
On Efficient Selection of Binary Classifiers for
Min-Max Modular Classifier

Hai Zhao and Bao-Liang Lu
Department of Computer Science and Engineering, Shanghai Jiao Tong University

1954 Hua Shan Rd., Shanghai 200030, China
{zhaohai,blu}@cs.sjtu.edu.cn

Abstract— Binary classifiers are fundamental components of
multiclass pattern classifiers. How to construct a solution to
a multiclass problem by efficiently combining the outputs of
binary classifiers is a very important issue in neural network
and machine learning research. In this paper, we present three
different algorithms for selecting binary classifiers for min-max
modular classifier to improve its response performance. We
also give a theoretical performance estimation of the proposed
algorithms. We prove that quadratic complexity of original min-
max combination can be reduced to the level of linear complexity
in the number of binary classifiers. The experimental results
indicate that our proposed algorithms are efficient and effective.

I. INTRODUCTION

How to construct a solution to a multiclass classification
problem by combining the outputs of binary classifiers is one
of fundamental issues in neural network and machine learning
research. Many popular pattern classification algorithms such
as support vector machine (SVM) and AdaBoosting are origi-
nally designed for binary classification problems and strongly
depend on the technology of multiclass task decomposition
and binary classifier combination.

In recent years, this issue had been considered by many
researchers in both neural network and machine learning fields.
Basically, there are two methods for decomposing multiclass
problems. One is one-vs-rest policy, and the other is one-vs-
one policy. The former is computationally more expensive,
the latter is more popular in practical application and will be
concerned in this paper.

There are three main combination policies for one-vs-one
scheme according to reported studies. a) min-max procedure
that comes from one of two stages in min-max modular (M3)
neural network [1], [2]; b) most-win policy or round robin
rule (R3) learning [3]; and c) decision directed acyclic graph
(DDAG) [4].

In comparison with one-vs-rest scheme, a shortcoming
of one-vs-one decomposition procedure is that it will yield
many binary classifier modules, precisely the quantity is the
quadratic function of the number of classes, i.e., K(K−1)/2.
In the recognition phase, however, it is observed that only a
part of binary classifiers will be called to produce a solution
to the original multiclass problem. In order to improve the
response performance of this kind of classifiers, we need
to develop efficient algorithms for selecting necessary binary
classifiers in the recognition phase. In this paper, we focus on

binary classifier selection problem and present three different
selection algorithms.

On one hand, in machine learning literature [5], DDAG
is superior to other combination policies in many aspects.
However, it lacks the capability of recognizing unknown
class, which is very important in some applications sometimes
and just naturally included in min-max combination. On the
another hand, our previous work [6] has shown that min-max
combination is much more efficient than most-win policy in
an equal and unified optimization procedure.

We start our study in this paper by a distinct way. One
difference from related work is that the point we begin is how
to optimize the original min-max combination in one-vs-one
decomposition scheme, which has not been concerned before.
The other difference is that we only care the module based
time complexity, which means our work will be independent of
the classification algorithms and then it earns more generality.
Here we must mention the work on optimization combining
policy for multiclass classification [7]. However, this literature
focuses in an optimized combining policy for margin based
classification, which strongly depends on base classification
method, such as AdaBoosting. The work is quite different
from our study in this paper, since our work on multiclass
combination is completely classification algorithm indepen-
dent. Naturally, our view on multiclass classification is also
different from other work such as [7], [8].

The rest of the paper is organized as follows: In Section II
we briefly introduce the min-max combination of binary clas-
sifiers. Three different selection algorithms will be presented
in Section III. Performance estimation is given in Section
IV. The experimental results and discussions on theoretical
and experimental results are presented in Section VI and VII.
Conclusions of our work and the current line of research are
outlined in Section VIII.

II. MIN-MAX COMBINATION

In this section, we give a brief introduction to the min-max
combination of binary classifiers. For more details about the
whole min-max modular neural network, please refer to [1],
[2].

