A Part-Versus-Part Method for Massively Parallel
Training of Support Vector Machines

Bao-Liang Lu, Kai-An Wang
Department of Computer Science and Engineering
Shanghai Jiao Tong University
1954 Hua Shan Rd., Shanghai 200030, China
blu@cs.sjtu.edu.cn

Abstract— This paper presents a part-versus-part decomposi-
tion method for massively parallel training of multi-class support
vector machines (SVMs). By using this method, a massive multi-
class classification problem is decomposed into a number of two-
class subproblems as small as needed. An important advantage
of the part-versus-part method over existing popular pairwise-
classification approach is that a large-scale two-class subproblem
cair be further divided into a number of relatively smaller
and balanced two-class subproblems, and fast training of SYMs
on massive multi-class classification problems can be easily
implemented in a massively parallel way. To demonstrate the
effectiveness of the proposed method, we perform simulations
on a large-scale text categorization problem. The experimental
results show that the proposed method is faster than the
existing pairwise-classification approach, better generalization
performance can be achieved, and the method scales up to
massive, complex multi-class classification problems.

I. INTRODUCTION

In the last several years, support vector machines (SVMs)
[2}, {16]) have been successfully applied to various pattern
classification problems. They are clearly recognized as useful
tools one might use for pattern classification. To apply SVMs
to multi-class problems, one usually needs te decompose a
multi-class problem into a series of two-class subproblems,
since SVMs were originally designed for learning two-class
classification problems. There are two popular decomposition
methods in machine learning literature: one-versus-the-rest
approach [1] and pairwise-classification approach [7], [4], [9],
[8], in which a K-class problem is decomposed into K two-
class subproblems and K (K — 1)/2 two-class subproblems,
respectively.

In some real-world multi-class problems such as text cat-
egorization and patent classification, the size of training data
is usually massive. For example, the Yomiuri News Corpus
used in this paper contains 2,190,512 documents collected
from Yomiuri Newspapers dated 1987-2001, with 75 unique
categories assigned to those documents [15]. How to learn this
kind of massive multi-class problems efficiently with SVM
learning techniques {16], [6], {171, [18] and new computing
infrastructure such as grid computing [3] is a big challenge
to researchers in both neural network and machine learning
fields.

In our previous work [9], [10}, we have proposed a general
task decomposition method for pattern classification. An im-

0-7803-8359-1/04/820.00 ©2004 IEEE

Masao Utiyama, and Hitoshi Isahara
Communications Research Laboratory
3-5 Hikaridai, Seika-cho, Soraku-gun

Kyoto, 619-0289, Japan
{utiyama;isahara} @crl.go.jp

portant advantage of this method over pairwise-classification
approach is that a two-class problem can be further decom-
posed into a series of two-class subproblems as small as
needed. The pairwise-classification approach can be consid-
ered as a special case of our decomposition method, when a
K-class problem is just decomposed into K{K — 1)/2 two-
class subproblems and there is no further decomposition for
each of the two-class subproblems. Qur decomposition methed
has been successfully applied to neural-networks for learning
large-scale, real-world multi-class problems such as part-of-
speech tagging [12] and classification of high-dimensional,
single-trial electroencephalogram signals [13].

In this paper, we adapt our decomposition method to
multi-class SVM learning. Tn Section I, we introduce our
decomposition method. In Section III, we describe how to
integrate individual trained SVMSs into a hierarchical, parallel,
and modular SVM with two module combination principles. In
Section IV, we perform a simulation study on a large-scale text
categorization problem. Conclusions are outlined in Section V.

