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Abstract

This paper describes a hypernym discovery
system for our participation in the SemEval-
2018 Task 9, which aims to discover the best
(set of) candidate hypernyms for input con-
cepts or entities, given the search space of a
pre-defined vocabulary. We introduce a neu-
ral network architecture for the concerned task
and empirically study various neural network
models to build the representations in latent
space for words and phrases. The evaluated
models include convolutional neural network,
long-short term memory network, gated re-
current unit and recurrent convolutional neural
network. We also explore different embedding
methods, including word embedding and sense
embedding for better performance.

1 Introduction

Hypernym-hyponym relationship is an is-a se-
mantic relation between terms as shown in Ta-
ble 1. Various natural language processing (NLP)
tasks, especially those semantically intensive ones
aiming for inference and reasoning with gen-
eralization capability, such as question answer-
ing (Harabagiu and Hickl, 2006; Yahya et al.,
2013) and textual entailment (Dagan et al., 2013;
Roller and Erk, 2016), can benefit from identify-
ing semantic relations between words beyond syn-
onymy.

The hypernym discovery task (Camacho-
Collados et al., 2018) aims to discover the most
appropriate hypernym(s) for input concepts or
entities from a pre-defined corpus. A relevant
well-known scenario is hypernym detection,
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which is a binary task to decide whether a
hypernymic relationship holds between a pair
of words or not. A hypernym detection system
should be capable of learning taxonomy and lex-
ical semantics, including pattern-based methods
(Boella and Caro, 2013; Espinosa-Anke et al.,
2016b) and graph-based approaches (Fountain
and Lapata, 2012; Velardi et al., 2013; Kang et al.,
2016). However, our concerned task, hypernym
discovery, is rather more challenging since it
requires the systems to explore the semantic
connection with all the exhausted candidates in
the latent space and rank a candidate set instead of
a binary classification in previous work. The other
challenge is representation for terms, including
words and phrases, where the phrase embedding
could not be obtained by word embeddings
directly. A simple method is to average the inner
word embeddings to form the phrase embedding.
However, this is too coarse since each word
might share different weights. Current systems
like (Espinosa-Anke et al., 2016a) commonly
discover hypernymic relations by exploiting linear
transformation matrix in embedding space, where
the embedding should contain words and phrases,
resulting to be parameter-exploded and hard to
train. Besides, these systems might be insufficient
to obtain the deep relationships between terms.

Hyponym Hypernyms
Heming actor, person, company
Kralendijk town, city, provincial capital, capital
StarCraft video game, pc game, computer game,

videogaming, comic, electronic game, sci-
entifiction

Table 1: Examples of hypernym-hyponym relation-
ship.

Recently, neural network (NN) models have
shown competitive or even better results than tra-
ditional linear models with handcrafted sparse fea-



tures (Qin et al., 2016b; Pang et al., 2016; Qin
et al., 2016a; Wang et al., 2016c; Zhao et al.,
2017a; Wang et al., 2017; Qin et al., 2017; Cai and
Zhao, 2017; Zhao et al., 2017b; Li et al., 2018). In
this work, we introduce a neural network architec-
ture for the concerned task and empirically study
various neural networks to model the distributed
representations for words and phrases.

In our system, we leverage an unambiguous
vector representation via term embedding, and we
take advantage of deep neural networks to dis-
cover the hypernym relationships between terms.

The rest of the paper is organized as follows:
Section 2 briefly describes our system, Section 3
shows our experiments on the hyperym discovery
task including the general-purpose and domain-
specific one. Section 4 concludes this paper.

2 System Overview

Our hypernym discovery system can be roughly
split into two parts, Term Embedding and Hy-
pernym Relationship Learning. We first train
term embeddings, either using word embedding or
sense embedding to represent each word. Then,
neural networks are used to discover and rank the
hypernym candidates for given terms.

2.1 Embedding

To use deep neural networks, symbolic data needs
to be transformed into distributed representa-
tions(Wang et al., 2016a; Qin et al., 2016b; Cai
and Zhao, 2016; Zhang et al., 2016; Wang et al.,
2016b, 2015; Cai et al., 2017). We use Glove
toolkit to train the word embeddings using UMBC
corpus (Han et al., 2013). Moreover, in order
to perform word sense induction and disambigua-
tion, the word embedding could be transformed to
sense embedding, which is induced from exhisting
word embeddings via clustering of ego-networks
(Pelevina et al., 2016) of related words. Thus, each
input word or phrase is embedded into vector se-
quence, w = {x1, x2, . . . , xl} where l denotes the
sequence length. If the input term is a word, then
l = 1 while for phrases, l means the number of
words.

