
An Algorithm for Pruning Redundant Modules in
Min-Max Modular Network

Hui-Cheng Lian and Bao-Liang Lu
Department of Computer Science and Engineering, Shanghai Jiao Tong University

1954 Hua Shan Rd., Shanghai 200030, China
Email: {lianhc,blu}@cs.sjtu.edu.cn

Abstract— The min-max modular (M3) network is a frame-
work that is capable of solving large-scale pattern classifica-
tion problems in a parallel way. The M

3 network has been
successfully applied to several large-scale real-world prblems.
When a complex problem is decomposed into a number of
separable problems, however, the M

3 network sufferes from its
high redundancy of individual modules. This paper proposes an
algorithm, called back-searching (BS) algorithm, to prune these
redundant modules. The main idea behind the BS algorithm is
to use the actual outputs of the trained M

3 network associated
with training data to find out the redundant modules by means
of ‘back searching’ . In order to ensure the correctness of the
algorithm, we prove two propositions theoretically, namely the
sufficient proposition and the necessary proposition, and perform
simulations on several benchmark and real-world problems. The
simulation results indicate that most of all redundant modules can
be pruned by our proposed algorithm and the pruned network
has the same generalization performance as the original network.

I. INTRODUCTION

The min-max modular (M3) network [1][2] is a framework
that is capable of solving large-scale pattern classification
problems in parallel. In comparison with other modular neural
network models and machine learning approaches, the M3

network has the following two important advantages. a) The
task decomposition scheme is more general than one-vs-one
scheme, which will be referred to as the “part-vs-part’”or PVP
scheme throughout this paper. By using the PVP scheme, any
user can decompose a complex multiclass problem into many
two-class subproblems as samll as needed. Neither domain
specialists nor prior knowledge of the problem is required.
Since each of the two-class subproblems can be treated as
a completely separable classification problem in the learning
phase, all of the two-class subproblems can be learned in a par-
allel way. b) After learning each of the two-class subproblems
with a network module, all trained network modules can be
integreted into a M3 network automatically according to two
module combination rules, namely the minimization pricinple
and the maximization principle [2].

In the last few years, the M3 network has been successfully
applied to many large-scale real-world problems such as part-
of-speech tagging [5], single-trial EEG signal classification
[6], and text categorization [8]. In M3 network, a K-class
classification problem is decomposed into a series of K(K −
1)/2 two-class problems. These two-class problems are to
discriminate class Ci from Cj for i = 1, ..., K − 1 and j =

i+1, ..., K, while the existence of the training data belonging
to the other K-2 classes is ignored. If these two-class problems
are still hard to be learned, they can be divided into a set of
two-class subproblems as small as needed. Consequently, a
large-scale and complex K-class classification problem can
be solved effortlessly and efficiently by learning a series of
smaller and simpler two-class problems in a parallel way.
In order to make the framework more clear, we show the
M3 network in Fig. 1. This M3 network include three parts:
individual network modules, MIN units and MAX units (see
Fig. 1). Here, the basic function of an MIN unit is to find a
minimum value from its multiple inputs and the basic function
of an MAX unit is to find a maximum value from its multiple
inputs, and the individual network module can be any classifier
such as MLP and SVM.

According to the PVP scheme, a complex multiclass prob-
lem can be decomposed into many linearly separable prob-
lems, each of which has only two different training samples.
The merit of this task decomposition is that the learning
convergence can be guaranteed by using linear discriminant
function or GZC discriminant function, and incremental learn-
ing can be easily implemented. However, the demerit is that
there are a large number of redundant modules in the M3

network. So how to prune these redundant modules is one of
the most important issues for further applying M3 network
to solving large-scale real-world problems. In this paper,
we propose a pruning algorithm called back searching (BS)
algorithm to reduce the redundancy of the M3 network.