Suppose the training data set for a K-class classification
problem is given and the one-vs-one scheme is applied to task
decomposition. Thus K(K−1) independent binary classifiers
should be assigned in order to solve the corresponding K(K−



1) two-class subproblems. K different classes are defined by
the set {C0, · · · , CK−1}. A binary classifier that is trained
on the data of class Ci and class Cj is denoted by Mij , for
i, j = 0, · · · , K − 1 and i 6= j. For any input sample x,
suppose the output of Mij is detonated by gij(x), then

gij(x) =

{

1 − ε, x ∈ Ci

ε, x ∈ Cj
(1)

where ε is a small real positive number. It is remarkable
that Mij may be reused as Mji in combination procedure.
Obviously, their outputs are just contrary for the same input
sample. Therefore, K(K − 1) binary classifiers should be
considered in combination, but only a half of them need to
be trained, actually. The min-max combination procedure is
defined as follows. Let G(x) denote the output vector of the
min-max classifier, then

G(x) = [G1(x), G2(x), · · · , GK(x)] (2)

where Gi(x) =
K−1

min
j=0,j 6=i

gij(x) for i = 0, · · · , K − 1.

The min-max classifier is said to assign sample x to class
label Ci, if

|Gi(x) − (1 − ε)| < δ and |Gj(x) − ε| < δ for j 6= i (3)

where δ is a real number, which denotes the error tolerance.
It is obvious that formula (2) and (3) equally define Gi is the
maximum of all when class label Ci is assigned to sample x.

For convenient description of the algorithm, three term
amendments are given here. a) Class labels are simply defined
by the set {0, 1, · · · , K − 1}. b) The output of a binary
classifier will be simply defined by 1 and 0, instead of two
intervals in the original description. We say, our selection
procedure presented below is only concerned with which one
between two classes with respect to the binary classifier,
therefore these two label systems are totally equivalent, and so
does SVM, which differs two different classes with positive-
negative sign. c) We named a set of binary classifier, Mij , for
j = 0, · · · , K − 1 and j 6= i, as a “group”, and it is with
the group label i. The min-max combination of the outputs of
binary classifiers can be redescribed as two steps: Firstly, the
minimization operation, Min, is applied to all binary classifiers
for each group to yield K group outputs. Secondly, the outputs
of all the groups are examined by the maximization operation,
Max. If the result of Max procedure is ‘1’, then the label of that
group which attribute such result will be the final classification
result. Otherwise, the result is an unknown class label. We
call the group which leads to the final output class label as “
winning group”, the others are called as “losing groups”.

A min-max combination procedure is illustrated in Fig 1.

III. ALGORITHMS FOR SELECTING BINARY CLASSIFIERS

A. Mark Selection Algorithm

The main idea in mark selection algorithm is to fully utilize
the output information of checked binary classifier to decide
which binary classifier should be selected next.

M0, 1
M0, 1

M0, 2
M0, 2

M0, K-1

MK-1, 0

MK-1, 1

MK-1,K-2

Output

Fig. 1. Illustration of K-class Min-Max combination of (K−1)×K binary
classifiers with K MIN units and one MAX unit

Mark selection procedure tries to check each group of binary
classifiers in turn, and abort the checking operation after a
binary classifier without supporting current group label. But it
will not certainly check binary classifiers in the next group
in turn. Let us consider any checked binary classifier, for
example, Mij , which concerned with two classes, class Ci and
class Cj . If the output of Mij holds class Ci, then it means that
class Cj will lose the chance to be a winning class. Therefore,
we may give the class label Cj a failure mark, and the selection
algorithm will skip from the group with label j to other group.