2.2 Hypernym Learning

Previous work like TAXOEMBED (Espinosa-
Anke et al., 2016a) uses transformation matrix for
hypernm relationship learning, which might be not
optimal due to the lack of deeper nonlinear fea-

ture extraction. Thus, we empirically survey var-
ious neural networks to represent terms in latent
space. After obtaining the representation for in-
put term and all the candidate hypernyms, to give
the ranked hypernym list, the cosine similarity
between the term and the candidate hypernym is
computed by,

cosine =

∑n
i=1(xi × yi)∑n

i=1 x
2
i ×

∑n
i=1 y

2
i

where xi and yi denote the two concerned vectors.
Our candidate neural networks include Convolu-
tional Neural Network (CNN), Long-short Term
Memory network (LSTM), Gated Recurrent Unit
(GRU) and Recurrent Convolutional Neural Net-
work (RCNN).

GRU The structure of GRU (Cho et al., 2014)
used in this paper are described as follows.

rt = σ(Wrxt + Urht−1 + br),

zt = σ(Wzxt + Uzht−1 + bz),

h̃t = tanh(Whxt + Uh(rt� ht−1) + bh)

ht = (1− zt)� ht−1 + zt � h̃t

where � denotes the element-wise multiplication.
rt and zt are the reset and update gates respec-
tively, and h̃t the hidden states.

LSTM LSTM (Hochreiter and Schmidhuber,
1997) unit is defined as follows.

it = σ(Wixt +Whht−1 + bi),

ft = σ(Wfxt +Wfht−1 + bf ),

ut = σ(Wuxt +Wuht−1 + bu),

ct = ft � ct−1 + it � tanh(Wcxt +Wcht−1 + bc),

ht = tanh(ct)� ut,

where σ stands for the sigmoid function,
� represents element-wise multiplication and
Wi,Wf ,Wu,Wc, bi, bf , bu, bc are model parame-
ters. it, ft, ut, ct, ht are the input gates, forget
gates, memory cells, output gates and the current
state, respectively.

CNN Convolutional neural networks have also
been successfully applied to various NLP tasks, in
which the temporal convolution operation and as-
sociated filters map local chunks (windows) of the
input into a feature representation.

Concretely, let n denote the filter width, filter
matrices [W1, W2, . . . , Wk] with several vari-
able sizes [l1, l2, . . . , lk] are utilized to perform the



convolution operations for input embeddings. For
the sake of simplicity, we will explain the proce-
dure for only one embedding sequence. The em-
bedding will be transformed to sequences cj(j ∈
[1, k]) :

cj = [. . . ; tanh(Wj · x[i:i+lj−1] + bj); . . . ]

where [i : i+ lj − 1] indexes the convolution win-
dow. Additionally, we apply wide convolution op-
eration between embedding layer and filter matri-
ces, because it ensures that all weights in the fil-
ters reach the entire sentence, including the words
at the margins.

A one-max-pooling operation is adopted after
convolution and the output vector s is obtained
through concatenating all the mappings for those
k filters.

sj = max(cj)

s = [s1 ⊕ · · · ⊕ sj ⊕ · · · ⊕ sk]

In this way, the model can capture the critical fea-
tures in the sentence with different filters.

RCNN Since some input terms are phrases,
whose member words share different weights. In
RCNN, an adaptive gated decay mechanism is
used to weight the words in the convolution layer.
Following (Lei et al., 2016), we introduce neural
gates similar λ to LSTMs to specify when and how
to average the observed signals. The resulting ar-
chitecture integrates recurrent networks with non-
consecutive convolutions:

λ = σ(W λxt + Uλht−1 + bλ)

c1t = λt � c1t−1 + (1− λt)�W1xt

c2t = λt � c2t−1 + (1− λt)� (c1t−1 +W2xt)

· · ·
cnt = λt � cnt−1 + (1− λt)� (c1n−1 +Wnxt)

ht = tanh(cnt + b)

where c1t , c
2
t , · · · , cnt are accumulator vectors that

store weighted averages of 1-gram to n-gram fea-
tures.

For discriminative training, we use a max-
margin framework for learning (or fine-tuning)
parameters θ. Specifically, a scoring function
ϕ(·, ·; θ) is defined to measure the semantic sim-
ilarity between the corresponding representations
of input term and hypernym. Let p = {p1, ...pn}
denote the hypernym corpus and h ∈ p is the

ground-truth hypernym to the term ti, the optimal
parameters θ are learned by minimizing the max-
margin loss:

max{ϕ(ti, pi; θ)− ϕ(ti, a; θ) + δ(pi, a)}

where δ(., .) denotes a non-negative margin and
δ(pi, a) is a small constant when a 6= pi and 0
otherwise.