The motivation of the BS algorithm comes from the fact that
the actual output of a redundant module must have the same
value as the output of the MIN unit when a training sample
is presented to the network as an input. Therefore, by using a
back-searching technic, the redundant modules can be found
out. In the next section we firstly define the redundant problem
of the M3 network. Then we describe our BS algorithm in
section III. At last, we present the experimental results and
conclusions in section IV and section V, respectively.

II. REDUNDANT PROBLEM OF THE M3 NETWORK

A. Task Decomposition

Let T be the training set of a K-class classification problem
and the K classes are represented by C1, C2,..., CK , respec-
tively.

T = {(Xl, Yl)}
L

l=1 (1)

where Xl ∈R
d is the input vector, Yl ∈R

K is the desired
output, and L is the number of training data.

Suppose the K training input sets, X1, X2,...,XK , are
expressed as

Xi =
{

(X
(i)
l

}Li

l=1
for i = 1, ..., K (2)

where Li is the number of training inputs in class Ci, X
(i)
l

is the lth sample belonging to class Ci and all of X
(i)
l ∈ Xi

have the same desired outputs, and
∑K

i=1 Li = L.
It is known that a K-class problem defined by (1) can

be divided into K(K − 1)/2 two-class subproblems, each of
which is given by

Tij =
{

(X
(i)
l , +1)

}Li

l=1
∪

{

(X
(j)
l ,−1)

}Lj

l=1

for i = 1, ..., K − 1 and j = i + 1, ..., K (3)

Even though a K-class problem is broken into K(K−1)/2
relatively smaller two-class problems, some of the two-class
problem may be still hard to be learned. We have suggested
that Tij defined by (3) can be further decomposed into a num-
ber of two-class subproblems as small as needed according to
the class relations among training data [2].

Assume that the input set Xi defined by (2) is further
partitioned into Ni(1 ≤ Ni ≤ Li) subsets in the form of

Xij =
{

(X
(ij)
l

}L
(j)
i

l=1
for j = 1, ..., Ni (4)

where L
(j)
i is the number of training inputs included in Xij ,

and ∪Ni

j=1Xij = Xi

After dividing the training input set Xi into Ni subsets Xij

(4), the training set for each of the smaller and simpler two-
class problems can be given by

T
(u,v)

ij =
{

(X
(iu)
l , +1)

}L
(u)
i

l=1
∪

{

(X
(jv)
l ,−1)

}L
(v)
j

l=1

for u = 1, ..., Ni, v = 1, ..., Nj

i = 1, ..., K − 1 and j = i + 1, ..., K (5)

where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the input vectors

belonging to class Ci and class Cj , respectively,
∑Ni

u=1 L
(u)
i =

Li, and
∑Nj

v=1 L
(v)
j = Lj .

From (5), we see that if Ni = Li, i.e., each of the two-
class subprolems contains only two different training data.
Obviously, these two-class subproblems are linearly separable
problems.

B. Module combination

From (4) and (5), we can see that a K-class problem is
divided into

K−1
∑

i=1

K
∑

j=i+1

Ni × Nj (6)

two-class subproblems.

If Ni = Li, a K-class classification problem can be divided
into many linearly separable subproblems. The number of
these linearly separable subproblems can be expressed as

K−1
∑

i=1

K
∑

j=i+1

Li × Lj (7)

Obviously, equation (7) shows an upper bound on the number
of subproblems that can be obtained by dividing a K-class
classification problem into many linearly separable subprob-
lems.

After constructing each individual linear discriminant func-
tion as a base classifier, all the individual modules are in-
tegrated into a min-max modular network with MIN, MAX,
or/and INV units according to two module combination rules
[2]. This kind of M3 network will be referred to as linear-
M3 network throughout this paper. A linear-M3 network is
illustrated in Fig. 1.

1,1

ji,M

1,2

ji,M

Lj1,

ji,

Li,1

ji,M

Li,2

ji,M

LjLi,

ji,M

MAXx

1MIN

LiMIN

Fig. 1. The M
3 network consists of Li × Lj individual network modules,

Li MIN units, and one MAX unit.

