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Abstract—In recent years, it has been observed that there is
an increasing rate of road accidents due to the low vigilance of
drivers. Thus, the estimation of drivers’ vigilance state plays
a significant role in Public Transportation Safety (PTS). We
have adopted a feature fusion strategy that combines the
electroencephalogram (EEG) signals collected from various sites
of the human brain, including forehead, temporal, and poste-
rior and forehead electrooculogram (forehead-EOG) signals, to
address this factor. The level of vigilance is predicted through
a new learning model known as double-layered neural network
with subnetwork nodes (DNNSN), which comprises several
subnetwork nodes, and each node in turn is composed of many
hidden nodes that have various capabilities of feature selection
(dimension reduced), feature learning, etc. The proposed single
modality that uses only forehead-EOG signal exhibits a mean
root-mean-square error (RMSE) of 0.12 and a mean Pearson
product-moment correlation coefficient (COR) of 0.78. On one
hand, an EEG signal achieved a mean RMSE of 0.13 and a mean
COR of 0.72. Whereas, on the other, the proposed multimodality
achieved values of 0.09 and 0.85 for the mean RMSE and
the mean COR, respectively. Experimental results show that
the proposed DNNSN with multimodality fusion outperforms
the model with single modality for vigilance estimation due
to the complementary information between forehead-EOG and
EEG. After a favorable learning rate was applied to the input
layer, the mean RMSE/COR improved to 0.11/0.79, 0.12/0.74,
and 0.08/0.86, respectively. Hence, this quantitative analysis
proves that the proposed method provides better feasibility and
efficiency learning capability and surmounts other state-of-the-
art techniques.

Index Terms—EEG, forehead-EOG, feedforward neural net-
work, learning rate, vigilance estimation.
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I. INTRODUCTION

Vigilance is a vital physiological signal and usually de-
fined as the ability of organisms to maintain their long-
term attention for stimuli [1]. When people engaging in
public transportation (e.g., pilots, drivers, etc.) reduce or
lose their vigilance, fundamentally serious accidents occur,
sometimes resulting in fatal events. New South Wales (NSW)
[2] investigated that of all the fatal traffic accidents from
2009 to 2013, at least 20% were caused by fatigue driving.
In 2000, the National Aeronautics and Space Administration
(NASA) [3] reported that a famous questionnaire was set for
almost 11,000 pilots from 2,000 companies, of which over
half-a-dozen surveys indicated that pilots were exhibited
with fatigue during the approach/landing flight phase. Fatal
traffic accidents due to reduced vigilance have shown to
become more and more common around the world in
recent years [4], [5].

To estimate the level of vigilance, typically, methods can
be divided into four categories [6]: physiological methods
[7]-127], behavioral methods [28]-[34], subjective methods
[35]-[38], and vehicle-based methods [39]-[41].

A. Physiological Methods

Most physiological measures are based on the detection
of drowsiness using mainly the following four procedures:

1) Electroencephalogram (EEG): Loomis et al. [7] indi-
cated that electrical waves correlated with physiological or
psychological states are recorded from electric potentials
of the human brain to analyze the difference between
the states of wakefulness and sleep where the electroen-
cephalogram (EEG) is used first in order to estimate vigi-
lance. An experimental analysis of 22 subjects showed that
the slower the wave, the deeper the sleep. The quantita-
tive estimation of the level of alertness such as testing
blood alcohol content (BAC) was proposed in previous
works [8]-[10]. Matousek et al. [8] introduced an EEG-
based multi-regression model to automatically determine
the mean Pearson product-moment correlation coefficient
(COR) through one set of data that can also be used for
the spectral values of another set of data. According to an
activity index, which was computed by beta to delta ratio
and beta and delta components of EEG features, Merica et
al. [9] showed that values of gradient and magnitude rapidly
changed at the beginning or just after stage 1 (drowsy) and
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got an accuracy of 75%. Makeig et al. [10] used a two-
fold coherence experiment for analyzsing fluctuations to
evaluate the linear relationship between the extracted EEG
signals by moving-average measure and levels of vigilance,
and then, verifying the linear correlation by strong con-
verging experimental results. Khushaba et al. [11] used the
fuzzy mutual-information-based wavelet-packet transform
(FMIWPT) algorithm to extract features from the datasets
collected from 31 drivers in an experimental environment,
and this algorithm showed an accuracy of at least 95%.
Recently, various advanced learning techniques have been
successfully applied in areas of speech recognition [42],
image recognition [43], and cognitive computing, etc. For
example, Yang et al. [13] used the subnetwork nodes of a
hierarchical network to recognize three emotions of neg-
ative, neutral, and positive. Every subnetwork node as a
hidden layer independently extracted the subspace features,
and the classification of accuracy improved to 91%. Chai
et al. [14] obtained the experimental samples that were
evaluated from 43 subjects between alert and tired states.
Then, they used the autoregressive (AR) model and the
sparse-deep belief networks (s-DBNs) [44] as the features
extraction and the classification algorithms, respectively,
and improved the sensitivity to 93%. It was noted that
EEG directlyrecorded neurophysiological signals that were
correlated with alertness; thus, it can be considered a
reliable method for vigilance estimation.

