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Abstract. This paper mainly analyses the fault tolerant capability of a
combining classifier that uses a K-voting strategy for integrating binary
classifiers. From the point view of fault tolerance, we discuss the influence
of the failure of binary classifiers on the final output of the combining
classifier, and present a theoretical analysis of combination performance
under three fault models. The results provide a theoretical base for fault
detection of the combining classifier.

1 Introduction

The original purpose of this research arises from two research directions which
are different but have some relations.

The first direction is neural network research with fault tolerance. In engineer-
ing, the needs of reliability has converted pure hardware concern to hardware-
software concern. As a classification model with fault tolerance in essential, the
fault tolerance of neural network models has been extensively studied during
the past several years [I][2]. The main research approach of fault tolerance is
based on the practical fault model or theoretical fault model, e.g., researchers
study the shortcut failure of single point with fault tolerance analysis, and then
improve the performance or effect through the revised algorithm.

The second direction is concerned with the binarization of multi-class prob-
lems which is to be more and more important in the last decade [B][4]. The
common ground of those researches is that they studied the integrated output
ability of a certain base classifier model, or discussed the total classification error
caused by the output combination of some special base classifiers.

Our study focuses on a combining classifier in which component classifier
are integrated into a modular classifier with a voting strategy called K-voting in
this paper. This combining classifier can also be regarded as a min-max modular
neural network[5], which only decompose a K-class classification problem into
(12( ) two-class subproblems and no any further decomposition is performed on
two-class subproblems. Throughout this paper, this combining classifier is called
K-voting classifier for short.

The basic fault unit for analysis is the binary classification module. Under
three fault models, we give the quantitative expression of the ultimate classifi-
cation effect based on the failure probabilities of binary classifiers.
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The rest of the paper is organized as follows: In Sections Bl and Bl we briefly
introduce K-voting classifier and mathematical notation. Three different fault
models will be presented in Section [4. The experimental results and comment
on theoretical and experimental results are presented in Section Bl Conclusions
of our work and the current line of research are outlined in Section

2 The Combining Procedure of K-Voting Classifiers

Now, we give a simple introduction to combination procedure for K-voting clas-
sifier.

we use one-against-one method for task decomposition. Suppose a K-class
classification problem is considered, by using one-against-one decomposition
method, we get (12() independent two-class problems. The training samples of
every two-class problem come from two different classes. K-voting combination
rule is defined as: if the outputs of K-1 binary classifiers in all support the same
class ID, then the final classification result is just this class, otherwise, the result
is unknown.

3 Mathematical Notation

After binarization, a binary classifier is noted as X;;, which means it has learned
from examples in class ¢ and class j. We also take the notation X;; as a stochastic
variable with the two-point probability distribution.

For a given testing example S, we denote its class ID as V(S) The non-fault
output probability p;; of a binary classifier X;; is constrained by

pij = pji for 0 <i,j < K,and i # j (1)
and X;;’s random guess probabilities for a sample from one non-ij class:

P(X;; =i|V(S) =14') = ¢y and P(X;; = j|V(S) =i') = 1—¢;;,Vi' #iandi' # j
(2)

The distribution of classes in the number of testing data:

K
a¢f0r0<i§K,andZai:1 (3)
i=1

The correct rate, incorrect rate, and unknown rate obtained by the original K-
voting classifier are denoted by

Poa, Pog, and Por, 4)

respectively. Note that analysis in this paper is based on a simplified assumption:
If all occurrence of fault states are regarded as stochastic variants, then these
variants are independent with each other.
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4 Fault Models

In this section, we will discuss three different fault models and analyse the per-
formance of K-voting classifier under those assumptions.

4.1 Complete Failure Model

We consider the fault model as the output of each binary classifier is complete
failure, i.e., fault state is an undefined output state of binary classifier.

Firstly, suppose that the original classification procedure is a faultless pro-
cedure, i.e., all binary classifiers can always output the correct results.

In K-voting combination, as to ultimate output class ID 4, only those binary
classifiers will have the effect on the final output: X,,,,,m =i or n = i. That is,
only under such condition X;; =4,Vj,1 < j < K7 # j, the output can be 4.

All the other binary classifiers will have nothing with the final output and

fault occurrence is independent, so to the ith class testing sample, the probability
K

of effective output of K-voting classifier will be H pij. After weighting, we
Jj=1,5#i
K K
get the available output probability of all classes: P}, = Z(ai H Dij)-
i=1  j=1j#i
Finally, according to (4), we get the correct rate, incorrect rate and unknown
rate in practical case as follows:

K K K K
Pa1 = Poa Z(OZZ H pij) Pp1 = Pog Z(O‘i H pij) (5)
i=1 j=1,j%i i=1 j=1,j#i
K K K K
Pr1 = Por Z(ai H pij) + (1 - Z(ai H pij)) (6)
i=1 j=1,j#i i=1 J=1,j#i

4.2 Complete Inverse Fault Model

Suppose that the outputs of all binary classifiers can be inversed to irrational
output under a certain probability, i.e., to output the rational result under a
certain probability, and in other cases, the output is the reverse of the rational
judgment according to classification algorithm.