II. PART-VERSUS-PART DECOMPOSITION METHOD

For human beings, the only way to solve a compiex probiem
is to divide it into smaller, more manageable subproblems.
Breaking up a problem helps human beings deal with complex
issues involved in its solution. This “divide-and-conquer”
strategy is also helpful to neural networks and SVMs in
complex learning problems. Our goal in this sectien is to
explain a part-versus-part decomposition method for training
massive multi-class SVMs,

Let 7 be the given training data set for a K-class classifi-
cation problem,

T = {(X. V)M, ey

where X; ¢ X = R™ is the input vector, X' is the set of
training inputs, ¥; €) C R¥ is the desired output,) is the
set of desired outputs, and L is the total number of training
data,

We have suggested that a K -class problem defined by (1)
can be divided into K (X — 1)/2 two-class subproblems [9],
[10], each of which is given by

i : i L
T = {(XF, + 1M, u{(xP, -1y,
fori=1,--,Kandj=i+1, -, K

@)

735

mailto:blu@cs.situ,edu.cn
mailto:crl.go.jp

Xl(i_) e X; and ij) e X; are the training inputs belonging
to class C; and class C;, respectively, A; is the set of training
inputs belonging to class C;, L; denotes the number of data
in X, UK, X = X, and 32K L, = L. In this paper, the
training data in a two-class subproblem are called positive
training data if their desired outputs are +1. Otherwise, they
are called negative training data. The two-class subproblems
defined by (2) are called pairwise classification in the machine
learning literature [4], [8]. We would like to emphasize that
decomposition of a K-class problem into K(X — 1)/2 two-
class subproblems defined by (2) is unique for a given training
data set because of the uniqueness of X; fori=1, ..., K.

Although the two-class subproblems defined by (2) are
smaller than the original K-class problem, this partition may
not be adequate for parallel computation and fast learning
due to the following reasons. (a) Some of the two-class
subproblems might fall into a ‘load imbalance’ situation. Since
the speed of parallel leaming is limited by the speed of the
slowest subproblem, the undue burdening of even a single
subproblem can.dramatically degrade the overall performance
of learning. (b} Some of the two-class subproblems might
still be too large for learning[18]. (¢) Some of the two-
class subproblems might be imbalanced in terms of types of
examples ir the training set, i.e., the training set contains many
more data of the ‘dominant’ class than the other ‘subordinate’
class. . To speed up learning, all the large and imbalanced
two-class subproblems should be further divided into relatively
smaller and more balanced two-class subproblems.

Assume that J; is partitioned into N; subsets in the form

. L)
Xy = {X}lj)}f:"l &)

forj=1,-- , N;andi=1, --- | K,

where 1 < N; < L; and Uf':l«’l.’ij = Xj.

Various methods can be used for partiticning & into N;
subsets [9]. A simple and straightforward approach is to divide
A; randomly. The subsets X;; might be disjoint or joint.
Without loss of generality and for simplicity of description, we
assume throughout this paper that the random decomposition
method is used and the subsets Aj; are disjoint from each
other,ie., Ay;NAy =¢fori=1,.-- K, j, k=1,---, N}
and j # k.

In practical applications of SVMs, an appropriate value of
N; might depend on two main factors, such as the number
of training data belonging to each class and the available
computational power. In the simulations presented in this
paper, we randomly divide A; into N; subsets A3, which are
roughly the same in size. The number of subsets N; for class
C; is'determined according to the following rule:

[?—&J if fmod (?%L) <yand 2L; > p
N=¢ ° 4)

[?ﬁ] otherwise
p

where p is the desired number of training data for two-class
subproblems, -y is a threshold parameter (0 < -y < 1} for fine-
tuning the number of subsets, | 2| denotes the largest integer

less than or equal to z, [z] denotes the smallest integer larger
than or equal to 2, the function of fmod (z1/22) is employed
to produce the decimal part of 2, /2, and 2, and 2o are two
positive integers, respectively.

After partitioning /; into IV; subsets, every two-class sub-
problem 7;; defined by (2) can be further divided into N; x N
relatively smaller and more balanced two-class subproblems as
follows:

. L(-u) . L(v)
T = (™, 4DhE, UHXEY, 032 ©)
foru=1,---, Ny, v=1,---, Nj,
i=1---,K,andj=4+1,.-. | K

where Xl(m) € X, and X}Jv) € Xj, are the training inputs
belonging to class C; and class Cj, respectively, Zf;l LE") =
L and 3207, Lgu) = L;. It should be noted that all the two-
class subproblems have the same number of input dimensions
as the original K-class problem. Comparing the two-class
subproblems defined by {5) with the two-class subproblems
obtained by the pairwise-classification approach, we can see
that each of the two-class subproblems defined by (5) contains
only a part of data of each class. Hence, the decomposition
method is called part-versus-part method.