2) Electrooculogram (EOG): Electrooculogram (EOG) sig-
nals contain essential information from various eye move-
ments. Wierwille et al. proposed a famous algorithm known
as the percentage of eyelid closure (PERCLOS) using a high-
resolution camera to test eye closure over 80% to judge
drowsiness. Many commercialized fatigue driving devices,
with the PERCLOS algorithm [15], gradually appeared and
were ultimately recognized by the National Highway Traffic
Safety Administration (NHTSA) [16]. Hu et al. [17] utilized
support vector machine (SVM) strategy to obtain a mean
accuracy of 90% by using EOG and EMG signals recorded
from six electrodes and one electrode, respectively. Com-
pared to the traditional EOG signal, which was collected
from the traditional electrode placement, Zhang et al. [18]
obtained a new EOG signal that was collected from the
forehead electrode placement and used eye-tracking glasses
[19] to calculate the PERCLOS index. Then, they used the
SVM algorithm to estimate vigilance and obtain a high COR
of 0.86. Ma et al. [20] reported that an EOG signal has two
critical characteristics: an easy setup and a high signal-
to-noise ratio. Huo and Zheng et al. [21], [22] found the
complementarity of forehead-EOG and EEG signals, and
using the feature fusion for vigilance estimation, improved
the accuracy rate. In short, EOG-based methods gradually
played a vital role for vigilance estimation.

3) Electrocardiogram (ECG) and Electromyogram (EMG):
In recent years, many methods have used Electrocardio-
gram (ECG) [11], [23]-[25] and Electromyogram (EMG) [26],
[27] signals to quantitatively analyze levels of vigilance.
For example, Patel et al [24] proposed a strategy that
utilized the bandpass filter (BPF) for pre-processing raw

ECG signal and extracted features by fast Fourier transform
(FFT). They then used a neural network (NN) algorithm,
obtaining an accuracy of 90%. Compared to the experi-
mental results between wakefulness and drowsiness, Meng
et al. [25] however found that subjects’ blood pressure
and respiratory rate, instead of heart rate, had changed
significantly. Boonleng et al. [27] developed a mobile system
consisting of five wearable sensors that were placed in
the best positions to detect vigilance. Then, SVM-based
estimation vigilance algorithm showed a detection accuracy
rate of 92%. In general, ECG and EMG-based methods for
vigilance estimation obtain good results, but there are still
many technical challenges.

Despite of this, the physiological-based method can be
considered as an effective and objective measure of levels
of vigilance.

B. Behavioral Methods

Behavioral-based vigilance estimation methods use fea-
tures that contain mouth states [28], [29], eye states [30]—
[32], facial expressions [33], and body posture [34] collected
by a video device (e.g., camera, Infrared illuminator) to
compute the detection accuracy rate. Alioua et al. [28] pro-
posed the circular Hough transform (CHT)-based approach
using mouth state feature detected by a circular edge, which
showed the mean correct classification rate (MCCR) and
kappa statistic (K) as 0.98 and 0.97, respectively. In addition,
Flores et al. [31] proposed a support vector machine (SVM)-
based model with eye state features, which were extracted
using a condensation algorithm, with an accuracy of 93%.
Orazio et al. [32] proposed a neural classifier using eye state
feature extraction by discrete wavelet transform (DWT) and
then a Hough transform (HT)-based method to achieve an
accuracy of 95%. Murphy et al. [34] designed a new system
with a particle filter, which combined 3-d face models of a
support vector regressors (SVRs) [45]-based approach, by
utilizing local-oriented gradients (LOG) to recognize the
static head posture. They then, under laboratory conditions
of daily driving and night driving, obtained a mean absolute
error of pitch (MAEP) and a mean absolute error of yaw
(MAEY) of a static pose as 4.92°/7.81° and 1.64°/2.08°,
respectively. One of the limitations of these methods is their
ignorance of the uniqueness of different characteristics and
habits of each driver.

C. Subjective Methods

Subjective-based methods reported in literature mainly
include seven-point Stanford sleepiness scale (SSS) [35],
visual analogue scales (VAS) [36], Epworth sleepiness scale
(ESS) [37], nine-point Karolinska sleepiness scale (KSS)
[38], etc. The ESS is widely used for evaluating levels of
sleepiness, and each score is obtained from 8 different daily
questions to assess the probability of falling asleep. The
range of values, ‘0-9’, ‘10-15’, and ‘16-24’ represent normal,
moderate sleep apnea, and severe sleep apnea, respectively.
The primary limitation of these methods is that they are
self-reported measures that are based on personal biases.
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D. Vehicle-Based Methods

It has already been established that most of the previous
vehicle-based approaches have been taken from literature
[39]-[41]. Researchers mainly focus on the following fea-
tures: average measured distance from lane center, standard
analysis deviation of speed and lane position, measurement
of the mean vehicle speed from speed limit, and monitoring
of the lane position and the angle of the steering wheel.
Basically, there are 10-22 subjects employed for driving tasks
such as more than 30-mins of drive alone on a simulated
road by placing sensors and lasting at least 16 hours or
more without sleep or mainly depending on drugs such
alcohol or caffeine to obtain drowsiness. For example, He
et al. [40] proposed Bayesian network (BN)-based vigilance
estimation approach using the experimental data built by
EEG from 10 subjects to compute the lane deviation on
simulated environmental conditions, which showed that
the COR is around 0.05. Compared with a monotonous
simulated environment, the real road condition is more
complicated, including the increase in lateral distance with
speed, leading to higher a risk; this did not appear in most
experiments.

From the methods explained above, two machine learn-
ing methods can be mainly used for an automated pre-
diction of the vigilance: the classification method and the
regression method. The goal of the classification algorithms
is to predict the subject, whether in the state of fatigue
or alert, while the outcome of regression algorithms is to
predict continuous values for vigilance estimation.

According to the complementarity of forehead-EOG and
EEG, we proposed a new learning model known as the
double-layered neural network with subnetwork nodes
(DNNSN) using feature fusion to improve the accuracy of
prediction of vigilance estimation. In particular, the paper
contributed as follows:

1) We used the forehead-EOG and EEG signals that were
collected from the SEED-VIG dataset[ﬂ To evaluate vigilance,
we proposed the DNNSN model comprising of many hid-
den nodes that have various capabilities of feature selection
(dimension reduced), feature learning [46], [47], etc., and
then, the promising experimental results consistent with
previous studies [48]. When we used the learning rate in
the entrance layer, the accuracy of prediction significantly
improved.

