), or equally, 0 and 1, which
will be concise and not lose any generality for our algorithm description. Suppose
the training set of class C0 is decomposed into n subsets and the training set
of class C1 is divided into m subsets. By arranging those m and n training
subsets in pairs, we obtain m × n training set pairs. Each pair is learned by a
single binary sub-classifier. Therefore, a larger scale two-class problem can be
decomposed into m × n smaller subproblems. We call the binary sub-classifier
as base classifier.

Suppose all produced training set pairs are denoted by Xij , for i = 0, 1, ..., m−
1, and j = 0, 1, ..., n− 1. Without misunderstanding, we also express Xij as the
output of the corresponding base classifier.

Min-max combination defines how the outputs of those m×n base classifiers
are combined into the solution to the original problem. Before combination, a
grouping operation on m×n base classifiers should be done: these base classifiers,
Xij , for j = 0, ..., n − 1, are defined as one “C1 group” and i is defined as its
group label, and those base classifiers, Xij , for i = 0, ..., m − 1, are defined as
one “C0 group” and j is defined as its group label.

Min-max combination of all base classifiers includes two stages: Firstly, the
minimization rule is applied to each C1 group to make the output of the group.
Secondly, the outputs of all groups are integrated by the maximization rule to
make the final output of the original two-class classification problem.

An outstanding merit for min-max modular classifier is that imbalanced clas-
sification can always be avoid from a simple decomposition if needed[4].

3 Symmetrical Module Selection Algorithm

We call a C1 group whose all member base classifiers hold the class C1 as a “win-
ning group of class C1” and a class C0 group whose all member base classifiers
hold the class C0 as a “winning group of class C0” . It is easy to demonstrate
that in the original min-max combination procedure for one input sample, the
fact that there is a winning group of C1 in all m × n base classifiers will be
sufficient and necessary to make the conclusion that the final combination result
must be class C1 according to the combining rules, vice versa, if any winning
group of C1 does not exist, then the final combination result must be class C0.
Thus, a min-max combination of base classifiers will be redescribed as such a
search procedure to find a winning group of class C1.

Similarly, we can also define one symmetrical max-min combination to per-
form a search procedure for a winning group of class C0. Naturally, that there
exists a winning group of class C0 in all m× n base classifiers is a sufficient and
necessary criterion for a combination result of class C0. Symmetrical module
selection algorithm, just like its name, is a procedure with consideration of the
winning group of both class C0 and class C1, instead of one-sided search for the
winning group of class C1 in the original model[1],[2].



Basically, symmetrical module selection is based on the following idea: a)
Notice that it is impossible that there exists one winning group of class C1 and
one winning group of class C0 at the same time. The reason is that any winning
group of class C1, Xij , for j = 0, ..., n − 1, and any winning group of class C0,
Xij , for i = 0, ..., m − 1, must share one same base classifier, which can not
output two different classification results at the same time. b) The symmetrical
module selection algorithm is a procedure to continuously exclude those hopeless
class C1 or C0 group. The existence of a winning group of class C0 or class C1

means final combination classification result is class C0 or class C1, respectively.
Regarding all outputs of base classifiers as a binary matrix, a row can stand for
a class C1 group, and a column can stand for a class C0 group. Thus, that a
base classifier outputs 1 as classification result means that the column it locates
loses the chance to be a winning group of class C0. Symmetrically, that a base
classifier outputs 0 as classification result means that the column it locates loses
the chance to be a winning group of class C1.

The symmetrical module selection algorithm is described below in detail. For
convenience, we also say the first subscript of a base classifier is its row, and the
second is its column, also a row means a class C1 group and a column means a
class C0 group.

1. For i = 0, ..., m − 1, set the tag RF [i] = 0, and for j = 0, ..., n − 1, set the
tag CF [j] = 0, which means all class one and zero groups are not excluded,
respectively.

2. Set two counters, RCounter = m and CCounter = n, respectively, which
means the number of surviving class one and zero groups without excluded.

3. Set starting row and column, i = 0 and j = 0.
4. Repeat the following operations:

(a) If i is an excluded group label, that is, RF [i] = 1, then i increases
continuously until i is not an excluded label any more or i = m.

(b) If j is an excluded group label, that is, CF [j] = 1, then j increases
continuously until j is not an excluded label any more or j = n.

(c) If the counter, RCounter = 0, or i = m, then output the combination
classification result class 0 and the algorithm ends here.

(d) If the counter, CCounter = 0, or j = n, then output the combination
classification result class 1 and the algorithm ends here.

(e) Check the base classifier Xij .
(f) If Xij holds class C1, then

i. Set the tag, CF [j] = 1.
ii. Subtract 1 from the counter, CCounter = CCounter − 1
iii. j = j + 1.

(g) If Xij holds class C0, then
i. Set the tag, RF [i] = 1.
ii. Subtract 1 from the counter, RCounter = RCounter − 1
iii. i = i + 1.