3 Experiment

In the following experiments, besides the neural
networks, we also simply average the embeddings
of an input phrase as our baseline to discover the
relationship of terms and their corresponding hy-
pernyms for comparison (denoted as term embed-
ding averaging, TEA).

3.1 Setting
Our hypernym discovery experiments include
general-purpose substask for English and domain-
specific ones for medical and music. Our evalua-
tion is based on the following information retrieval
metrics: Mean Average Precision (MAP), Mean
Reciprocal Rank (MRR), Precision at 1 (P@1),
Precision at 3 (P@3), Precision at 5 (P@5), Pre-
cision at 15 (P@15).

For the sake of computational efficiency, we
simply average the sense embedding if a word
has more than one sense embedding (among var-
ious domains). Our model was implemented us-
ing the Theano1 . The diagonal variant of Ada-
Grad (Duchi et al., 2011) is used for neural net-
work training. We tune the hyper-parameters
with the following range of values: learning
rate ∈ {1e− 3, 1e− 2}, dropout probability ∈
{0.1, 0.2}, CNN filter width ∈ {2, 3, 4}. The
hidden dimension of all neural models are 200.
The batch size is set to 20 and the word em-
bedding and sense embedding sizes are set to
300. All of our models are trained on a single
GPU (NVIDIA GTX 980Ti), with roughly 1.5h
for general-purpose subtask for English and 0.5h
domain-specific domain-specific ones for medical
and music. We run all our models up to 50 epoch
and select the best result in validation.

3.2 Result and analysis
Table 2 shows the result on general-domain sub-
task for English. All the neural models out-
perform term embedding averaging in terms of

1https://github.com/Theano/Theano

https://github.com/Theano/Theano


Embedding Model MAP MRR P@1 P@3 P@5 P 15

Word
TEA 6.10 11.13 4.00 6.00 5.40 5.14
GRU 8.13 16.22 8.00 8.00 6.67 6.94
LSTM 3.95 7.52 4.00 4.33 3.97 3.97
CNN 7.32 13.33 8.00 9.00 7.80 6.94
RCNN 8.74 12.83 6.00 9.67 8.87 9.15

Sense
TEA 4.42 8.71 0.00 4.04 4.19 5.31
GRU 5.42 9.44 0.00 4.44 4.89 5.83
LSTM 5.62 9.97 4.00 4.35 5.01 6.83
CNN 6.41 10.92 2.00 5.01 5.67 6.29
RCNN 5.79 9.24 0.00 4.71 5.29 6.43

Table 2: Gold standard evaluation on general-purpose subtask.

Embedding Model medical music
MAP MRR P@1 P@3 P@5 P 15 MAP MRR P@1 P@3 P@5 P 15

Word

TEA 8.91 16.77 0.00 8.79 9.41 9.39 7.11 14.32 0.00 10.01 10.77 9.21
GRU 13.27 21.89 0.00 13.33 14.89 14.06 15.20 20.33 0.00 17.78 18.67 15.45
LSTM 11.49 21.11 0.00 17.78 12.22 11.83 14.08 20.77 0.07 13.33 16.00 15.00
CNN 18.31 24.52 0.00 15.56 20.44 20.00 17.58 27.15 0.00 20.00 20.00 16.04
RCNN 16.78 23.40 0.00 13.33 13.00 14.50 13.60 21.67 0.07 13.33 14.67 13.08

Sense

TEA 2.01 4.77 0.00 2.91 2.77 3.21 2.59 5.28 0.00 2.12 3.01 2.93
GRU 4.88 9.11 0.00 6.67 6.42 6.91 5.32 10.74 2.00 4.44 5.33 4.95
LSTM 5.10 10.22 0.00 6.67 6.12 6.94 4.39 10.21 0.00 8.89 5.33 3.61
CNN 4.15 7.84 0.00 4.44 6.09 6.42 4.75 9.61 0.00 6.67 6.67 4.43
RCNN 4.63 9.84 0.00 6.67 6.89 6.43 4.73 8.56 0.00 4.44 6.22 4.94

Table 3: Gold standard evaluation on domain-specific subtask.

all the metrics. This result indicates simply av-
eraging the embedding of words in a phrase is
not an appropriate solution to represent a phrase.
Convolution or recurrent gated mechanisms in ei-
ther CNN-based (CNN, RCNN) or RNN (GRU,
LSTM) based neural networks could essentially be
helpful of modeling the semantic connections be-
tween words in a phrase, and guide the networks
to discover the hypernym relationships. We also
observe CNN-based network performance is bet-
ter than RNN-based, which indicates local fea-
tures between words could be more important than
long-term dependency in this task where the term
length is up to trigrams.

