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Abstract 

We have proposed a constructive learning method 
called multi-sieving learning for implementing auto- 
matic decomposition of learning tasks and a parallel 
and modular multi-sieving network architecture in 
our previous work. In this paper we present a new 
parallel and modular multi-sieving neural network 
architecture to which multiple control networks are 
introduced. In this architecture the learning task for 
a control network is decompwed into a finite set of 
manageable subtasks, and each subtask is learned 
by an individual control sub-network. An important 
advantage of this architecture is that the learning 
tasks for control networks can be learn efficiently, 
and therefore automatic decomposition of complex 
learning tasks can be achieved easily. 

1 Introduction 
Some of the mwt important problems in neural net- 
works, which hinder the progress of neural network 
methods for dealing with large and complex learn- 
ing tasks, may be enumerated as follows: (a) The 
network architecture is monolithic; (b) The learn- 
ing algorithms cannot decompose complex learning 
tasks automatically into relatively simple subtasks 
that can be learned by relatively small subnetworks; 
(c) Even few simple modifications to learning tasks 
are to  be carried out, all the parameters of trained 
networks must be adjusted. Although several con- 
structive or  modular neural network architectures 
have been proposed such as tiling algorithm [9], the 
cascade correlation architecture [2], and hierarchies 
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'of adaptive experts [3], some of the problems men- 
tioned above are still remained. 
. For tackling the above problems, we have proposed 
a constructive learning method called multi-sieving 
learning (MSL) aqd a parallel and modular multi- 
sieving network architecture (PMSN) in our previ- 
ous work [6, 7, 81. The basic idea behind MSL is 
the multi-sieving method. Patterns are classified by 
a rough sieve at the beginning and re-classified fur- 
ther by finer ones in subsequent stages. The MSL 
algorithm starts with a single sieving module (SM), 
then does the following three phases repeatedly un- 
til all the twining samples are successfully learned: 
(a) the learning phase'in which the training samples 
are learned by the current SM, (b) the sieving phase 
in which the 'training samples that have been suc- 
cessfully learned are sifted out from the training set, 
and (c) the growing phase in which the current SM 
is frozh and a new SM is added in order t o  learn the 
remaining training samples. PMSNs are constructed 
by adding a SM adaptively with progress of learning. 

In PMSN, the assumption is made that the con- 
trol network CNi in the ith sieving module always 
learns the classification of the valid and pseudo valid 
outputs produced by the ith recognition network 
RNi successfully. Clearly, this is a strong assump- 
tion. This assumption becomes a bottleneck prob- 
lem of multi-sieving learning because decomposition 
of learning tasks can not go forward further if the 
control network can not converge. 

In this paper we present a new parallel and mod- 
ular multi-sieving neural network architecture to 
which multiple control networks are introduced. In 
this architecture the learning task for a control net- 
work is decomposed into a finite set of manageable 
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subtasks according to the numbers of the valid and 
pseudo valid outputs produced by a related recog- 
nition network, and each subtask is learned by an 
individual control sub-network. An important ad- 
vantage of this architecture is that the tasks for con- 
trol networks can be learn efficiently, and therefore 
automatic decomposition of complex learning tasks 
can be achieved easily. 

2 PMSN-MC Arc 

2.1 Sieving Modules 
The block diagram of a trained PMSN-MC is illus- 
trated in Fig.1, which is the same as that of PMSN. 
All the sieving modules (SMs) in PMSN-MC are con- 
nected in parallel. The ith sieving module SMi in 
PMSN-MC may take one of the two forms according 
to the actual outputs produced by the ith recogni- 
tion network RNi, i.e., RC-form or R-form as shown 
in Figs. 2(a) and 2(b), respectively. 

Figure 1: The block diagram of a trained PMSN-MC. 

2.2 Output Representation Scheme 
Various output representation schemes can be used 
to represent training outputs in recognition net- 
works, such as binary coding, Gray coding, and 1- 
out-of-N coding. In this paper we use a modified 
1-out-of-N coding method for recognition networks. 
For p + 1 classes of training output patterns, we use 
p output units, For RNi, the kth desired output pat- 
tern ii$ = 2f2, - ' - ,  .:,,} must satisfy one of 
the following rules: 

W Z f j  5 .E,) (1) 

3j(%'j 2 vll+j (3: I z&v) (2) 
for j and I E B, 

where Bi = (1, 2, - - - ,  Ni}, Ni is the number of 
output units in RNi, and z& and zEgh represent 
the low and high bounds for the outputs, respec- 
tively. For example, three binary output-units can 
only represent four valid outputs as follows: (0, O,O), 
( O , O , l ) ,  (0,1,0) and ( l , O , O ) ,  Other four codes, 
(O,l,l), ( l , O , l ) ,  ( l , l ,O) and ( l , l , l ) ,  are consid- 
ered to be invalid. 