C. Reduntant problem of M3 network

Although we can decompose a complex problem into a
series of independent linear separable problems, and then
combine them to get the solutions to the original problem,
there are a large number of redundant modules in the network
when finally integrating all of the trained modules into a M3

network. For example, see Fig. 2 (a), there are total six lines
and each line stands for a linear discriminant function that
has been generated by one positive training sample and one

negative training sample. We can see that, in this figure, the
boundary of the two different areas (gray and white) is decided
only by four of the six lines, while the other two lines are of
no use and they are so called redundant modules in the M3

network. This redundant problem may be a serious problem
when the number of linearly separable problems becomes very
large, especially for real-world problems. In this paper, we
focus on the problem of how to prune the redundant modules
in the linear-M3 network.

D. Terminology definition

Suppose X is the input space of a M3 network, Ui is the
ith individual network module of a MIN unit, {MIN/Ui} is
the residual part of the MIN unit after pruning Ui from this
MIN unit, and T is the training set of the original MIN unit.
For the purpose of convenience, we present the definitions of
several terminologies as follows.

Definition 1 : For any x ∈ X, if Ui(x) ≥ {MIN/Ui}(x),
then we call Ui a redundant module of the MIN unit.

Definition 2 : If there exists an x ∈ X, that Ui(x) <
{MIN/Ui}(x), then we call Ui a non-redundant module of
the MIN unit.

Definition 3 : For any x ∈ T, if Ui(x) ≥ {MIN/Ui}(x),
then we call Ui an allowed redundant module of the MIN
unit.

Definition 4 : The ratio between the number of the pruned
modules and the number of the total original modules is
defined as the degree of pruning:

dp =
number of pruned modules
number of original modules

× 100%

Here we have made the definition of the allowed redundant
module from the view of training set , but not from the view
of input space, considering that it is allowed for this kind
of modules in the phase of training a classifier. Furthermore,
since the MIN and MAX units are similar to the logical AND
and OR gates respectively [3], all the redundant modules of
each MIN unit will compose of the redundant modules of one
MAX module, i.e. the redundant modules of the M3 network.

III. BACK-SEARCHING PRUNING ALGORITHM

In this section we describe our back-searching pruning
algorithm for linear-M3 network. The reason why linear-M3

network was chosen as the object is that the linear-M3 network
is the relatively simple and basic network among our various
kinds of M3 networks. We can further modify the algorithm
presented here for other kind of M3 networks in a similar
way. We only focus on pruning redundant modules of linear-
M3 network throughout this paper.

A. Algorithm

In the BS pruning algorithm, we assume that all of the
individual modules in a MIN unit are redundant units firstly,
so we tag them as ‘false’, then by using a ‘back-searching’
method, we find out all the non-redundant modules in the MIN
unit, and at last we delete all the residual modules that are not

found out in the end of the algorithm. For a trained linear-
M3 network, we use the following BS algorithm to prune its
redundant modules.

1) Suppose a linear-M3 network is M3 and has Li and Lj

training samples of class Ci and class Cj respectively.
According to two module combination rules, M 3 will
include Li MIN units and one MAX unit, and each MIN
units include Lj individual network modules.

2) For each unit MINk(k = 1, 2, ..., Li) do the following
steps:

a) Tag ‘false’ to each individual network module
Ur(r = 1, 2, ..., Lj) of unit MINk.

b) Suppose the training set of unit MINk is
Tk = {ak, b1, b2, ..., bLj

}, here ak ∈ Ci and
b1, b2, ..., bLj

∈ Cj .
c) For each training sample x ∈ Tk of unit MINk,

do the following steps:
i) Calculate the output value of unit MINk, y,

ii) Search back for all individual network modules
whose outputs have the same value with y,

iii) If Ur(x) < {MINk/Ur}(x), then Ur module
be tagged as ‘true’.

d) Delete all individual network modules that are
marked with ‘false’.

3) End.

B. Propositions

In this subsection, we prove the sufficient and necessary
propositions for the BS algorithm theoretically.