2) The DNNSN model can be applied to all physio-
logical signals, whether single modality or multimodality.
For single modality, the mean RMSE/COR of the proposed
method using forehead-EOG and EEG features are 0.12/0.78
and 0.13/0.72, respectively. For multimodality, the mean
RMSE/COR of the proposed method using the feature fu-
sion is 0.09/0.85. Furthermore, after we utilized the learning
rate in the entrance layer, through forehead-EOG, EEG,
and the feature fusion, the results of the proposed method
improved to 0.11/0.79, 0.12/0.74, and 0.08/0.86, respectively,
which is outperformed other state-of-the-art methods.

Thttp://bemi.sjtu.edu.cn/~seed/

3) We found the proposed method using EOG-ICA-
MINUS, which has a good result consistent with previ-
ous studies [12], [22]. This is because the independent
component analysis (ICA) approach can easily detect blink
components, such as impulses from vertical EOG (VEO)
features, and the MINUS approach can easily identify sac-
cade components from Horizontal EOG (HEO) features. We
also observed that this method has a better performance
in comparison to the EOG-ICA-MINUS. Strictly speaking,
the results are very close. We demonstrated that the pro-
posed method has better performance in detecting saccade,
blink, and fixation components. Here, VEO ¢-ICA represents
forehead-VEO features extracted by ICA; HEO ¢-MINUS rep-
resents forehead-HEO features extracted by MINUS and the
subscribe ‘' represents forehead.

4) The standard deviation (STD) of a data set reflects
its degree of dispersion, and the smaller this value, the
lesser is the deviation from the average, and vice versa.
The proposed method can provide the lowest of the STD of
RMSE and COR, which explains that our results are better
than those of other comparison methods.

In general, the proposed method can be considered as a
robust regression model to estimate levels of vigilance for
the multimodality by using the fused features.

I[I. METHODOLOGY

As mentioned earlier [20], the forehead-EOG signals have
characteristics of easy setup and high signal-to-noise ratio
and contain interference noise with blink, saccade, and
fixation components. EEG signals should also be consid-
ered as a trustworthy method for vigilance estimation,
as they directly record neurophysiological signals that are
correlated with alertness. The complementary of the two
signals is a major focal point for vigilance estimation and,
based on this characteristicc we proposed a multilayer
network with the subnetwork nodes using the fused signals.
Simultaneously, we used the learning rate for the entrance
layer to extract subspace features from the input data. With
reduced dimensions of the input data of the entrance layer,
the output data of the exit layer are fused gather for the final
regression analysis.

A. Network Model

The structure of the proposed method can be seen in
Fig. |1l Here, both yellow dots of the entrance layer and
red dots of the exit layer represent hidden nodes; blue
dots represent the subnetwork nodes. The input data x
represents forehead-EOG or EEG signals. The output data
y represents awake, tired, and drowsy states in the range of
‘0’ to ‘1’. Based on the PERCOLS, we get two thresholds of
‘0.35" and ‘0.70’, and ranges ‘0-0.35’, ‘0.36-0.70’, and ‘0.71-
1’ represent awake, tired, and drowsy states, respectively.
The symbols used for the proposed method are defined in
Table [l The process of subspace features extraction and
combination are described as follows:

Step (1): For the entrance layer, given {(x,-,yi)}f‘i pXi € RrR™
arbitrary distinct training samples from a continuous sys-
tem, the weight (d);‘,), and the bias (f?]’f,) are obtained by the
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Input data: x

Fig. 1.
the single modality.

TABLE I
SYMBOLS USED FOR THE PROPOSED METHOD.

Subspace features

Symbol  Property
R the set of real numbers.
M number of training samples.
{[xi,yi)}?’i , xrepresents the input data and y represents the desired output data.
w; the weight connecting the ith hidden node and the input nodes.
b; the bias of the ith hidden node.
Bi the output weight between the ith hidden node and the output nodes.
sum(e)  the sum of all elements of the matrix residual error e.
o?)"7 input weight of the ith subnetwork node in entrance layer. ri)f, e Réxm
@} input weight of the ith subnetwork node in exit layer. of erdn
i);] bias of the ith subnetwork node in entrance layer. i;,]g eR
(w; i bf,] the ith hidden node in the jth subnetwork node.
L normalized function.
L reverse function of L.
H{a feature data generated by jth subnetwork nodes.
m input data dimension.
n output data dimension.
d feature data dimension.
e the residual error of current network.
l the numbers of subnetwork nodes.
S sigmoid activation function.
n the learning rate in the entrance layer.

orthogonal random. When the initial index k = 1, the initial
subspace features of subnetwork node Hf) are

k_ ok 72k

Hp—S(wp,bp,x)

~k\T ~k _

(wp) 'wp—I 1)

PNT Dk _
(by)" b, =1

Step (2): For the exit layer, given the S activation function
for any continuous desired outputs y, the features of the

Output data: y

extraction and combination
1
<.,
& K b
4 4 0.70-1: Drowsy states
—0.70
A |
|4 L4
0.35-0.70: Tired states
—0.35
> 4 0-0.35: Awake states
Ll =@

The framework of the proposed method with forehead-EOG or EEG display the process of subspace features extraction and combination for

subnetwork node (d)’;,l}’;) are obtained by

ok =57 (Ly)-(s@}, B0

(2)
bk = mse(aq-saaf,,b,’;,x)—s—l(L(y)))
where H™! =H” (¥ +HH™)™!, U represents a regularization
value (U >0), (Z)"; € RY*" and 15,131 eR.

Step (3): Update ey, d)’;, and B,’f, as

e =y—L 'S}, 0k, bk)

of =57 Ly +HE)) X1 n- (S_I(L(Pk_l +Hf)) ~x_1) ®)

E’; =4/ mse(d)’f, -x—Py_1)

where ey feedback the data P = S (L(ex)) - (@%) ™, Po =0,
(I)f, e RM*d, E’; € R, the value of the learning rate 7 is 0.5.