According to the above discussion, the part-versus-part
decomposition method can be described as follows.,

Step 1: Set the values of p and 7.

Step 2: Divide a K-class problem 7 into (%) two-class
subproblems 7;; using (2).

Step 3: If the sizes of all T;; are less than p, then stop
the procedure here. Otherwise, continue with the
following steps.

Step 4 : Determine the number of training input subsets N,

fori =1, ---, K using (4).
Step 5 : Divide the training input set X; into N; subsets A}
using (3).

Step 6 : Divide the two-class subproblem T;; into N; x N
relatively smaller and simpler two-class subproblems
Tigu‘”) using (5).

From the above decomposition procedure, we see that the
part-versus-part decomposition method is simple and straight-
forward, and neither domain specialists nor prior knowledge
of the problem is required. Therefore, any user can perform
this decomiposition and divide a large K-class problem into
many two-class subproblems as smail as needed.

After task decomposition, each of the two-class subprob-
lems can be treated as a completely independent, non-
communicating problem in the learning phase. Therefore, all
the two-class subproblems can be efficiently learned in a
massively paraltel way.

From (2) and (5), we see that a /(-class problem is divided
into

K-1 K
z Z Ni x Nj (6)
=1 j=i+l

two-class subproblems. The number of training data for each.

736

of the two-class subproblems is about
[Li/Ni] + [L;/Nj] (N

Since [L;/N;] + [L;/N;] is independent of the number of
classes I, the size of each of the two-class subproblems is

much smaller than the original K-class problem for reasonable
N; and N;.

III. MIN-MAX MODULAR SUPPORT VECTOR MACHINES

After training individual SVMs assigned to learn associated
two-class subproblems, all the trained SVMs are integrated
into a min-max modular (M®) SVM with the MIN, MAX,
orfand INV units according to the following two module
combination laws [9], {10], [11], namely the minimization
principle and the maximization principle.

Minimization Principle: Suppose a two-class problem B
were divided into P relatively smaller two-class subproblems,
B; fori=1,---, P, and also suppose that all the two-class
subproblems have the same positive training data and different
negative training data. If the P two-class subproblems are
correctly learned by the corresponding P individual SVMs,
M, forz=1, ..., P, then the combination of the P trained
SVMs with a MIN unit will produce the correct output for all
the training inputs in 5, where the function of the MIN unit is
to find a minimum value from its multiple inputs. The transfer
function of the MIN unit is given by

P
g(z) = min M;(x) (8)
where 2 denotes the input variable.

Maximization Principle: Suppose a two-class problem B
were divided into P relatively smaller two-class subproblems,
B; fori =1, .-, P, and also suppose that all the two-class
subproblems have the same negative training data and different
positive training data. If the P two-class subproblems are
correctly learned by the corresponding F individual SVMs,
M; fori =1, ..., P, then the combination of the P trained
SVMs with a MAX unit will produce the correct output for
all the training input in B, where the function of the MAX
unit is to find a maximum value from its multiple inputs. The
transfer function of the MAX unit is given by

q(z) = rg’_foc M;{x))

Following the minimization and maximization principles,
the N; x N; smaller SVMs are integrated first with N; MIN
units and one MAX unit as follows:

M(z) = min M) 10
i (53)—21:“11 i (@) (10
and

M;;i(z) = max M(u)(a:) (an

where MS;" ")(:c) denotes the transfer function of the trained
SVM corresponding to the two-class subproblem T("’") and

(“) {(z) denotes the transfer function of a combmatlon of N;
SVMs integrated by the MIN unit.

Suppose that a 1-out-of-K scheme were used for output
representation. Let ¥ denote the actual output vector of the
M3-SVM for a K-class classification problem, and let g(z)
denote the transfer function of the entire M3-SVM.