The mark selection algorithm can be described as follows.
1) Set the losing tag, E[i] = 0 for i = 0, 1, ..., K − 1.
2) Set i = 0.
3) While i < K do

a) While E[i] = 1, do i = i + 1.
b) If i = K, then output an unknown class label and

the algorithm ends here.
c) Set the tag of winning group S = 1.
d) For j = 0, 1, ..., K − 1, do

i) Present input x to classifier Mij and calculate
its output.

ii) If Mij does not support the current group label
i, then set the tag S = 0, abort to check the
next classifier in the current group, and turn to
the next group. Otherwise, set the tag E[j] = 1.

e) If the above operations end normally with the tag
S = 1, then output class label i, the algorithm
ends.

4) If the algorithm does not end at 3rd step and runs here,
then output an unknown class label as the final result.

To illustrate the mark selection algorithm, we present an
example shown in Table I.

B. Skip Selection Algorithm

Skip selection is a revised version of the mark selection
algorithm. The main idea in skip selection is also based on
marking the failure group label just like the mark selection
algorithm, but it is not turn to the next group while a failure
group is found. For example, for the binary classifier Mij , if



TABLE I
ILLUSTRATION OF THE MARK SELECTION ALGORITHM, HERE BOLD

VALUES REPRESENT CHECKED BINARY CLASSIFIERS.

M01=1 M02=0 M03=0 M04=1 M05=0 losing
M10=0 M12=0 M13=0 M14=0 M15=1 losing
M20=1 M21=1 M23=0 M24=1 M25=1 losing
M30=1 M31=1 M32=1 M34=1 M35=1 wining
M40=0 M41=1 M42=0 M43=0 M45=0 losing
M50=1 M51=0 M52=0 M53=0 M54=1 losing

the algorithm found it is the first one who does not support
the current group label, then the next group to be checked
by the algorithm will not with the label i + 1, but j, instead.
Following this operation, the group label to be checked skips
into j from i.

The skip selection algorithm can be described as follows.
1) Set losing tag, E[i] = 0 for i = 0, 1, ..., K − 1.
2) Set i = 0.
3) Repeat the following operations.

a) Preassign the tag of winning group found S = 1.
b) While j = 0, 1, ..., K − 1, do

i) Present input x to classifier Mij and calculate
its output.

ii) If Mij does not support the current group label
i, then
A) Set the tag S = 0.
B) Set the tag E[i] = 1.
C) Set i = j.
D) If there is E[j] = 1, then set m = 0, let

m = m + 1 while E[m] = 1. Set i = m,
finally.

E) If there is still i = j after operations in
D), which means any survival group without
being excluded can’t be found, then output
the unknown class label and the algorithm
ends here.

iii) If Mij support the current group label i, then
set the tag E[j] = 1.

c) If the above operations are finished normally with
S = 1, then output class label i as the final result.
The algorithm ends.

Table II demonstrates a real skip selection procedure.

TABLE II
ILLUSTRATION OF THE SKIP SELECTION ALGORITHM, HERE BOLD VALUES

MEAN THE CHECKED BINARY CLASSIFIERS.

M01=1 M02=1 M03=0 M04=1 M05=0 losing
M10=0 M12=0 M13=0 M14=0 M15=1 losing
M20=0 M21=1 M23=0 M24=1 M25=1 losing
M30=1 M31=1 M32=1 M34=1 M35=1 wining
M40=0 M41=1 M42=0 M43=0 M45=0 losing
M50=1 M51=0 M52=0 M53=0 M54=1 losing

C. Binary Tree Selection Algorithm

The main idea of binary tree selection algorithm for min-
max combination totally differs from two selection algorithms
mentioned above. It does not check each classifier of each
group in turn, instead, it continuously chooses those binary
classifiers whose two subscripts are regarded as two group
labels, which have not been confirmed as losing groups. Then a
removing policy is performed in all groups after checking each
chosen binary classifier until a unique winning group label is
remained. Such an elimination procedure for each group pair
can be described as a binary tree, so we call the selection
procedure binary tree selection.

The binary tree selection algorithm can be described in three
stages as follows.

The first stage is to initialize input parameters.