To investigate the performance of neural mod-
els on specific domains, we conduct experiments
on medical and medicine subtask. Table 3 shows
the result. All the neural models outperform term
embedding averaging in terms of all the metrics
and CNN-based network also performs better than
RNN-based ones in most of the metrics using
word embedding, which verifies our hypothesis in
the general-purpose task. Compared with word
embedding, the sense embedding shows a much
poorer result though they work closely in general-
purpose subtask. The reason might be the simple
averaging of sense embedding of various domains
for a word, which may introduce too much noise

and bias the overall sense representation. This also
discloses that modeling the sense embedding of
specific domains could be quite important for fur-
ther improvement.

4 Conclusion

In this paper, we introduce a neural network archi-
tecture for the hypernym discovery task and em-
pirically study various neural network models to
model the representations in latent space for words
and phrases. Experiments on three subtasks show
the neural models can yield satisfying results. We
also evaluate the performance of word embedding
and sense embedding, showing that in domain-
specific tasks, sense embedding could be much
more volatile.

References
Guido Boella and Luigi Di Caro. 2013. Supervised

learning of syntactic contexts for uncovering def-
initions and extracting hypernym relations in text
databases. Joint European Conference on Machine
Learning and Knowledge Discovery in Databases,
pages 64–79.

Deng Cai and Hai Zhao. 2016. Neural word segmen-
tation learning for Chinese. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 409–420.



Deng Cai and Hai Zhao. 2017. Pair-Aware Neural
Sentence Modeling for Implicit Discourse Relation
Classification. IEA/AIE 2017, Part II, LNAI 10351.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and
accurate neural word segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL 2017),
pages 608–615.

Jose Camacho-Collados, Claudio Delli Bovi, Luis
Espinosa-Anke, Sergio Oramas, Tommaso Pasini,
Enrico Santus, Vered Shwartz, Roberto Navigli,
and Horacio Saggion. 2018. SemEval-2018 Task
9: Hypernym Discovery. In Proceedings of the
12th International Workshop on Semantic Evalu-
ation (SemEval-2018), New Orleans, LA, United
States. Association for Computational Linguistics.

Kyunghyun Cho, Bart Van Merrienboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using rnn encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP 2014), pages
1724–1734.

Ido Dagan, Roth Dan, Fabio Zanzotto, and Mark
Sammons. 2013. Recognizing textual entail-
ment:models and applications. Computational Lin-
guistics, 41(1):157–160.

John C. Duchi, Elad Hazan, and Yoram Singer. 2011.
Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine
Learning Research, 12(39):2121–2159.

Luis Espinosa-Anke, Jose Camacho-Collados, Clau-
dio Delli Bovi, and Horacio Saggion. 2016a. Su-
pervised distributional hypernym discovery via do-
main adaptation. In Proceedings of the 2016 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP 2016), page 424435.

Luis Espinosa-Anke, Horacio Saggion, Francesco Ron-
zano, and Roberto Navigli. 2016b. Extasem! ex-
tending, taxonomizing and semantifying domain
terminologies. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence (AAAI-
16), pages 2594–2600.

Trevor Fountain and Mirella Lapata. 2012. Taxonomy
induction using hierarchical random graphs. In Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, pages 466–476.

Lushan Han, Abhay Kashyap, Tim Finin, James May-
field, and Jonathan Weese. 2013. Umbc ebiquity-
core: Semantic textual similarity systems. Second
Joint Conference on Lexical and Computational Se-
mantics (*SEM), 1:4452.

Sanda Harabagiu and Andrew Hickl. 2006. Methods
for using textual entailment in open-domain ques-
tion answering. In Proceedings of the 21st Interna-
tional Conference on Computational Linguistics and
44th Annual Meeting of the ACL (ACL 2006), pages
905–912.

Sepp Hochreiter and Jrgen Schmidhuber. 1997.
Long short-term memory. Neural Computation,
9(8):1735–1780.

Yong Bin Kang, Pari Delir Haghighi, and Frada
Burstein. 2016. Taxofinder: A graph-based ap-
proach for taxonomy learning. IEEE Transactions
on Knowledge & Data Engineering, 28(2):524–536.