Proposition 1: (A sufficient proposition) All the redundant
modules of a trained M3 network are pruned by the BS
algorithm.

Proof: Suppose Ur is one of the redundant modules of M3,
T is the training set of Ur, and X is the input space of M3,
then we have T ⊂ X.

From the definition of redundant modules (see Definition
1) and T ⊂ X, we have Ur(x) ≥ {MIN/Ur}(x) for any
training sample x ∈ T, so after running the BS algorithm, Ur

will be tagged as ‘false’ and then be pruned. 2

Proposition 2: (A necessary proposition) All modules that
have been pruned by BS algorithm must be allowed redundant
modules.

Proof: Suppose Ur is one of the individual modules that
have been pruned by the BS algorithm, and T is the training
set of Ur. From the BS algorithm, we can conclude that for
any training sample x ∈ T, there is Ur(x) ≥ {MIN/Ur}(x),
so from the definition of allowed redundant module (see
Definition 3), we can see that Ur is an allowed redundant
module.2

Suppose a M3 network has N MIN units and each MIN
unit has M training samples, then the time complexity of
the BS algorithm is O(NM2). For a large scale problem,
this pruning algorithm may be a time consumed process.

(a) (b)

(c) (d)

Fig. 2. Illustrations of decision boundaries formed by original linear-M3

network and pruned linear-M3 network. (a) The decision boundary formed
by a MIN unit and it’s individual modules (lines) before pruning; (b) The
decision boundary formed by a MIN unit and its individual modules (lines)
after pruning; (c) The decison boundary formed by a M

3 network and it’s
individual modules (lines) before pruning; (d) The decision boundary formed
by a M

3 network and it’s individual modules (lines) after pruning. Here
symbol ‘2’ means a positive data from class Ci, and symbol ‘*’ means a
negative data from class Cj).

Fortunately, the whole pruning process can be done before
employing the pruned network to real applications. We show
some experimental results about time of pruning in Table I.

C. Illustration

To illustrate the BS pruning algorithm, we present a sim-
ple example depicted in Fig. 2. In this figure, symbol ‘2’
means a positive sample from class Ci, symbol ‘*’ means a
negative sample from class Cj , and each line means a linear
discriminant function as well as an individual module of the
M3 network. Each of the individual modules is determined by
one positive sample from class Ci and one negative sample
frome the class Cj . From Fig. 2(a), we see that two redundant
modules in a MIN unit are pruned by the BS algorithm and the
pruning result is depicted in Fig. 2 (b). The boundaries formed
by the original M3 network and the pruned M3 network are
showed in Figs. 2 (c) and (d), respectively. Here 9 redundant
modules have been pruned, and the degree of pruning is
37.5%. From Figs. 2 (c) and (d), we can see that the decision
boundaries (dark area) before and after pruning are identical.

IV. EXPERIMENTS

To evaluate the effectiveness of the BS pruning algorithm,
we perform six experiments on both benchamark [3] and real-
world problems [7]. All the experiments were performed on a
2.8 GHz P4 PC/Win2000.

A. The Two-spirals Problem

In the first experiment, we evaluate the BS pruning al-
gorithm on a toy two-spirals benchmark problem. The data
include 194 training samples and 1,700 test samples, respec-
tively. Fig. 3 (a) shows the original two-spirals problem. The
blue ‘2’ symbols stand for positive training data and the white
‘*’ symbols stand for negative training data. We use these
data to traine a linear-M3 network and the decision boundary
formed by the trained linear-M3 network is depicted in Fig.
3 (b). The original network consists of 18,432 individual
modules. By using the BS pruning algorithm, we prune 15,763
redundant modules from the trained network, and a 85% of
degree of pruning is obtained. The decision boundary formed
by the pruned network is depicted in Fig. 3 (c). From Figs.
3 (b) and (c), we can see that the decision boundaries before
and after pruning are identical. This indicates that the pruned
network maintains its generalization performance, while the
individual modules and response time are greatly reduced.
There are only 2,769 individual modules remained in the
pruned network, and the response time is speeded up to 7.33
times in comparison with the original network (see Table I).