We may then write

Y =g(z) = , gx (@)

According to the minimization and maximization principles,
the (K) SVMs, M;;(x) for i = ,Kand § = i+

lga(z), -+ (12)

1, , K, and the correspondmg (2) inversions M,,(x) for
r= 2, ,Kands=1,. — 1, are integrated as
K -1 .
¢i(z) = min | min M;;(z), min M(z} (13
j=i+1 r=]
where g;(x) for ¢ = 1,---, K denotes the discriminant

Junction, which discriminates the patterns of class C; from
those of the remaining classes, and the term M,;(z) denotes
the inversion of M ;{z).

It is easy to implement M,;(x} with M;(z) and an INV
unit. The function of the INV unit is to invert its single input;
the transfer function of the INV unit is given by

g=a+pF-p (14)

where «, /3, p, and g are the upper and lower limits of input
value, input, and output, respectively. For example, o and 8
are set to +1 and -1, respectively, for support vector classifiers
in the simulations below.

The relationship among M, (), My-(z), and the INV unit
can be expressed as

Mys(z) = Mor(x) = INV(M,,(x)) (15)
fors=1, -, AK-1;r=84+1,--- | K

Similarly, the dlscnmmant functlon gi(z) of the Min-Max

SVM, which consists of Z Z —ip1 i x N; network

modules, and the correspondmg () inversions can be ex-
pressed as

gi{z) = min Lnﬁn [ni"ax [Igm M ”(:c)H

=i4+1 k=1
i—1 Ny
min [njlvax [mm M('lc i)(:z:)H
r=1 | k=1 |I=1

(16)

M('c ?)(z)] denotes the inver-
sion of maxp®, [min]¥,]j(:c)} It should be noted that
only the inversions of network modules M;;(x) are used for
constructmg the M3-SVMs, and there are no inversions for
SVMs M o)),
Summarlzmg the discussion above, the module combination
procedure can be described as follows:
Step 1: If no SVMs M;; ¥)(4) exist, go to Step 3. Other-
wise, perform thc following steps
Step 2: Integrate N; x N; SVMs M vV (x) for v =
,N,;,v=1,---,N,,z-—1 , K, and
j=1i+1,--+, K, into a network module M;;(x)

where the term rnaxk_1 [mm

737

TABLE |
NUMBER OF SVMS AND INTEGRATING UNITS REQUIRED TO BUILD THE
M32-SVM FOR A K-CLASS PROBLEM (K > 2)

Name #elements
K-1 K
SVMs 23 Y Nix Ny
. i=1 j=i+t
K
MIN f
i=1 j=i4l
K—1
N, 1
MAX 2y (K —i)[——]
i=1
INV K(K -1)/2

with N; MIN units and one MAX unit according to
(10} and (11}.

Step 3: Integrate K(K — 1}/2 modules and the corre-
sponding J (K —1)/2 inversions with & MIN units
according to (13).

From the procedure above dealing with module combi-
nation, we see that individual trained SVMs can be simply
integrated into a M3-SVM with MIN, MAX and/or INV
units. Since the module combination procedure is completely
independent of both the structure of individual trained SVMs
and their performance, we can easily replace any trained SVMs
with desired ones to achieve better generalization performance.
In contrast to the task decomposition procedure mentioned
earlier, the module combination procedure proceeds in a
bottom-up manner. The smaller trained SVMs are integrated
into larger modules first, and then the larger modules are
integrated into a M3-SVM.

After finishing module combination, the solutions to the
original K-class problem can be obtained from the outputs
of the entire M*-SVM as follows:

C =arg m?x{gi(x)} fori=1,--- K {17)
where C is the class that the M3-SVM assigns to the input .

Once the size of each of the SVMs is fixed, the space
complexity of the entire M3-SVM is determined according
to (13) and (16). Table I shows the number of SVMs and
integrating units required to construct a M3-SVM for a K-
class problem.

IV. EXPERIMENTS

In this section we present experimental results on a text
categorization problem to indicate the effectiveness of the pro-
posed part-versus-part decomposition method. We use Yomiuri
News Corpus for this study.

There are 2,190,512 documents in the full collectlons from
the years 1987 to 2001. We used 913,118 documents dated

1996-2000 as a training set and 181,863 documents dated July-
December of 2001 as a test set in this study. In the simulations,
we selected the top five classes as shown in Table II. A x?
statistic (CHI) feature selection method [14] was used for
preprocessing the documents after the morphological analysis
was performed with ChaSen. The number of features is 5,000.
In the simulations, ¢ and +y [5] were selected as § and 0.25
for training all of the standard SVMs and M2-SVMs. All of
the simulations were performed on a 3.0GHz Pentium 4 PC
with 2.0GB RAM.