4 Performance Estimation

We now show that the number of checked base classifiers in symmetrical module
selection algorithm for each input sample will be never larger than m + n− 1.

In fact, the algorithm is equally a search procedure in a binary matrix with
m rows and n columns, in which the start point is top left corner and the end
point is bottom right corner. Each checking for a base classifier is equal to an
access for one element in the matrix, which means one row or one column in the
matrix must be excluded. In turn, the accessing of the algorithm gets to the next
row or column without any backtracking. In summary, such search from top left
corner to bottom right corner in this matrix mostly covers m + n− 1 elements.
Namely, the number of checked base classifier in symmetrical module selection
for each input sample will not be larger than m + n − 1, which is much better
than the case, m× n, under the original model.

5 Experimental Results

Three data sets shown in Table 1 from UCI Repository[3] have been chosen for
this study. For a typical realization of min-max modular classifier, support vector
machine(SVM) with RBF kernel is selected as base classifier[4]. Two parameters,
C and γ, are set to 8 and 0.25 for Internet Ads and Adult data sets, respectively.
These two parameters are set to 316.2 and 1 for Banana data set, respectively.
The same numbers of samples for class C1 and C0 in every subsets are taken.

Table 1. Distributions of samples in three data sets

Data Set Number of Training Samples Number of Test Samples

Total Class C1 Class C0 Total Class C1 Class C0

Internet Ads 2100 1800 300 1179 1020 159

Adult 32561 24720 7841 16281 12435 3846

Banana 40000 21847 18153 490000 270553 219447

Experimental results are shown in Tables 2 through 4. The comparison be-
tween experimental results and theoretical bounds in three data sets are shown
in Fig 1. Fig 1(a) shows 20 different experimental results, where n varies from
2 to 21 and m correspondingly varies from 12 to 129 for Internet Ads data set.
Fig 1(b) shows 100 different experimental results, where n varies from 2 to 101
and m correspondingly varies from 6 to 317 for Adult data set. Note that Table
2 and Table 3 only show parts of experimental results shown in Fig.1(a) and
Fig.1(b) for space limitation.

As expected, the experimental results show that our symmetrical module
selection algorithm gives an outstanding performance improvement for testing
procedure with respect to the case without any selection, while combining accu-
racies keep the same. The number of actual checked base classifier is also strictly
under the theoretical bound. However, the ratio of numbers of checked mod-
ules and the ratio of practical response time between two cases are not exactly



Table 2. Experimental results on Internet Ads data set

#Modules m n Without Selection Symmetrical Selection

#Modules Time(ms) acc.(%) #Modules Bound Time(ms) acc.(%)

14 129 21 2709 63656 90.16 29.04 149 26718 90.16

18 100 17 1700 44046 89.40 19.78 116 15484 89.40

23 78 13 1014 29890 89.31 15.07 90 8265 89.31

33 56 9 504 17859 89.57 10.62 64 3375 89.57

60 30 5 150 8421 89.90 5.97 34 1000 89.90

Table 3. Experimental results on Adult data set

#Modules m n Without Selection Symmetrical Selection

#Modules Time(ms) acc.(%) #Modules Bound Time(ms) acc.(%)

320 77 25 1925 7027 76.37 25.45 101 116 76.37

157 157 50 7850 15085 76.36 96.79 206 281 76.36

105 235 75 17625 22613 76.39 183.19 309 430 76.39

77 321 102 32742 37679 76.37 320.97 422 666 76.37

the same, which may mostly attribute to different number of support vectors
obtained by each base classifier.

6 Conclusions

An efficient module selection policy has been presented for improving the re-
sponse performance of min-max modular classifier. We show that the quadratic
complexity of the original min-max modular classifier can be reduced onto lin-
ear complexity of the number of base-classifiers for each input sample. The ex-
perimental results indicate that an outstanding improvement on the response
performance for such modular classifier is obtained.
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Table 4. Experimental results on Banana data set

#Modules m n Without Selection Symmetrical Selection

#Modules Time(ms) acc.(%) #Modules Bound Time(ms) acc.(%)

90 243 202 49086 154023 90.81 229.56 444 1389 90.81

103 212 176 37312 130945 90.73 199.20 387 1279 90.73

121 181 150 27150 107417 90.99 169.43 330 1096 90.99

145 151 125 18875 88564 90.68 141.66 275 883 90.68

181 121 100 12100 66653 90.61 112.55 220 754 90.61

242 90 75 6750 52709 90.80 84.01 164 679 90.80

363 60 50 3000 32309 90.75 55.87 109 645 90.75
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Fig. 1. Comparison of theoretical bound and experimental result on Internet Ads data
set(a), Adult data set(b), and Banana data set(c)

4. Lu, B.L., Wang, K. A., Utiyama, M., Isahara, H.: A part-versus-part method for
massively parallel training of support vector machines, Proc. of IEEE/INNS Int.
Joint Conf. on Neural Networks ( IJCNN2004), Budabest, Hungary, July 25-29,
2004