2.3 Actual Outputs 

For the kth input pattern 5$, RNi may generate 
three kinds of actual outpilts: 

Valid output: The valid output is a correct 
output and satisfies 

(a). 

tlj I ~g - Z ~ S  I <  6 for j E Bj, (3) 

where 2fj is the desired output of the j t h  unit, zya 
is the actual output of the j th  output unit of RN,, 
and 6 denotes a tolerance. If the desired values 
of output units are set to 0 or 1, then, zEw = b 
and = 1 - 6. If z Y i  is a valid output, this 
means that the kth training data, (S;, Zf), has been 
learned properly by RNi . 

(b). Pseudo vulid output: The recognition net- 
work may generate an output which follows the cod- 
ing rule (1) or (2), but does not satisfy a given error 
tolerance. We call such an output the pseudo valid 
output. In the learning phase, we can easily judge 
whether an actual output is a pseudo valid output or 
not according to the following rule: 

where the desired output of the hth unit satisfies 
xf,, 2 zZgh. But after the learning, we can not use 
the above rule to judge whether an actual output 
is a pseudo valid output or not because there is no 
desired output that can be used. Therefore, to dif- 
ferentiate valid outputs from pseudo valid outputs 
must be achieved by learning. 

(c). Invalid output: Otherwise. 
For example, if the desired output pattern is 

(0, 0, I), 6 = 0.2, "Egh = 0.8, and ocw = 0.2, 
then, (0.1, 0.1, 0.9) is a valid output, (0.9, 0.1, 0.1) 
and (0.1, 0.1, 0.1) are two pseudo valid outputs, and 
(0.9, 0.1, 0.9) is an invalid output. 
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2.4 Decomposition of Control Task 
The purpose of control network (CNi) in the ith 
RC-form sieving module is used to learn the task 
(Ci) that is to differentiate the valid outputs from 
pseudo valid outputs generated by RNi. In PMSN, 
we assume that CNi always learns Ci successfully 
in the learning process. Even though Ci is a two- 
class problem, it may be a very difficult classifica- 
tion task. From our experience, the training set 
Cj is imbalanced, that is, the number of the valid 
outputs (Nv0,i) is much greater than the number 
of the pseudo valid outputs (Npvo,i). It has been 
observed that the standard backpropagation algo- 
rithm converges very slowly for imbalanced two-class 
classification problems. A modified backpropagation 
algorithm has been proposed for training networks 
on imbalanced training sets [l]. Although it has 
been shown that the modified algorithm converges 
much faster than the standard one, large and com- 
plex imbalanced classification problems still remain 
intractable. 

In this paper, we present a multiple control net- 
work architecture for dealing with this problem. The 
basic idea behind this architecture is that Ci is de- 
composed into a finite set of manageable subtasks 
cjl, q2, e - . ,  cir, (ri > l ) ,  where ri is determined by 
the ratio of Nvqi to Npvo,i. Two main objectives of 
the decomposition are to  lower the imbalanced ratio 
and to reduce the size and complexity of the training 
set. Various strategies may be used to implement the 
decomposition. The decomposition strategy may af- 
fect learning speed and generalization performance. 
In this paper we use random strategy to decompose 
Ci. Let uij be the training input set corresponding 
to cij. uij is defined it8 follows. 

uij = p i + ~ i j  f o r j =  1,2, e . . ,  ~ j ,  (5 )  

where V i j  is randomly selected from Vi and bij R 

Nvqi/Ti, Vi (Vi = U& vij) and pi are the training 
input sets corresponding to the valid and the pseudo 
valid outputs produced by RNi, - respectively, W i j  C 
Vi ,  V i j  f l  v i k  = 8 for j # I C ,  Vi = Nvo,i, and = 
Npvo, i J 

2.5 Control Circuit 
The outputs produced by a recognition network are 
classified and controlled by the control circuits as 
drawn by thin lines in Figs. 2(a) and 2(b). The out- 

consists of an output judgment unit (OJU), multiple 
control networks (CNil, CNi2, ’ a . ,  CNiri), a mini- 

put control circuit in the ith RC-form sieving module 

mum output selecting unit (MOU), an AND gate, 
two OR gates, and a logical switch. 