Tao Lei, Hrishikesh Joshi, Regina Barzilay, Tommi
Jaakkola, Katerina Tymoshenko, Alessandro Mos-
chitti, and Lluis Marquez. 2016. Semi-supervised
question retrieval with gated convolutions. In Pro-
ceedings of NAACL-HLT 2016, pages 1279–1289.

Haonan Li, Zhisong Zhang, Yuqi Ju, and Hai Zhao.
2018. Neural character-level dependency parsing
for Chinese. In The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18).

Chenxi Pang, Hai Zhao, and Zhongyi Li. 2016. I can
guess what you mean: A monolingual query en-
hancement for machine translation. In The Fifteenth
China National Conference on Computational Lin-
guistics (CCL 2016).

Maria Pelevina, Nikolay Arefiev, Chris Biemann, and
Alexander Panchenko. 2016. Making sense of word
embeddings. In Proceedings of the 1st Workshop on
Representation Learning for NLP, pages 174–183.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016a.
Shallow discourse parsing using convolutional neu-
ral network. In Proceedings of the 54th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2016), pages 70–77.

Lianhui Qin, Zhisong Zhang, and Hai Zhao. 2016b. A
stacking gated neural architecture for implicit dis-
course relation classification. In Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2016), pages 2263–2270.

Lianhui Qin, Zhisong Zhang, Hai Zhao, Zhiting Hu,
and Eric P. Xing. 2017. Adversarial connective-
exploiting networks for implicit discourse relation
classification. In Proceedings of the 55th Annual
Meeting of the Association for Computational Lin-
guistics (ACL 2017), pages 1006–1017.

Stephen Roller and Katrin Erk. 2016. Relations such
as hypernymy: Identifying and exploiting hearst pat-
terns in distributional vectors for lexical entailment.
In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing (EMNLP
2016), page 21632172.



Paola Velardi, Stefano Faralli, and Roberto Navigli.
2013. Ontolearn reloaded: A graph-based algorithm
for taxonomy induction. Computational Linguistics,
39(3):665–707.

Hao Wang, Hai Zhao, and Zhisong Zhang. 2017. A
transition-based system for universal dependency
parsing. In CONLL 2017 Shared Task: Multilingual
Parsing From Raw Text To Universal Dependencies
(CONLL 2017), pages 191–197.

Peilu Wang, Yao Qian, Frank K. Soong, Lei He, and
Hai Zhao. 2016a. Learning distributed word rep-
resentations for bidirectional lstm recurrent neural
network. In Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies (NAACL
2016), pages 527–533.

Rui Wang, Masao Utiyama, Isao Goto, Eiichiro
Sumita, Hai Zhao, and Bao Liang Lu. 2016b. Con-
verting continuous-space language models into n-
gram language models with efficient bilingual prun-
ing for statistical machine translation. ACM Trans-
actions on Asian and Low-Resource Language In-
formation Processing, 15(3):11.

Rui Wang, Hai Zhao, Bao Liang Lu, Masao Utiyama,
and Eiichiro Sumita. 2015. Bilingual continuous-
space language model growing for statistical ma-
chine translation. IEEE/ACM Transactions on Au-
dio Speech & Language Processing, 23(7):1209–
1220.

Rui Wang, Hai Zhao, Bao Liang Lu, Masao Utiyama,
and Eiichro Sumita. 2016c. Connecting phrase
based statistical machine translation adaptation. In
Proceedings of COLING 2016, the 26th Interna-
tional Conference on Computational Linguistics:
Technical Papers (COLING 2016), page 31353145.

Mohamed Yahya, Klaus Berberich, Shady Elbassuoni,
and Gerhard Weikum. 2013. Robust question an-
swering over the web of linked data. In Proceed-
ings of the 22nd ACM international conference on
Conference on information & knowledge manage-
ment (CIKM 2013), pages 1107–1116.

Zhisong Zhang, Hai Zhao, and Lianhui Qin. 2016.
Probabilistic graph-based dependency parsing with
convolutional neural network. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (ACL 2016), pages 1382–1392.

Hai Zhao, Deng Cai, Changning Huang, and Chunyu
Kit. 2017a. Chinese Word Segmentation, a decade
review (2007-2017). China Social Sciences Press,
Beijing, China.

Hai Zhao, Deng Cai, Yang Xin, Yuzhu Wang, and
Zhongye Jia. 2017b. A hybrid model for Chinese
spelling check. ACM Transactions on Asian Low-
Resource Language Information Process, pages 1–
22.