Step (4): By setting k= k+1, we can obtain the k' sub-
space features ((I)f?,fj’;) and the (k+1)" subspace features
((Z)I;,H,EIISH) as

Hy = S(x, 05, bY)

- (4)
H’;H — S(x,d)';,“,b';“)

Step (5): By repeating steps (2) to (4) I -1 times, we can
obtain the final subspace features {H.,--- ,Hi,}.

In general, the weight is obviously optimized after using
the learning rate in Fig. 2| The green dots of the space a and
red dots of the space 8 represent the original and updated
data, respectively.

B. Feature Fusion

We use early fusion with max pooling for the feature
fusion due to previous studies [49], which indicate
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Fig. 2.

that an early fusion with kernel levelperformance is mostly
robust and effective for the multilayer feature fusion. It
is well known that in many popular convolutional neural
network (CNN) models, such as Alexnet and GoogleNet
[52], max pooling was employed to reduce the deviation
of the mean estimation that is caused by the convolution
parameter error, which is widely used for reducing di-
mension and feature combination. For example, we define
two sets of subspace features (H' = H},H,,---,H;) and
(H? = H}, H},---, H?) that come from the entrance layer and
the features H'®? = max(H', H?) fused by max pooling. The
process of features fusion can be expressed as

Hl@Z — ](HI,HZ)
H'®23 = j( (1!, 1), 1)
)

H1O28-@n :](...](](HI,HZ),H?’),---H’“)

where J is a combination operator.

C. Regression Model

We know that mixed neurons play an essential role in
brain encoding and functions, and their subspace features
can be expected to remove relevant factors of the brain.
Meanwhile, generation of stable and complex behavior by
the subspace features can be recast into the mapping space.
Fig. 1| shows the details of the subspace features extraction
of the proposed regression model for single modality. For
multimodality, the process of the proposed method from
data processing to regression analysis is illustrated in Fig.

The framework of the proposed method with the learning rate updated the weight of the entrance layer.

which reflects the learning dimensions and structures that
correspond with the biological evidence presented above.
Here, the fused features represent the input data. The values
of the output data in the range of '0-0.35’, ’0.36-0.70’, and
’0.71-1’ represent awake, tired, and drowsy states, respec-
tively. Furthermore, we proposed a theorem for regression
model and specific content as:

Given the distinct N samples ((X,-, N XieR™, 1€ [R"),
S activation function and the arbitrary continuous desired
output values ¢, the equation limk_,oo”t—L‘l(S((I)},-X +

b)) B+ -+ L7 (S(@ - X+ b)) - BE|| = 0 holds when
v
ok =51 (L(en_l)) .XT(7 +XXT)71 ok e pmxn

oy ((f)jg X- S;(L(em_l)))

1
St=—log(=-1
og(x )

PN

,bf)e[R

(6)

. (em_l,L’l(q(d)%-X+ 1351)))
P e e

where XT(¥ +xxTy"1=x-1 represents the Moore-Penrose
generalized inverse of the training samples; S~! is the
inverse of activation function S; and L is the normalization
function with the range of the data values (0,1]; L™! is the
inverse of function L with the range of the data back to
initial values.

D. Data Processing

1) Forehead EOG: According to different electrode place-
ments, two EOG signals can be evaluated by forehead EOG
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Fig. 3. The framework of the proposed method with the fused features display the process from data processing to regression analysis for multimodality.

and traditional EOG electrode placement. As seen in Fig.
two kinds of EOG features, namely vertical-EOG (VEO)
and horizontal-EOG (HEO), were collected from electrodes
No.1, and No.2 and electrodes No.3, and No.4, respectively.
We used two separate approaches—independent compo-
nent analysis (ICA) [53], and the MINUS rule—to
extract forehead-VEO (VEO¢-ICA) signals and forehead-
HEO (HEO/-MINUS) signals. Here, ‘forehead’ is denoted
by the subscript . Zhang et al also reported that
forehead-EOG signals, similar to the traditional EOG signals,
contain crucial eye movements, such as blink, fixation, and
saccade components.

We used the valid wavelet transform approach, Mexican
hat wavelet, to detect eye movements and the formula as

2

v = —— (1-(2)eir ™
V3oni o

where o represents the standard deviation. We encoded the
process of the wavelet transform, and the negative peak
and positive peak were encoded as ‘0’ and ‘l’, respec-
tively. Simultaneously, blink and saccade features can be
represented by ‘01’ or ‘10’ and ‘010, respectively. Finally,
the total of 36 EOG features extracted by the detected eye
movements are shown in Table [

2) Forehead EEG: Based on previous studies, the eye
movements and the blink artifacts are included in the
EEG recording, which also contains crucial information for
vigilance estimation. To extract EOG and EEG signals that
have been recorded from the No.3 to the No.4 forehead
electrodes, we use the fast independent component analysis
(FASTICA) approach to separate EOG and EEG signals.
Then, the forehead EEG components are reconstructed and
encoded as an input matrix X by ICA algorithm; we can
obtain the un-mixing matrix W after decomposition and,
finally, the forehead EEG signals can be derived through the
formulas as

X =[ch_1;ch_2;—ch_3;ch_4]
Z=Y*X (8)
X=v1'xZ7

where Nos. 1-4 columns of matrix X represent No.1, No.2,
No.3, and No.4 channels, respectively; 7 is a matrix for
activation waveforms Z and its rows consist of EOG com-
ponents that have been set to zero.