1) For k = 0, 1, ..., K − 1, set the tag E[k] = 0.
2) Set the counter which stands for the number of remained

survivor group: T = K

The second stage is to check each chosen binary classifier
to look up for the unique winning group.

1) Repeat the following operations while T > 1.

a) Set j = 0
b) While j < K − 1, do

i) While E[j] = 1, j = j + 1.
ii) If j = K − 1, then jump to a).

iii) Choose current j as the first subscript of can-
didate binary classifier.

iv) j = j + 1.
v) While E[j] = 1, j = j + 1.

vi) If j = K − 1, then jump to a).
vii) Choose current j as the second subscript of

candidate binary classifier.
viii) Check the chosen binary classifier.

ix) If the output of chosen classifier does not sup-
port the group label as one of its two subscripts,
then set the corresponding group label with
excluded tag.

x) T = T − 1.

The third stage is to check the unique remained group to
determine whether an unknown result should be output.

1) Find the unique surviving group label by searching the
array E[k].

2) Check each classifier in the group. Notice that all
classifiers checked in second stage can be omitted.

3) If all checked binary classifiers hold this group la-
bel, then output this group label as final combination
classification result. Otherwise, any binary classifier’s
disagreement will lead to an unknown final combination
classification result.

Fig. 2 illustrates a real binary tree selection procedure. Here
we assume that the states of all outputs of binary classifiers
are defined by Fig. 2.



36M

0 1

1M 0

2 3

3M 2

03M

4 5

5M 4

6 7

7M 6

6M5

0 3 5 6

3 6

36M

0 1

1M 0

2 3

3M 2

03M

4 5

5M 4

6 7

7M 6

6M5

0 3 5 6

3 6

Fig. 2. Illustration of a real binary tree selection (after the following selected
checking, another checking for group 3 will be performed to confirm whether
it is the winning group.)

IV. PERFORMANCE ESTIMATION OF SELECTION
ALGORITHMS

Now we show that for a K-class problem, the number of
checked binary classifiers under binary tree selection algorithm
is between 2K−2 and K−1, instead of K(K−1)/2 without
any selection.

According to the selection procedure, each access for a
chosen binary classifier in second stage will cause one group
marked as a failure one without any group eliminated du-
plicately. Then after K − 1 classifiers are checked K − 1
group will be certainly marked. Naturally, the unique group is
remained. To verify if each classifier in this unique remained
group all support the group label, we need to test another K−1
classifier at most. So, after 2K − 2 classifiers at most have
been checked, we will be sure to obtain the final combination
classification result.

For those classification applications those are is not sensitive
for unknown property of test samples, we may omit the third
stage of binary tree selection algorithm, that is, we simply
put the unique remained group label as the final combination
classification result in spite of its actual unknown property,
which is equally to randomly classify unknown test samples
in the original algorithm as some certain class. In fact, such
aftereffect can but increases the accuracy of classification. We
call the simplified version of binary tree selection algorithm as
simple binary tree selection. It is easy to get that only K − 1
binary classifiers need to check for any test sample under this
case.

However, mark and skip selection algorithms, these two
selection policies will not be sure to exclude each group
label duplicately, which made the selection algorithm fail
sometimes. Therefore, these two selection algorithms are not
inevitably more efficiently than binary tree selection, though
they have many more opportunities to find the wining group
ahead than binary tree selection algorithm does, intuitively,
which the latter is unfortunately certain to check K−1 binary
classifiers at least. In fact, according to our experimental
results, the upper bound of the number of checked modules
in these two selection algorithms is a linear function of K:
aK − b, where typically, 2 ≤ a ≤ 3, 1 ≤ b ≤ 2.

V. RELATED WORK

DDAG was proposed by Platt [4] for solving multiclass
problems with SVMs. For reader’s convenience, we redescribe
DDAG algorithm as follows.

1) Set all class labels with the tag of success and choose
any two different class labels.