TABLE I
DISTRIBUTIONS OF TRAINING AND TEST DATA OF THE TOP FIVE CLASSES
IN A SUBSET OF YOMIURI NEWS CORPUS

| Category F#data
Training Test
C1 | Crime News 103607 | 24374
Cz | Sport News 79726 | 17610
Ca | Asian-Pacific News 41374 5943
Cy | North-South American News 36275 6109
Cs | Health News 35932 7004
Total 296914 | 61040

TABLE 11l
EIGHT DIFFERENT WAYS OF PARTITIONING THE TRAINING DATA SET OF
THE TEXT CATEGORIZATION PROBLEM, HERE 7y IS SETTO 0.5

Number of subsets for each class
Case p Ny | Na | Ng | Ny N5 | #classifiers
A 16000 21 16 g 7 7 1311
Az [20000 10 8 4 4 4 344
As | 30000 7 5 3 b4 Z 135
Aq | 40000 3 4 2 2 2 86
As | 50000 4 3 2 1 } 45
Ag | 60000 3 3 1 1 ! 30
Ay | 70000 3 2 3 1 1 24
Ag | 90000 2 2 1 { 1 19

A five-class text categorization problem shown in Table II is
decomposed into a series of two-class subproblems following
eight different ways. The number of subsets for each of the
classes is shown in Table III. By using (6), we calculate the
total number of classifiers (see the right column of Table IIT}
for constructing M3-SVMs.

After training all of the individual SVMs assigned to the
two-class subproblems, we use two combination strategies to
integrate the trained individual SVMs into a M3.SVM: 1)
pure min-max combination and 2) min-max-vote combination.
In pure min-max combination, all of the trained SVMs are
integrated according to the module combination procedure
mentioned in Section III. For min-max-vote combination, the
output of the K (X —1)/2 SVMs is determined by the highest

738

TABLE 1V
NINETEEN TWO-CLASS SUBPROBLEMS OBTAINED BY DIVIDING THE
FIVE-CLASS TEXT CATEGORIZATION PROBLEM

TABLE VI
PERFORMANCE COMPARISON OF M3-5VMS WITH STANDARD SVMs

number of votes, instead of the MIN unit as in the pure min-
max combination. Performance comparison of the min-max-
vote method with the pure min-max method is shown in Table
V. Here, ‘single’ and ‘multiple’ denote that desired outputs
are represented in single label and multiple label, respectively.
From this table, one can see that the performance of the min-
max-vote method is superior to that of the pure min-max
method for all of the cases. From Table V, one can also see
that case Ag has the best performance among eight cases. The
M3-SVM for case Ay is depicted in Fig. 1.

TABLE V
CORRECT RECOGNITION RATE (%) AND F1 MEASURE ON TEST DATA
OBTAINED BY THE PURE MIN-MAX AND MIN-MAX-VOTE COMBINATION

| CPU time (h.) Speedup Correct
#Data ##Data Method | Classifiers | Max Total | Parallel | Seral | tate (%)
| Task Positive | Negative # | Task Positive | Negative SVM 10 | 8.36 55.9 - - 86.62
V| 7Y | sis04 | 3ose3 || 11 | Y | 39863 | 41374 19| 3.15 [457 26 1.2 86.89
2\ 79 51804 | 39863 [12 { 72V | 39863 | 41374 24 | 293 442 29 1.3 84.65
3| T2 | 51803 | 39863 || 13 | EAMM] 39863 | 36275 30 | 1.86 28.2 45 2.0 83.45
a | T2® | 51803 | 39863 || 14 | 72M | 39863 | 36275 M3-8VM 45 | 1.05 47.3 8.0 1.2 83.30
5| 7L | 51804 | 41374 || 15 | TV | 39863 | 35932 8 | 0.62 439 135 1.3 84.29
6 | &Y 51803 | 41374 I 16 | T2V | 39863 | 35932 135 | 0.53 38.0 15.8 1.5 83.24
7 TEY | s1804 | 36275 || 17 | TV | 41374 | 36275 344 | 021 44.1 39.9 1.3 83.99
8| 72 | si803 | 36275 || 18 | LY | 41374 | 35932 1311 | 005 | 515 | 1674 1.1 82.16
9 | 7&Y | sisos | 35932 || 19 | LY | 36275 | 35932
10 | 72" | swo3 [35932

Table VI alsc indicate that even though all of the individual
SVMs were trained in serial, the part-versus-part method is
still faster than the pairwise-classification approach for all
eight cases.