3) Temporal and Posterior EEG: In additional, Shi and
Lu reported that the EEG signals of temporal and
posterior sites have important information for vigilance
estimation. To reduce noise and artifacts, the raw EEG
signals are evaluated by a band-pass filter, with a frequency
of 1 to 50 Hz in pre-processing. They also indicate that
Differential Entropy (DE) has a promising capability for
vigilance estimation, from low to high frequency energy;
the formula is for this is given by

h(X) = —f f(x)log(f(x)dx) )
X

If the random time series X follows the Gauss distribution
N(u,0), the DE features are defined as

+00 1 _ (x—;;)z 1 _ (x—;;)z ) 2
h(X)=- e 20° log e 20 |dx=1log2md*)
00 /27162 V2n62

(10)

We used two methods, including five frequency bands
(1-50 Hz) with a 2 Hz frequency resolution (2Hz) and five
frequency bands (5Bands), to extract differential entropy
(DE) and power spectral density (PSD) features from EEG
signals. The five frequency bands were as follows: delta (1-
4 Hz), theta (4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz),
and gamma (31-50 Hz). Then, four features, namely PSD-
MA, PSD-LDS, DE-MA, and DE-LDS, were extracted by
separation methods of moving average (MA) and linear
dynamic system (LDS) filtering. This feature is shown in
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TABLE II
THE FOREHEAD-EOG SIGNALS EXTRACTED FROM 36 EYE MOVEMENTS

Group Features

Saccade rna?dmum/minimum/n}ean of §accade rate/saccade amplitude, maximurp/mean of saccade rate
variance/saccade amplitude variance, power/mean power of saccade amplitude, saccade number

Blink maximum/mean of blink rate variance/amplitude variance maximum/minimum/mean of blink
amplitude, power/mean power of blink amplitude, maximum/mean/sum of blink rate, blink number

Fixation maximum/mean of blink duration variance/saccade duration variance, maximum/minimum/mean

of blink duration/saccade duration

Table Moreover, we simultaneously recorded two other
EEG signals from the human brain, including the posterior
site (12-channels: CPZ, CP1, CP2, PZ, P1, P2, POZ, PO3, PO4,
0Z, 01, and 02) and the temporal site (6-channels: T7, T8,
FT7, FT8, TP7, and TP8) by 10-20 international electrode
system shown in Fig.

Finally, the bandpass filtering method with a frequency
range of 1 to 50 Hz is used to first remove the effects of
myoelectricity in the original signal and then noise and
artifacts that have a significant impact on the data.

E. Vigilance Estimation

The annotation of the PERCLOS is used to judge the
drowsy state by the percentage of eye closure, which is one
of the most widely accepted vigilance indices in literature.
Conventional facial video-based technology can be easily
influenced by environmental changes,such as massive oc-
clusion and various illuminations [57]-[59]. Here, we adopt
an automatic continuous vigilance technique based on the
eye-tracking-glasses to calculate how precisely does the
PERCLOS reflect eye movements, including blink, saccade,
and fixation components. This has been proved by Gao et
al. [19] in both real and laboratory environments. The SMI-
ETG eye tracking glassesﬂ are shown in Fig. @ The formula
for PERCLOS is

PERCLOS = blink+ CLOS an
" blink+saccade+ fixation+ CLOS
where ‘CLOS’ represents the duration of the eye

closures—usually considered as the eyelids covering the
pupil by over 80%.

The exit layer with the data is obtained by subspace
feature extraction and fusion. All regression models will be
introduced in the next section.We use two critical indices,
i.e., root-mean-square error (RMSE) and Pearson product-
moment correlation coefficient (COR) to finally evaluate
levels of vigilance. RMSE is frequently defined as the
squared error between the observed and predicted values
and the formula is

n _ 2
RMSE(x,y) = |/ Lim (e y0” (xnf yo

where x = (x1, X2, .., Xp) T represent the observed values and
¥y = 1,¥2,...yn) T the predicted values by the regression
model.

(12)

2http://eyetracking- glasses.com/

We use the COR to overcome the disadvantage that
RMSE cannot obtain the relationship that is established
between the observed and the predicted values. The COR
values in the range from ‘-1’ to ‘+1’ describe the linear
relationship between the observed and predicted values,
where ‘-1’ represents the most possible disagreement, ‘0’
represents no relationship, and ‘+1’ represents the most
possible agreement. In general, the higher the accuracy of
the regression analysis with the lower RMSE, the higher the
COR. The formula of COR is

n — Y Y
COR(x,y) = Y (X=X (ye—p)

- - (13)
\/Z?:l(xt_x)z ?:I(J’t—.)’)z

where X represents the mean of x and j represents the
mean of y.

III. EXPERIMENTAL SETUP
A. Environment Setting

The forehead-EOG and EEG dataset (SEED-VIG) was
collected by Zheng et al. [22]. There are 23 subjects (11
males and 12 females with an average age of 23.3 years)
who participated in the experiments. All participants were
without the influence of any kind of drugs such as caffeine,
alcohol, and tobacco, etc. and possessed normal hearing
and self-reported normal or corrected-to-normal vision. As
we know, Ferrara et al. [60] reported that humans are
completely sleepy approximately at 1:30 pm after lunch,
when their fatigue can quickly reach the peak. The exper-
iments were performed at that time and lasted about two
hours without alertness in the simulated environments. As
seen in Fig. |7, there is an LCD screen that comprises of
a four-lane highway, simulated as a real environment in
front of the experimental vehicle and the movements of
the vehicle without any dynamical system; for instance, the
engine controls its movement by software, the gas pedal,
and the steering wheel. The simulated environment can
be updated in real time; the subjects of the experiments
are sleeping during driving, without any warning feedback.
Both forehead-EOG and EEG raw signals were collected
from ESI NeuroScan System using a 1000 HZ sampling
frequency.

B. Compared Methods

In this section, we tested our methods with the forehead-
EOG and EEG datasets that were collected by the simulated
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Fig. 4. Different electrode placements for extraction of the forehead-EOG and traditional signals. The four red dots and yellow dots represent the
electrode placement of the forehead EOG and the traditional EOG, respectively.

p

Fig. 5. EEG signals collected from different sites by different electrode placements. The yellow dots represent 6-channel EEG signals of the temporal
site and the blue dots represent 12-channel EEG signals of the posterior site.