(a) The output judgment unit is used to differen- 
tiate the invalid output from the valid and pseudo 
valid outputs. OJU in SMi generates 1 or 0 accord- 
ing to 

1, if zy is a valid or pseudo 
valid output ; (6) I 0, if z p  is an invalid output, 

OOJU = 

where OOJU is the output of OJUi. It should be 
noted that to distinguish the invalid outputs from 
the other two kinds of outputs is performed inde- 
pendently of the learning task, because the invalid 
outputs can be judged according to a given output 
representation scheme. 

(b) The control network is used to differentiate 
the valid outputs from pseudo valid outputs. Since 
after learning there is no any desired output that can 
be used to  judge whether an actual output is a valid 
output or a pseudo valid output, the control network 
must be trained. Its training output is set to 1 or 0 
as follows. 

0, if zyi is a valid output; 

uCN~2 = 1, if BY* is a pseudo valid (7) 

is the output of the j t h  control subnet- 

(c) The minimum output selection unit MOU is 
used to choose minimum value from the outputs of 
trained multiple control networks, that is, 

{ output, 

where 
work in SMi. 

1, if M h { & N 1 1 ,  ’ , OCN,,, } 
(8) is greater than B { 0, otherwise 

OMOU = 

where OMOU is the output of MOU, and B is a thresh- 
old constant. 

(d) The logical switch works as follows: If its con- 
trol input is “l”, then the data is blocked by it. Oth- 
erwise, the data passes through it. 

To achieve parallel processing, the priority to each 
SM is introduced in PMSN-MC. The priority is im 
plemented by means of the output control cirEuits. 
In PMSN-MC, SMi has higher priority than SMj for 
j > i. 

3 Learning Algorithm 
Let Tl be a set of tl training samples: ’ 
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where zf E RNz and xf  E RNo are the input and 
the desired output of the kth sample, respectively. 
Suppose that the number of iterations for training 
RNi  is bounded at most by K .  The multi-sieving 
learning algorithm for training PMSN-MCs can be 
described as follows: 

Contrd from the previous SM 

Input to the next SM Control to the next SM 

Lt.,.,.,.-.-.-.-,.-.-.-.-.1 1 
Input to the next SM Contrd to the next SM 

(b) 

Figure 2: Two forms of sieving modules in PMSN- 
MC: the RC-form (a) and the R-form (b). In this 
figure and in Figure 4, crossing lines do not represent 
connections unless there is a dot on the intersection. 

Step 1 : Initially, one recognition network, namely 
RN1, is trained on the original set T1 up to K 
iterations. Let m = 1, and proceed to the fol- 
lowing steps. 

Step 2 : Compute the number of valid outputs, 
N,,,, , and the number of pseudo valid outputs, 
N,,,,,, according to Eqs. (3) and (4), respec- 
tively. 

Step 3 : If Czl N,,,s = t l ,  i.e., if all tl  samples 
are learned by SM1 , SM2, . . + ,  SM,, then the 
training is completed. 

Step 4 : If N , , , ,  = 0, i.e., if there is no pseudo valid 
output, then the control network is unnecessary. 
Go to Step 6. 

Step 5 : If Npvo,, > 0, i.e., if there exist N,,,,, 
pseudo valid outputs, then multiple control net- 
works CN,1, CN,2, ..., CN,,, are selected. 
CNij is trained on the set c i j  until all of the 
samples are classified correctly. 

where xi E RNz is the input whose output is a 
valid or a pseudo valid output, and 5: E R1 is 
the desired output which is determined by 

0, if the actual output of Sg is 
a valid output; 

pseudo valid output 
g = {  1, if the actual output of 3; is a 

Step 6 : Freeze all of the parameters of RN, and 
CN, (if it exists), remove N,,,, samples which 
have been successfully classified by RN, from 
Tm, and create a new training set consisting 

(Tm+l C T,), which are misclassified by RN,. 

Step 7 : If CN, exists, construct SM, in the RC- 
form. Otherwise construct SM, in R-form. 

Step 8 : Join SM, to SM,-I for m > 1 in the par- 

of tm+1 (L+l  = t ,  - Nvo,,) samples T,+1 

allel structure as shown in Fig. 4. 

Step 9 : Select RN,+1 and train it on T,+l up to 
K iterations. Let m = m + 1 and go back to 
Step 2. 