B. Iris Plants Database

This data set contains three classes of 50 instances each,
where each class refers to a type of iris plant with four
data attributes. One class is linearly separable from the other
two; the latter are not linearly separable from each other.
The first 25 data are used as training data and the remaining
data are used as test data in our experiment. There are 3,750
individual modules in the original M3 network, comparing to
614 individual modules in the pruned M3 network, a 83% of
degree of pruning is obtained and the response time is speeded
up to 7.5 times in comparison with the original network. (see
Table I).

C. Image Segmentation Data

The image segmentation problem [3] is a real-world prob-
lem. The instances were drawn randomly from a database of
seven outdoor images. The images were hand-segmented to
create a classification for every pixel as one of brick-face,
sky, foliage, cement, window, path, and grass. The problem
consists of 210 training data and 2,100 test data. The number
of attributes is 18 and the number of classes is seven. There
are 37,800 individual modules in the original M3 network,
comparing to 8,812 individual modules remained in the pruned
M3 network, a 76% of degree of pruning is obtained and the
response time is speeded up to 4.60 times in comparison with
the original network (see Table I).

TABLE I
PERFORMANCE COMPARISON OF THE ORIGINAL NETWORK AND THE PRUNED NETWORK ON BENCHMARK AND REAL-WORLD PROBLEMS. HERE TIME

UNIT IS MS

Name Before pruning After pruning Time Degree Speed up
Module Response time Correct rate # Module Response time Correct rate of Pruning of pruning

two-spirals 18,432 220 100% 2,769 30 100% 521 85% 7.33
iris 3,750 15 94.67% 614 2 94.67% 10 83% 7.50

image 37,800 9764 87.67% 8,812 2123 87.62% 360 76% 4.60
optdigits 19,691,545 1,637,153 98.00% 16,679,524 14,57,175 98.00% 8,765,985 15% 1.12

Faulty Image1 3,220 2,083 100% 2,352 1,762 100% 144,748 26% 1.82
Faulty Image2 48,000 42,581 97.56% 20,060 22,722 97.56% 5,228,344 58% 1.87

(a)

(b) (c)

Fig. 3. Two-spirals problem and decision boundary comparison. (a) The
training samples of the two-spirals problem; (b) The decision boundary formed
by the original M

3 network; (c) The decision boundary formed by the pruned
M

3 network.

D. Optical Recognition of Handwritten Digits

The optical recognition of handwritten digits problem [3] is
a ten-class classification problem. The instances were drawn
from a total of 43 people, 30 contributed to the training
set and different 13 to the test set. The problem consists
of 3,823 training data and 1,797 test data. The number of
attributes is 64 and all the input attributes are integers in the
range 0 to16. There are 19,691,545 individual modules in the
original M3 network, comparing to the 16,679,524 individual
modules remained in the pruned M3 network, a 15% of degree
of pruning is obtained and the response time of the pruned
network is speeded up to 1.12 times in comparison with the
original network (see Table I).

E. Faulty image diagnosis

We compare the performance of the original M3 network
with that of the pruned network on an industrial image
database acquired from a product line at a leading manufac-
turing company [7]. The object is to detect the fault image
data from large scale correct image database. We firstly extract
the original image into 64×64=4,096 dimension vectors using
wavelet transform, then train the original M3 network using
the extracted training data and examine the performance of the
trained original M3 network. We prune the redundant modules
in the original network and then do the same testing processes
using the same data set.

The number of training and test samples in the first simu-
lation are 70/23 and 26/23, and in the second simulation they
are 400/60 and 100/23 (here ‘a/b’ means ‘a’ correct samples
and ‘b’ fault samples).

In the first simulation, there are 3,220 individual modules
in the original M3 network, comparing to 2,352 individual
modules remained in the pruned M3 network, a 26% of degree
of pruning is obtained and the response time is speeded up to
1.82 times in comparison with the original network (see Table
I).