Scene Camera

IR Camera

Fig. 6. Eye movements recorded by the SMI eye tracking glasses.

driving system. There are 23 experiments in total, and and EEG features. For evaluation levels of vigilance, we
each experiment comprises 885 samples of forehead-EOG separate the entire data from one experiment into five ses-
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Fig. 7. The experimental LCD screen of the simulated driving system.

sions and evaluate the performance with a five-fold cross-
validation and obtained the root-mean-square error (RMSE)
and correlation coefficient (COR), which are used as the
final evaluations. These regression models are listed below:
1) ICA, ICAV-MINH, MINUS, ELM [61], B-ELM [62], and the
proposed method with or without the learning rate using
forehead-EOG for single modality; 2) ICA, ELM, B-ELM,
and the proposed method with or without the learning rate
using EEG for single modality; 3) SVR , CCRF , CCNF
[65], S-LSTM, F-LSTM [66], ELM, B-ELM, Autoencoder-ELM
(Auto-ELM) [67], and the proposed method with or without
the learning rate using the fused features for multimodality.
We introduce two different long short-term memory (LSTM)
encoders, in which one encodes EOG and EEG into a
compact feature vector by stacked LSTM layers (S-LSTM)
and the another EOG and EEG into one feature vector (F-
LSTM). Simultaneously, we used the autoencoder model to
reduce the dimensionality of the input data and combined
it with the ELM regression network (Auto-ELM) for vigilance
estimation.

We used Matlab 2017b with 32GB memory to test our
algorithm and compared methods for single modality and
multimodality. The code that could be downloaded publicly
from the interneﬂ and the valuation of parameters can
be adjusted in every step experiment.Here, the learning
rate 1 for the entrance layer was tuned in the range of
(0,1) and we chose a value of 0.8. The optimal values of
the regularization parameter V were tuned in the range
of [279,278,...,29], and [279,278,...,25] for single modality
and multimodality, respectively. The range of regularization
parameters aj and fj to train the CCRF and CCNF were
1010121 and 1017372101 'yespectively. The number of vertex
features for five-fold cross-validation are K; =[10,20,30]. If
i'" and j*" nodesare neighbors, then K, =1 and $¥ = 1;
otherwise, K, =0 and sk=o.

IV. EXPERIMENTAL EVALUATION
A. Using EOG for Single Modality

The forehead-EOG feature include HEO¢-ICA, VEO£-1CA,
HEO(-MINUS and VEO -MINUS extracted from ICA and

3http://www.yiminyang.com/

TABLE III
THE DETAILED INFORMATION OF FOREHEAD-EOG AND DIFFERENT SITES EEG
FROM ONE OF TWENTY THREE SUBJECTS. EVERY SUBJECTS’ FEATURE FROM
THE SAME SITE HAS THE SAME NUMBER OF SAMPLES AND DIMENSIONS. WE
USE X x y TO DESCRIBE THE NUMBER OF SAMPLES AND DIMENSIONS, I.E., 885
AND 36 REPRESENT SAMPLES AND DIMENSIONS IN 885 x 36, RESPECTIVELY.

EOG-ICA EOG-MINUS EOG-ICAV-MINH

Forehead-EoG 885x36 885x36 885x36

DE-LDS DE-MA PSD-LDS PSD-MA
Forehead-EEG-2HZ 885x100 885x100 885x100 885x100
Forehead-EEG-5BANDS  885x20 885x20 885x20 885x20
Temporal-EEG-2HZ 885x150 885x150 885x150 885x150
Temporal-EEG-5BANDS  885x30 885x30 885x30 885x30
Posterior-EEG-2HZ 885x275 885x275 885x275 885x275
Posterior-EEG-5BANDS ~ 885x55 885x55 885x55 885x55

TABLE IV

THE MEAN RMSE, COR, AND THEIR STANDARD DEVIATIONS (STD) OF
COMPARED METHODS USE EOG. THE BEST RESULTS ARE BOLDED. OURS* —
OURS USE THE LEARNING RATE.

Methods RMSE-Mean RMSE-STD COR-Mean COR-STD
EOG-ICA 0.1582 0.0844 0.4774 0.5381
ELM 0.1309 0.0486 0.6680 0.1957
B-ELM 0.1364 0.0683 0.5376 0.1906
Ours 0.1246 0.0540 0.6890 0.2041
Ours* 0.1157 0.0445 0.7231 0.1832
EOG-ICAV-MINH 0.1188 0.0391 0.7773 0.2352
ELM 0.1286 0.0557 0.7178 0.2100
B-ELM 0.1431 0.0584 0.6243 0.1904
Ours 0.1121 0.0540 0.7801 0.2041
Ours* 0.1098 0.0402 0.7853 0.1875
EOG-MINUS 0.1288 0.0588 0.7193 0.3492
ELM 0.1292 0.0489 0.7297 0.2225
B-ELM 0.1302 0.0596 0.6336 0.1984
Ours 0.1165 0.0508 0.7439 0.1819
Ours* 0.1102 0.0417 0.7763 0.1748

MINUS separation approaches. We tested the compara-
tive methods including ICA, ICAV-MINH, MINUS, ELM,
B-ELM, and the proposed algorithm with or without the
learning rate using forehead-EOG. The experimental results
of the mean RMSE, the mean COR, and their standard
deviations (STD) are shown in Table Simultaneously,
we evaluated the statistical significance using a one-way
analysis of variance (ANOVA). The mean RMSE/COR of
the EOG-ICA, ICAV-MINH, and MINUS were seen to be as
0.16/0.48, 0.12/0.78, and 0.13/0.72,respectively; the ICAV-
MINH-based method can obtain a better result due to its
easy detectability of blink and saccade components from
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Fig. 8. Different simulations for single modality using EOG that was collected by different separation approaches. Here, ‘ICAV’ represents VEO features
collected by ICA. ‘MINH’ represents HEO features collected by MINUS.