2) Checked the binary classifier with the chosen class
labels, for example, the binary classifier with labels i
and j, namely, Mij .

3) If the chosen binary classifier Mij support the class i,
then set class j with the failure tag, otherwise, set i.

4) Continue to choose the class labels from those still
successive ones, for example, class j ′, next checked
binary classifier Mij′ then can be chosen. Jump into 2.
If there is only one class label remained, then continue.

5) Output the survival class label as the final classification
result.

Look up for the description of binary tree selection algo-
rithm in section III-C, it is easy to find that DDAG is one
revised version of simple binary tree selection algorithm, or
vice versa. Simple binary tree selection procedure chooses the
unchecked class labels in turn, then it continuously eliminates
the failure class through multi-turn choices and testing. While
there is not the concept of ‘turn’ in DDAG combination,
DDAG just simply checks any chosen binary classifiers to
determine which class label should be eliminated. However,
both procedures will eliminate one class from all each time
without duplication, which make them equivalent in fact.

The equivalent relationship between DDAG and simple
binary tree selection algorithm shows both the close rela-
tionship between min-max combination and DDAG and the
reason why SVMs under DDAG combination policy takes
ideal generalization performance [5].

VI. EXPERIMENTAL RESULTS

Four data sets shown in Table III from Yomiuri News
Corpus [9] and UCI Repository [10] have been chosen for
this study.

SVMs [11] with the kernel function of RBF are chosen for
all binary classifiers, and values of two parameters, C and γ,
are given as shown in Table III. Though SVM algorithm is
chosen in the experiment, it is not the unique choice for this
study. Actually, any classification algorithm can work under
our selection schemes. For example, BP neural networks is
used traditionally [1], [2].

TABLE III
DISTRIBUTIONS OF DATA SETS AND CORRESPONDING PARAMETERS FOR

SVMS

Task #Class Number of Samples SVM Parameters
Training Test C γ

CoverType 7 348605 232407 128 0.125
Optdigits 10 3823 1797 8 0.0008

Letter 26 15000 5000 4 0.061
Yomiuri 75 913118 181875 64 0.125



The results are shown in Table V. Table V demonstrates
the different accuracies under binary tree selection and simple
binary tree selection. Experimental results show that our
module selection algorithms do speed up the response time
of the classifiers. Three module selection algorithms take on
similar results. And DDAG and simple binary tree selection
give the same results while unknown class label is replaced
by a random guess. However, improvement of response time
for CoverType data set is not significant. We attribute this to
heavily unbalanced scale of each support machine.

TABLE V
COMPARISON OF EXPERIMENTAL RESULTS OF BINARY TREE SELECTION

ALGORITHMS ON DIFFERENT DATA SETS

Data set Correct Incorrect Unknown Average Number of
Rate Rate Rate Checked Modules

(Classes) (%) (%) (%) Experiment Bound

CoverType 93.0 6.9 0.2 9.5 12
(7) 93.0 7.0 0.0 6.0 6

Optdigits 98.9 0.8 0.3 15.9 18
(10) 98.9 1.1 0.0 9.0 9

Letter 97.7 2.1 0.1 47.3 50
(26) 97.8 2.2 0.0 25.0 25

Yomiuri 66.4 26.6 7.1 140.3 148
(75) 68.3 31.7 0.0 74.0 74

For three data sets from UCI repository, by removing the
last one class of data each time from the obtained subset,
we continuously produce corresponding 3-6 class subsets for
CoverType data set, 3-25 class subsets for Letter data set and
3-9 class subsets for Optdigits data set. Figures 3 through
5 show experimental results on selection algorithms under
similar test set with different number of classes. The number
of checked modules in three selection methods take linear
function of classes at an experimental view, which agrees on
the dissertation at the end of Section IV.