4 Simulation Results 
In this section, we demonstrate the utility of PMSN- 
MC. For visualizing the input-output mappings 
formed by each network and the whole architecture, 
The “two-spirals” problem is treated [4]. In order to 
compare the performance of PMSN-MC with that of 
PMSN,  the two-spirals problem is learned by both 
PMSN-MC and PMSN, In the following simulations, 
all the recognition and control networks are chosen 
to be the three-layer quadratic perceptron [5].  The 
standard backpropagation algorithm is used to train 
these networks [lo]. 

The training inputs of the “two-spirals” problem 
consists of 194 points as shown in Fig.3(a). Each 
recognition network has two input, five hidden and 
one output units. The training’of RNi is stopped af- 
ter 10000 iterations if the sum of squared error (SSE) 
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between the desired and the actual outputs cannot 
be less than the given value, 0.01. 

Firstly, RN1 is trained on the 194 data. Af- 
ter 10000 iterations, the training is stopped since 
SSE = 15.77. Presenting 194 training inputs to RN1 
again, we obtain Nvo,i = 64 and Npvo,i = 0 accord- 
ing to Eqs. (3) and (4), that is, there are 64 training 
data (see Fig. 3(b)) have been successfully learned 
by RN1 and there exists no any pseudo valid output. 
Consequently, SM1 is selected as the R-form. 

elements in each of the subsets is 29. The training in- 
put patterns for three control sub-networks (CN21, 

CN22 and CN23) are shown in Figs. 5(b) through 
5(d), respectively. The CPU time for training CN2 
and the total CPU time for training CN21, CN22 and 
CN23 are about 21326 and 253 seconds, respectively, 
on a Sparc-20 workstation. 

Unknown input I C  

(4 (4 
Figure 3: The input patterns of the “two-spiral~~’ 
problem (a), the training inputs learned by the first 
sieving module (b), the second sieving module (c), 
and the third sieving module (d). For black and grey 
points, the RNi is required to generate output 0 and 
1, respectively. 

Secondly, RN2 is trained on the remaining 130 
data. After 10000 iterations, the training is stopped 
since SSE = 7.69. Presenting 130 data to RN2 again, 
we obtain Nv0,2 = 87 and Npvo,2 = 8, i.e., there are 
87 training data have been correctly learned by RNz 
(see Fig. 3(c)) and there exist 8 pseudo valid outputs 
produced by RN2. In PMSN, a single control net- 
work (CN2) with ten hidden units is trained to dif- 
ferentiate 8 pseudo valid outputs from 87 valid out- 
put. The training input patterns for CN2 is shown 
in Fig. 5(a). In PMSN-MC, the training inputs re- 
lated to 87 valid outputs are randomly partitioned 
into three subsets, v21, V ~ Z  and v23. The number of 

Figure 4: The PMSN-MC for learning the “two- 
spirals” problem, where the control signal to the first 
sieving modules is set to “0”. 

Finally, RN3 is trained on the remaining 43 data 
(see Fig. 3(d)). After 8009 iterations, the training 
is stopped since SSE is less than 0.01. Presenting 
the 43 data to RN3 again, we obtain Nv0,3 = 43 and 
Npvo,3 = 0. Since Nv0,1 + Nv0,2 + Nv0,3 = 194, the 
training is finished. 

After the training, the two-spirals problem is 
automatically decomposed into three subtasks and 
learned by a PMSN-MC with three sieving modules 
as shown in Fig. 4. The response plots of PMSN 
and PMSN-MC are illustrated in Figs. 6(a) and 
6(b), respectively. From these two figures, we can 
see that the generalization performance of PMSN- 
MC and PMSN are very similar. 

5 Conclusion 

We have presented a parallel and modular multi- 
sieving neural network architecture with multiple 
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control networks. .By using this architecture, the 
learning of imbalanced two-class classification prob- 
lem for control networks, a bottleneck problem in 
multi-sieving learning, can be dealt with efficiently. 
Consequently, automatic decomposition of large and 
complex learning tasks can be easily implemented 
using multi-sieving learning method. 

I 

0.a 

0.4 

0.2 

0.8 

0.6 

0,s 

0.2 

A 

Figure 5: The training inputs for single control net- 
work, (a) and the training inputs for three control 
sub-networks, CNzl (b), CN22 (c) and CN23 (d), re- 
spectively. The black and grey points correspond to 
the inputs related to the valid and pseudo valid out- 
puts produced by RNz, respectively. For black and 
grey points, each control network is required to pro- 
duce output 0 and 1, respectively. 

1 

Figure 6: The response plots of PMSN (a) and 
PMSN-MC (b), respectively. Black and white rep- 
resent output of “0” and “l” ,  respectively, and gray 
represents intermediate value. 
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