TABLE V

THE EXPERIMENTAL RESULTS WITH DE AND PSD FEATURES FROM DIFFERENT SITES. THE BEST RESULTS ARE BOLDED. OURS* — OURS USE THE LEARNING RATE.

Features Parameters DE-LDS DE-MA PSD-LDS PSD-MA
Ours/Ours* Ours/Ours* Ours/Ours* Ours/Ours*
RMSE-Mean  0.1328/0.1182  0.1427/0.1263 0.1452/0.1369  0.1501/0.1418
Forehead-EEG-2Hz RMSE-STD 0.0384/0.0372  0.0373/0.0369  0.0409/0.0446  0.0414/0.0411
COR-Mean 0.7090/0.7253  0.6666/0.7020 0.6351/0.6863  0.6100/0.6499
COR-STD 0.1769/0.1750  0.1873/0.1718  0.1954/0.1863  0.2066/0.1863
RMSE-Mean  0.1363/0.1181  0.1415/0.1245 0.1528/0.1392  0.1539/0.1435
Forehead-EEG-5Bands RMSE-STD 0.0386/0.0398  0.0385/0.0403  0.0455/0.0477  0.0435/0.0431
COR-Mean 0.7041/0.7355  0.6816/0.7095 0.6269/0.6627  0.6094/0.6226
COR-STD 0.1781/0.1761  0.1895/0.1835 0.2041/0.2033  0.2867/0.2310
RMSE-Mean  0.1251/0.1157  0.1306/0.1190 0.1408/0.1264  0.1442/0.1339
Temporal-EEG-2Hz RMSE-STD 0.0341/0.0336  0.0342/0.0339 0.0395/0.0362  0.0359/0.0357
COR-Mean 0.7041/0.7283  0.6791/0.7051 0.6559/0.6922  0.6465/0.6668
COR-STD 0.1806/0.1731 0.1880/0.1759  0.1902/0.1703  0.1928/0.1768
RMSE-Mean  0.1361/0.1318  0.1399/0.1349 0.1407/0.1388  0.1485/0.1451
Temporal-EEG-5Bands RMSE-STD 0.0590/0.0582  0.0514/0.0526  0.0497/0.0520  0.0536/0.0549
COR-Mean 0.6651/0.6796  0.6419/0.6585 0.6569/0.6644  0.6144/0.6250
COR-STD 0.2141/0.2077  0.2165/0.2275  0.2232/0.2058  0.2261/0.2265
RMSE-Mean  0.1251/0.1175  0.1321/0.1239 0.1498/0.1399  0.1513/0.1456
Posterior-EEG-2Hz RMSE-STD 0.0452/0.0420  0.0416/0.0414  0.0398/0.0394  0.0411/0.0441
COR-Mean 0.7167/0.7201  0.6743/0.6823 0.6487/0.6676  0.6390/0.6591
COR-STD 0.1755/0.1706  0.1957/0.2076  0.2099/0.1907  0.2287/0.2178
RMSE-Mean  0.1270/0.1240  0.1304/0.1262 0.1399/0.1366  0.1457/0.1430
Posterior-EEG-5Bands RMSE-STD 0.0444/0.0485  0.0447/0.0467  0.0488/0.0457  0.0476/0.0479
COR-Mean 0.7215/0.7414  0.6999/0.7150 0.6676/0.7081  0.6444/0.6694
COR-STD 0.1863/0.1791  0.1934/0.1926  0.2032/0.1852  0.2108/0.1895

forehead-EOG signal.

Compared to the results of other regression models, the
profit of our strategies using forehead-EOG feature is appar-
ent in Fig. |8l The Extreme Learning Machine (ELM)-based
method for vigilance estimation works reasonably, as it can
achieve a good RMSE/COR of 0.1309/0.6680, 0.1286/0.7178,
and 0.1292/0.7297, respectively. The results of the pro-
posed method without the learning rate are 0.1246/0.6890,
0.1121/0.7801 and 0.1165/0.7439, respectively. After using
the learning rate, the results improved to 0.1157/0.7231,
0.1098/0.7853, and 0.1102/0.7763, respectively. Our ap-
proaches with the learning rate obtained the lowest RMSE
and the highest COR and the mean results significantly
improved to 0.1119/0.7616 (p<0.01/p<0.01, ANOVA), which

demonstrated that it has better performance in detecting
saccade, blink, and fixation component compared to other
state-of-the-art techniques.

B. Using EEG for Single Modality

As mentioned above, the forehead-EEG, temporal-EEG,
and posterior-EEG were extracted by 4-channels of the
forehead site, 6-channels of the temporal site, and 12-
channels of the posterior site, respectively. According to
the entire experimental results in Table [V} we found that
the DE-LDS feature has a promising effect. In addition
to the results of the EEG setup from different electrode
placements, we used two different methods, including the
2 Hz frequency resolution and the five frequency bands,
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Fig. 9. Different simulations for single modality using EEG collected by different sites of the brain. Ours* — ours use the learning rate.

to analyze the data collected from the same position. The tained a reduced RMSE and increased COR of 3%/10%. The
experimental results that were computed using the 2 Hz proposed method with the learning rate obtained the lowest
frequency resolution were better than those five frequency RMSE and highest COR of 0.1175/0.7414 (p<0.01/p<0.01,
bands with the same feature. This is also consistent with ANOVA) for single modality; its effectiveness has been
the previous studies. verified in Fig. [9) which indicates that EEG signal included

the critical information for estimating the level of vigilance.
We utilize comparison methods of EEG-ICA, ELM, B-