3 4 5 6 7
0

2

4

6

8

10

12

 The Number of Classes

 T
h
e
 A

ve
ra

g
e
 V

a
lu

e
 o

f 
N

u
m

b
e
r 

o
f 
C

h
e
ck

e
d
 M

o
d
u
le

s

Mark Selection

Skip Selection

Binary Tree Selection

Upper Bound for Binary Tree Selection

Fig. 3. Comparison of experimental results of CoverType data set, the curves
of mark and skip selection algorithms are highly coincident

4 6 8 10 12 14 16 18 20 22 24 26
0

5

10

15

20

25

30

35

40

45

50

 The Number of Classes

 T
h
e
 A

ve
ra

g
e
 V

a
lu

e
 o

f 
N

u
m

b
e
r 

o
f 
C

h
e
ck

e
d
 M

o
d
u
le

s

Mark Selection

Skip Selection

Binary Tree Selection

Upper Bound for Binary Tree Selection

Fig. 4. Comparison of experimental results of Letter data set, the curves of
mark and skip selection algorithm are highly coincident

3 4 5 6 7 8 9 10
0

2

4

6

8

10

12

14

16

18

20

 The Number of Classes

 T
h
e
 A

ve
ra

g
e
 V

a
lu

e
 o

f 
N

u
m

b
e
r 

o
f 
C

h
e
ck

e
d
 M

o
d
u
le

s

Mark Selection

Skip Selection

Binary Tree Selection

Upper Bound for Binary Tree Selection

Fig. 5. Comparison of experimental results of Optdigits data set, the curves
of mark and skip selection algorithm are highly coincident

VII. DISCUSSIONS

One of our previous work [6] give a complete comparison
between most-win policy and min-max policy. We have proved
that they are both extreme cases of a unified voting combining
policy for one-vs-one decomposition of multiclass problems,
where the former takes most high accuracy and the latter takes
most high efficiency with a module-based view similarly.

In addition, min-max combination will go into effect in
two ways. One is in the situation which unknown label is
very necessary, or users want to know how self-confident
the classifier is. Typically, text classification with a large
number of classes is one kind of such application, where a
text often is suitable to be classified into two different classes.
Here Fig. 6 shows another case. We restore all images from
Optdigits test data set. Fig. 6 (a) shows some typical images for
possible digits, and Fig. 6 (b) shows how images of classified
unknown digits are. Min-max combination always can give a
consistent decision confidence since all its classification results
are based on agreement of same number of base classifiers,
while most-win or DDAG policy never can do. The other is
in theoretical aspect. Min-max modular classifier is a bridge



TABLE IV
COMPARISON OF EXPERIMENTAL RESULTS AMONG SELECTION ALGORITHMS ON DIFFERENT DATA SETS(TIME UNIT OF OPTDIGITS AND LETTER IS

1/1000 SECOND.)

Data set Average Number of Checked Modules and Response Time
(classes) without Selection Mark Selection Skip Selection BT Selection DAG or SBT Selection

#Module Time (s) #Module Time (s) #Module Time (s) #Module Time (s) #Module Time (s)

CoverType(7) 21 4723 6.8 4455 6.8 4480 9.5 4276 6.0 2770
Optdigits(10) 45 3906 16.9 1500 16.9 1531 15.9 1453 9.0 937

Letter(26) 325 123781 50.5 20015 50.5 20031 47.3 19343 25.0 11453
Yomiuri(75) 2775 2470864 99.1 193550 104.9 211750 140.2 247962 74.0 124122

(a)

(b)
Fig. 6. Image restored from data file of Optdigits test set: typical optical
image of digits a) and three images of digits classified as unknown class b)

between most-win policy and DDAG policy. We have shown
DDAG can be seen as a partial min-max combination in this
paper, and consider the work of comparison between min-
max combination policy and most-win combination policy.
Therefore we may give a whole view scape for all possible
combination under one-vs-one decomposition of multiclass
problems. For example, we may be easy to understand why
DDAG SVM takes on most merits [5] through the discussions
above.