The drawback of the part-versus-part method is that more
number of support vectors are required in comparison with the
pairwise-classification approach. Table VII shows the number
of support vectors for each of nineteen classifiers. The total
number of support vectors is 587,333, while the total number
of support vectors for the pairwise-classification approach is
414,955. Whether the number of support vectors for the part-
versus-part method can be reduced is an open problem as to
future work,

TABLE vII
NUMBER OF SUPPORT VECTORS FOR EACH OF NINETEEN CLASSIFIERS

STRATEGIES GENERATED BY THE PART-VERSUS-PART METHOD
Min-max Min-max-vote # Task | #Support vectors # Task | #Support vectors
Case | Single | Multiple Fy | Single | Muliple F 1| 75" 36708 || 11 b oQw 33150
AL | 7933 | 8200 | 0.7776 | 79.48 | 8216 | 0.7808 2| Ty 37086 || 12 | TG 30998
Ay | 81270 8387 | 07842 | 81391 8399 | 0.7853 3| g 3o || 13| TPy 30484
As | 8055 { 8314 | 07938 | B0.64 | 8324 | 0.7966 4| 75? 20905 || 14 | 50 27826
Ag | 81L77{ 8420 | 08055 | 8186 | 8429 | 08046 5 15" 24669 || 15 | TV 23080
As | so71 | 832207959 | 8079 | 8330 | 0.7990 6| THY 34193 || 16 | TS 29098
As | 8119 | 8339 | 07972 | 8125 | 8345 [0.7961 7| neY 20828 || 17 | TV 24694
A7 | 8225] 8460 | 08095 | 8230 | 8465 | 0.8087 8| TSV 37885 || 18 | 7L 30427
As | 8390 | 8684 } 08450 | 83.95 | 86.89 | 0.8458 9| 7Y 32175 || 19 | TS 31385
10| T8V 32431 Total 587333

To compare the performance of the proposed part-versus-
part method with the existing pairwise-classification approach,
the text categorization problem was learned by both M3-$VMs
and standard SVMs. The simulation results are shown in
Table VI. From Table VI, one can see that the part-versus-
part method can obtain better generalization performance
than the pairwise-classification approach when the original
problem is decomposed into nineteen two-class subproblems,
and meanwhile the training time can be reduced. The results in

V. CONCLUSIONS

We have presented a general task decomposition method for
training muiti-class support vector machines. The advantages
of the proposed method over existing approaches are its
parallelism and scalability. We have demonstrated that this
method is superior to the pairwise-classification approach in
both training time and generalization performance. By using

739

fPressrmtmme e ee e em e sE s

LidNE

E
114100

Fig. 1. The M3-SVM for case .4g in which a five-class text categorization
problem is decomposed into nineteen two-class subproblems. Note that

Mij""’) denotes the corresponding SVM module for subproblem T, *; thin

lines and arrows represent scalar inputs or outputs and thick lines and arrows
represent vector inputs. Due to space requirements, note that only module
M2 and module M3 are plotted in detail, and the other modules are roughly
tHlustrated.

the proposed method, we have began performing simulations
on the whole Yomiuri News Corpus. A future work is to
implement the method in a grid computing system and apply
the method to patent classification.

ACKNOWLEDGMENT

The authors thank Ms. Hong Shen for the help on pre-
processing the training and test data sets. Bao-Liang Lu was
supported in part by the National Natural Science Foundation
of China via the grant NSFC 60375022.