ELM, and the proposed method with or without the learn-
ing rate using the DE feature extracted by two ways from
different sites of the human brain to estimate vigilance. The In this part, we used the feature fusion of forehead-
experimental results are shown in Table[Vl} and it was found EOG and EEG to evaluate the levels of vigilance for mul-
that the EEG-ICA approach has well performed consistently timodality. According to the complementary characteristics
with previous conclusions [22]. It was noted that the pro- of forehead EOG and EEG, combination of different sites of
posed approach has an outstanding performance, it had ob- EEG features (forehead-EEG, temporal-EEG, and posterior-

C. Using the Feature Fusion for Multimodality
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ELM 0.1437 0.0591 0.6161 0.2100 P &
Temporal-5Bands  B-ELM 0.1584 0.0636 0.5777 0.1665
Ours 0.1361 0.0590 0.6651 0.2141
Ours* 0.1318 0.0582 0.6796 02077
EEGICA  0.1327 0.0303 07001  0.2250 EEG) and forehead-EOG features for vigilance estimation,
ELM 0.1307 0.0429 0.6849 0.2682 .
Posterior-2Hz  B.ELM 01684 00514 05711 01968 our gxperlmental 'results showed the .f()'rehead EOQ com
Ours 0.1251 0.0452 0.7167 0.1755 bination of posterior-EEG has a promising effect with the
Ours* 0.1175 0.0420 07201 0.1706 lowest RMSE and the highest COR. It thus explains that the
EEG-ICA 01429 0.0393 06807 02129 posterior-EEG has extra crucial information for vigilance
ELM 0.1298 0.0438 0.6647 0.3580 ; .
Posterior-5Bands ~ B-ELM 0.1651 0.0532 0.5785 0.1988 estimation than the forehead-EEG. It was also observed that
Ours 0.1270 0.0444 0.7215 0.1863 the forehead-EEG just uses 4-channel electrodes, which is
Ours* 0.1240 0.0485 0.7414  0.1791 .

s much lesser than the posterior-EEG extracted by 12-channel
electrodes. This makes the forehead electrode placement
easier to commercialize with the low cost.

The different learning rates are applied to the proposed
TABLE VII . .

THE PERFORMANCE OF THE PROPOSED METHOD USING DIFFERENT LEArNiNG  1€thod, and the results are displayed in Table The per-
RATES FOR MULTIMODALITY. formance of the proposed multimodality regression model
has significantly improved after using learning rate in the
Learning rate . RMSE-Mean  COR-Mean entrance layer and choosing an optimal result. Table
without 7 0.09 0.85 displays the results of the comparison methods of SVR,
1=0.10 0.08 0.86 CCRE CCNE S-LSTM, F-LSTM, ELM, B-ELM, Auto-ELM,

n=0.20 0.09 0.86 d th d hod with ith he 1 .
1= 0.50 0.09 086 and the proposed method with or without the learning
n=0.80 0.08 0.86 rate. We can observe that the CCRF and CCNF methods

with temporal dependency obviously improved the mean
RMSE/COR to 0.10/0.84, and 0.09/0.85, respectively. Al-
though the LSTM recurrent neural networks (RNN) achieves
TABLE VIII a good RMSE, the ordinary performance of the COR reduces

THE MEAN RMSE AND COR OF COMPARED METHODS FOR MULTIMODALITY  its practical effect significantly. Simultaneously, we observe
USING THE FEATURE FUSION. THE BEST RESULTS ARE BOLDED. OURS*-MAX the fact that an ELM_based mOdel Combined Wlth the

POOLING — OURS USE THE LEARNING RATE WITH MAX POOLING. . . . .

autoencoder layer, which reduced the dimensionality of

the input data has improved the performance considerably,

Methods RMSE-Mean  COR-Mean
SR 010 e which is a promising future. Furthermore, the benefit of
CCRE 0.10 0.84 the multimodality is evident as forehead-EOG, and EEG
CCNF 0.09 0.85 signals have the characteristics of the complementarity [21]
gigﬁ g-gg g-gi of the EOG and the EEG. The effectiveness and efficien-
ELM 011 078 cy of the proposed method with the DE feature can be
B-ELM 0.12 0.70 seen in Fig. It was also observed that the proposed
é\litso‘f?fl‘;ge;;gﬁg 8'(1)3 g-gé approach with a optimal value of the learning rate (1 = 0.8)
Ours* - max pooling 0.08 0.86 achieved the lowest RMSE and highest COR of 0.08/0.86

(p<0.01/p<0.01, ANOVA), which outperforms other state-
of-the-art techniques for multimodality.
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V. CONCLUSION

In this paper, we proposed a double-layered neural net-
work with subnetwork nodes (DNNSN) for vigilance esti-
mation, including using forehead-EOG and EEG for single
modality and the feature fusion for multimodality. When
the learning rate was applied to the input layer, the mean
RMSE/COR of the proposed method for single modality
using forehead-EOG and EEG features were 0.11/0.79, and
0.12/0.74, respectively, while that for multimodality utiliz-
ing the feature fusion was 0.08/0.86. As we know, EOG
has two advantages of easy setup and a high signal-to-
noise ratio, but it is easily influenced by video device and
external environment. Likewise, although EEG can record
neurophysiological signals of our brain that is correlated
with alertness directly, it has a low signal-to-noise ratio.
Multimodality employs the complementary advantages of
the mixed signals to estimate the levels of vigilance and
proves the correctness through experimental results. And
then, the experimental results are improved significantly
when the proposed method combined with the learning
rate was used. Furthermore, the proposed multimodality
algorithm achieve a lower standard deviation than other
two single modalities, which proves the multimodality can
also improve the robustness of the vigilance detection
model. In general, we demonstrated the feasibility and
efficiency of the proposed method for vigilance estimation
using the feature fusion.
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