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Introduction o (?) Pupil responses Ito the same video 1I‘rom 4 stuects
In the past few decades, an increasing number of re- 100 o Ma0
searcheson emotion recognition have been done ”
since emotion recognition has great significance and 0 500 1000 1500 2000 2500 3000 3500
wide applications, especially its crucial role in hu- 100 (o) The first principal componet
man-machine interaction systems. Possible applica- STV S NPTy
tions of emotion recognition cover a vast scope,
whether at a personal or a social level. For driving 00T 500 1000 1500 2000 2500 3000 3500
safety, we can design an affective user interface to - (c) Signals after subtracting the first principal componet

monitor drivers’ emotional and cognitive states and
response to drivers to requlate their emotions.
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Conclusion
Session K-2 :> Session K-1 :> Session K :> Session K+1 :> Session K+2 Here, we emplOyed two fusion strategies (featu e

level fusion and decision level fusion) to build emo-
tion recognition models which achieved the best
classification accuracies of 73.59 % and 72.98 %, re-

The Protocol of the Experiment

Method :
spectively.
In our experiment, 15 emotional film clips were se- -

o . o« osItive
lected to elicit three emotions: positive, neutral and 120 0 Neutral
negative. Each emotion had 5 video clips for a ses- B Negative
sion and each clip lasted for around 4 minutes. g %
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The Framework of our Experiment Processing 7.
For EEG data, we extracted different features from ?
five frequency bands. For eye tracking data, we ex- 0
tracted mean values, standard deviations and spec- 0
tral powers of frequency bands from pupil respons- .
es. We applied fusion methods of feature level fusion 0
and decision level fusion combining features from T e T
EEG signals and eye tracking data. The Accuracies of 12 Experiments using Fusion Strategies
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