In the second simulation, there are 48,000 individual mod-
ules in the original M3 network, comparing to 20,060 individ-
ual modules remained in the pruned M3 network, a 58% of
degree of pruning is obtained and the response time is speeded
up to 1.87 times in comparison with the original network (see
Table I).

The results from Table I show that the pruned M3 networks
have almost the same correct recognition rates as the original
M3 networks, while the highest degree of pruning is up to
85% and the test time is speeded up to 7.33 times. From the
simulation results, we can see that the degree of pruning is not
only relative to the number of training data, but also relative
to the number of attributes and the number of classes in the
problem. A problem with more training samples, less number
of attributes and less number of classes will have more re-
dundant individual modules in M3 network, and consequently
the BS pruning results will be more efficient than others on
data sets. The consistence of the degrees of pruning and the
response time shows the effectiveness of the BS algorithm.

V. CONCLUSIONS

An pruning algorithm has been presented in this paper
for pruning the redundant modules in the linear-M3 network.
The central idea of this algorithm is to build up a linear-
M3 network firstly, then use the training data to find out
the redundant modules by using a ‘back-searching’ technic.
We have proved the necessary and sufficient propositions to
ensure the correctness of the proposed pruning algorithm.
The simulation results show that a highest degree of pruning
85% can be obtained and the response time is speeded up to
7.33 times at most, meanwhile the pruned network maintains
the same generalization performance as that of the original
network. The simulation results indicate our pruning algorithm
is efficient and effective.

The pruned network’s generalization ability and the various
versions of BS algorithm should be further exploited.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China via the grants NSFC 60375022
and NSFC 60473040.

REFERENCES

[1] B. L. Lu and M. Ito, “Task decomposition based on class relations: a
modular neural network architecture for pattern classification”, In: Mira,
J., Moreno-Diaz, R., Cabestany, J.(eds.), Biological and Artificial Com-
putation: From Neuroscience to Technology, Lecture Notes in Computer
Science, Springer Vol.1240 (1997) 330-339

[2] B. L. Lu and M. Ito, ”Task Decomposition and Module Combination
Based on Class Relations: A Modular Neural Network for Pattern
Classification”. IEEE Trans. Neural Networks, vol. 10, no. 5, pp. 1244-
1256, 1999.

[3] C. J. Merz and P. M. Murphy, ”UCI Repository of mechine learning
databases,” Univ. California, Dept. Inform. Comput. Sci. Irvine, CA,
1996. Available http://www.ics.uci.edu/ mlearn/MLRepository.html .

[4] B. L. Lu and M. Ichikawa, ”Emergent On-line Learning in Min-Max
Modular Neural Networks,” Proc. of IEEE/INNS Int. Conf. on Neural
Networks, Washington DC, USA, pp. 2650-2655, 2001.

[5] B. L. Lu, Q. Ma, M. Ichikawa, and H. Isahara, ”Efficient part-of-speech
tagging with a min-max modular neural network,” Applied Intelligence,
vol. 19 pp. 65-81, 2003.

[6] B. L. Lu, J. Shin, and M. Ichikawa, ”Massively parallel classification of
single-trial EEG signals using a min-max modular neural network,” IEEE
Trans. Biomedical Engineering, vol. 51, no. 3, pp. 551-558, 2004.

[7] B. Huang and B. L. Lu, “Fault diagnosis for industrial images using a
min-max modular neural network,” Lecture Notes in Computer Science,
vol. 3316, pp. 842-847, 2004.

[8] K. Wu, F. Y. Liu, H. Zhao, and B. L. Lu, “Fast text categorization with
a min-max modular support vector machine,” to appear in Proc. of 2005
IEEE/INNS Int. Joint Conf. on Neural Networks, Montreal, Canada.

[9] B. L. Lu and M. Ichikawa, “Emergent on-line learning with a Gaussian
zero-crossing discriminant function”, Proc. of IEEE/INNS Int. Joint Conf.
on Neural Networks, Honolulu, USA, pp. 1263-1268, 2002