REFERENCES

[1]1 L. Botton, C. Cortes, J. S. Denker, H, Drucker, 1. Guyon, L. D. Jackel,
Y. LeCun, U. A, Muller, E. Sackinger, P. Simard, and V. Vapnik,

“Comparison of classifier methods: a case study in handwritten digit
recognition”, Proc. of the 12th International Conference on pattern
recagnition, pp. 77-87, IEEE Computer Society Press, 1994,

121 C. Cortes and V. Vapinik, “Support-vector network”, Machine Learning,
vol. 20, pp. 273-297, 1995.

{3] 1. Foster and C. Kesselman, The Grid: Blueprint for a New Computing
Infrastructure , 1998, Morgan Kaufmann.

{4] J. H. Friedman, “Ancther approach to polychotomous classification”,
Technical Report, (fip://statstanford.edu/pub/friedman/poly.ps.Z), Stan-
ford University, 1996,

[5] C. W. Hsu and C.], Lin, “A comparison of methods for multi-class
support vector machines”, JEEE Trans. Neural Networks, vol. 17, no. 5,
pp. 14-26, 2003.

[6] T. Joachims, “Making lare-scale SYM learning practical”, In B. Scholkof,
C.). C. Burges, and A. J. Smola, editors, Advarce in Kernal Methods -
Suppori Yector Machines, Cambridge, MA, 1998, MIT Press.

[71 S. Knem, L. Personnaz, and G. Dreyfus, “Single-layer learning revisited:
a stepwise procedure for building and training a neural network”, In J.
Fogelman, editor, Newrocomputing: Algorithms, Achitectures and Appli-
cations. Springer-Verlag, 1990.

[8} U. Krefel, “Pairwise classification and support vector machines”, In B,
Schilkopf, C. I. C. Burges, and A. J. Smola, editors, Advances in Kernal
Methads — Support Vector Learning, pp. 255-268, Cambridge, MA, 1999,
MIT Press.

[9] B. L. Lu and M. Ito, “Task decomposition based on class relations: a
modular neural network architecture for pattern classification”, Biological
and Artificial Computarion: From Neuroscience to Technology, Lecture
Notes in Computer Science, J. Mira, R. Moreno-Diaz and J. Cabestany,
Eds., vol. 1240, pp. 330-339, Springer, 1997.

[10] B. L. Lu and M. Tto, “Task decomposition and module combination
based on class relations: a modular neural network for pattern classifi-
cation”, JEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1244-1256,
1999,

{111 B. L. Lu and M. Ichikawa, “Emergence of learning: an approach to
coping with NP-complete problems in learning”, in Proc. of I/ICNN'2000,
vol. 1V, pp. 159-164, Como, Italy, 24-27 July, 2000.

[12] B.L.%Lu, Q. Ma, M. Ichikawa, and H. Isahara, “Efficient Part-of-Speech
Tagging with a Min-Max Modular Neural-Network Model”, Applied
Intelligence, vol. 19, pp. 65-81, 2003.

[13] B. L. Lu, J. Shin, and M. Ichikawa, “Massively paralle! classification
of single-trial EEG signals using a min-max modular neural network”,
IEEE Trans. Biomedical Engineering, vol. 51, no. 3 (in press), 2004.

[14] Y. Yang and). Pedersen, “A comparative study on feature selection
in text categorization™, 1n J. D. H. Fisher, editor, The 14th International
Conference on Machine Learning, pp. 412-420. Morgan Kaufmann, 1997,

[15] M. Utivama and H. Isahara, “Large-scale text categorization™ {in
Japanese), Proc. of 9th Annual Meeting of the Association (Japan} for
Natural Language Processing, pp. 385-388, 2003.

[16] V. Vapnik, Statistical Learning Theory, John Wiley and Sons, New York,
1998,

[17] C. i. Lin and). }. MOre, "Newton's method for large-scale bound
censtrained problems™, in SLAM Journal on Optimization vol. 9 pp. 1100-
1127, 1999.

[18] Y. |. Lee and O. L. Mangasarian. RSM:Reduced support vector ma-
chines. In Proceedings of the First SIMA Imternational Conference on
Data Ming, 2001.

740

ftp:llstat.stanford.edu/pub/fnedmanlpoly.ps.Z