As the same in Section 4.1l we also consider the output performance of K-
voting combination while all original outputs of binary classifiers are always
correct. because of the independent assumption, at this time, the correct rate of
K-voting classifier is given by

K

Phy="Poay (i [[ »is) (7)

=1 j=lj#i
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Because of the fault of inverse, the probability that those binary classifiers
can not handle the classification is changed. At this time, for non-i,j classes, the
output probability of class ID i by the binary classifier X;; should be revised as:

4i; = qijpij + (1 = qij) (1 — pij) (8)

Consider the probability of misclassification of all the samples from class i,

K K
o -py) I @
j=1,j#i m=1,m#i,m#j

After weighting, the probability of misclassification for all samples will be:

K K K
Ppy = Z(Oéi Z (1 —pij) H Gjm) (9)
i=1 j=1,5#i m=1,m#i,m#j

According to ([7) and (@), we may get the unknown rate of K-voting classifier:

K K K K
Phy=1= (ai( [[ ps+ > -py) [I ) (10
i=1 =150 J=1,5#i m=1,m#i,m#j

In practice, the unknown rate is very low, so we can omit the output proba-
bility of the case that the unknown output is inverted to the correct output or
misclassification. But, we can not exclude the case that the inversion causes the
final output from the incorrect to the correct. According to Section I} we can
get the probability that the correct is inversed from the incorrect as follows:

K K K
DA Yo oa; I (=pim)
i=1 j=1,5#1 m=1,m##i,m#j

Ultimately, we get the actual correct rate, incorrect rate, and unknown rate
as follows:

K K K
Pao = Poa Z H pij) + Por Z Z q; H(l —pjm)) (11)
=1 =1 =1 j=lj#i  m=lm#ij
K
Pga = Pop Z H pij) + Poa Z Z (1 —pis) H Gim) (12
i=1 j=1,7#1 j=1,5#1 m=1,m##i,j
K K K K
Pry = Por + Poa(1 =Y (ai( [] pis+ D (1—py) | S))
=1 =1 J=1,j#i m=1,m#i,m#j
K K K K
+Pog(1— Z(ai( Z Pij + Z q; H (1 =pjm)))) (13)
=1 J=1,5#i J=1j#i  m=l,m#i,m#j

Because we have omitted the probability of the unknown output inverse to
the correct or the incorrect, (II]) and (I2) will be underestimated, and ([I3]) will
be overestimated.



892 H. Zhao and B.-L. Lu

4.3 Pseudo-Correct Output Model

In this subsection, we assume that the binary classifier may not give out the nor-
mal output according to rational judgment, but give a random guess according
to a certain probability when the binary classifier is in its fault state. Suppose
the probability of the output of class ID ¢ under the fault situation of binary
classifier X;; is given by:

ri; for 0 <i,j <kandi#j (14)

Consider that the outputs of all the binary classifiers are always correct. Then
the actual output caused by fault will be

/ Q; aj .. . .
i =Dij + (1 —pij T + 1—7)),0<i,5 <k,1 15
P = pij + ( ng)(aiJraj ij ai+aj( i) J<ki#j (15
Therefore, we may convert the pseudo-correct output model to the complete
inverse fault model. As mentioned in Section L2l according to (B)), we obtain:

4i; = Gizpi; + (1 —qi;)(1 = piy) (16)

Finally, by substituting the p;; with p;; in (1), (IZ), and (I3)), we will obtain
the ultimate classification performance of the classifier in this fault model.

5 Computer Simulations and Discussion

We carry out simulations on a practical ten-class classification task. The out-
put of each binary classifier will be disturbed before K-voting combination as
a simulation of fault occurrence. The correct rate, the incorrect rate, and the
unknown rate is 65.6198%, 28.5537%, and 5.8264% under non-fault condition,
respectively. For page limitation, only comparison between the theoretical and
the practical performance under pseudo-correct fault model is presented. The ex-
perimental results are shown in Table 1. For convenience, non-fault probability
of each binary classifier is set to the same value and each 7;; is set to 0.5.

The simulation result basically coincides with our theoretical analysis. Also,
as we mentioned before, the correct rate and incorrect rate do be underestimated
and unknown rate does be overestimated. Under any fault model, we find that:

a) K-voting combination is highly sensitive to the fault of binary classifier.
b) The fault of a K-voting classifier is largely unknown output, instead of the
misclassification.

6 Conclusions and Future Work

We have proposed a mathematical model for analysis of the fault tolerance of
binarization classification procedure with a quantitative approach in this paper.
We also give a better understand of the binarization procedure of the K-voting
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Table 1. Simulation results on pseudo-correct model

Reliability| Correct rate(%) | Incorrect rate (%) | Unknown rate(%)
Actual |Theoretical| Actual |Theoretical| Actual | Theoretical
50% 5.50372 | 3.695282 |5.4545 | 1.607959 |89.0083| 94.696659
75%  ]20.4545| 17.262967 |11.6116| 7.511781 [67.9339| 75.225152
90%  |41.0331| 39.288998 [19.8347| 17.096155 |39.1322| 43.614747
95% 51.8595| 50.942594 |23.4298| 22.167083 (24.7107| 26.890222
99%  |62.6446| 62.411657 |27.3554| 27.157713 {10.0000| 10.430530

classifier. The analysis results give a theoretical base of the influence caused by
the fault of binary classifier on the ultimate combination classification result.

In fact, our analysis procedure has no relation with the features of binary
classifiers or even the performance of binary classifiers. Therefore, our method
has the common sense to some degree. In addition, the fault model we presented,
especially the third one, has some value in practice application.

The further work may focus on the direction of fault detection. Through
observation on the classification performance before and after fault occurrence,
to locate the binary classifier with fault is possible under some prior fault model.
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