VIII. CONCLUSIONS

In this paper, we start from optimizing min-max com-
bination procedure and finally proved that the number of
checked binary classifiers under one-vs-one decomposition of
multiclass problems can be reduced to 2K − 2 and K − 1
for any input. Notice that original min-max combination
procedure of binary classifiers with min-max rules need to
check K(K−1)/2 binary classifiers. Our selection procedures
significantly improve the response performance of the min-
max modular classifiers.

In addition, we built the relationship between two different
combination policies, min-max combination and DDAG. we
show that DDAG can be regarded as a special case of min-
max combination under our selection scheme. Finally, we have
presented an analysis method independent of classification
algorithms for combing binary classifiers. The method permits

us to give a unified performance estimation for any algorithm
realization. What’s more our analysis has given a briefly the-
oretical explanation for the reason why min-max combination
or DDAG is the most efficient in module combination.

ACKNOWLEDGEMENTS

The authors would like to give their thankfulness to YANG
Yang for her excellent programming work and useful advices,
LI Jing for proposing a critical amendment advice and WANG
Kaian for his generous helpful work on experimental data.

This research was partially supported by the National
Natural Science Foundation of China via the grants NSFC
60375022 and NSFC 60473040.

REFERENCES

[1] B. L. Lu and M. Ito, “Task decomposition based on class relations: a
modular neural network architecture for pattern classification”, In: Mira,
J., Moreno-Diaz, R., Cabestany, J.(eds.), Biological and Artificial Com-
putation: From Neuroscience to Technology, Lecture Notes in Computer
Science, Springer Vol.1240, pp.330-339, 1997.

[2] B. L. Lu and M. Ito, “Task Decomposition and Module Combination
Based on Class Relations: a Modular Neural Network for Pattern Classi-
fication”, IEEE Transactions on Neural Networks, Vol.10, pp.1244-1256,
1999.

[3] J. Frnkranz, “Round Robin Classification”, The Journal of Machine
Learning Research, Vol.2, pp.721-747, 2002.

[4] J. Platt, N. Cristianini and J. Shawe-Taylor. “Large Margin DAGS for
Multiclass Classification”, Advances in Neural Information Processing
Systems, 12 ed. S.A. Solla, T.K. Leen and K.-R. Muller, MIT Press,
2000.

[5] C.-W. Hsu and C.-J. Lin. “A comparison of methods for multi-class
support vector machines”, Technical report, Department of Computer
Science and Information Engineering, National Taiwan University, Taipei,
Taiwan, 2001.

[6] H. Zhao, B. L. Lu, “Combination of Binary Classifiers and Performance
Analysis (in Chinese)”, Chinese Academic Symposium of Doctoral
Student, 2004.

[7] E. L. Allwein, R. E. Schapire, and Y. Singer, “Reducing multiclass to
binary: a unifying approach for margin classifiers”, Journal of Machine
Learning Research, Vol. 1, pp.113-141, 2000.

[8] T. G. Dietterich and G. Bakiri, “Solving multiclass learning problems via
error-correcting output codes”, Journal of Artificial Intelligence Research,
Vol. 2, pp.263-286, 1995.

[9] M. Utiyama, H. Isahara, “Large-scale text categorization (in Japanese)”,
9th Annual Meeting of the Association (Japan) for Natural Language
Processing, pp.385-388, 2003.

[10] C. L. Blake, C. J. Merz, UCI Repository of machine learning databases
[http://www.ics.uci.edu/ mlearn/MLRepository.html]. Irvine, CA: Univer-
sity of California, Department of Information and Computer Science,
1998.

[11] B. L. Lu, K. A. Wang, M. Utiyama, H. Isahara, “A part-versus-part
method for massively parallel training of support vector machines”, Proc.
of IEEE/INNS Int. Joint Conf. on Neural Networks (IJCNN2004), pp.735-
740, Budabest, Hungary, July 25-29, 2004.


