
Incremental Learning of Support Vector
Machines by Classifier Combining

Yi-Min Wen1,2 and Bao-Liang Lu1?

1 Department of Computer Science and Engineering, Shanghai Jiao Tong University,
800 Dong Chuan Road, Shanghai 200240, China

{wenyimin; bllu}@sjtu.edu.cn
2 Hunan Industry Polytechnic, Changsha 410007, China

Abstract. How to acquire new knowledge from new added training data
while retaining the knowledge learned before is an important problem
for incremental learning. In order to handle this problem, we propose
a novel algorithm that enables support vector machines to accommo-
date new data, including samples that correspond to previously unseen
classes, while it retains previously acquired knowledge. Furthermore, our
new algorithm does not require access to previously used data during
subsequent incremental learning sessions. The proposed algorithm trains
a support vector machine that can output posterior probability informa-
tion once an incremental batch training data is acquired. The outputs of
all the resulting support vector machines are simply combined by averag-
ing. Experiments are carried out on three benchmark datasets as well as
a real world text categorization task. The experimental results indicate
that the proposed algorithm is superior to the traditional incremental
learning algorithm, Learn++. Due to the simplicity of the proposed al-
gorithm, it can be used more effectively in practice.

1 Introduction

The brain of human beings has powerful ability of incremental learning. There-
fore, how to develop brain-like computing model, how to implement incremental
learning is one challenge problem in machine learning research. In real world ap-
plications, there are three scenarios need incremental learning: all training data
cannot be gathered at one time for the cost of collecting data. As a result the data
are acquired batch by batch; some real world applications need instant learning
once some training data obtained; all training data cannot be loaded into the
memory of computers if the training set is very large. According to Jantke [1],
incremental learning is to construct new hypothesis by using only the hypothe-
sis before and the recent information on hand. Zhou and Chen [2] distinguished
three kinds of incremental learning tasks: Example-incremental learning (E-IL);
? To whome correspondence should be addressed. This work was supported by the

National Natural Science Foundation of China under the grants NSFC 60375022
and NSFC 60473040.

Class-incremental learning (C-IL); and Attribute-incremental learning (A-IL).
However, C-IL and A-IL have not been received much attention so far. Syed et
al. [3] introduced two types of incremental learning methdos: instance learning,
which uses one example at a time, and block by block learning, which uses a
suitable-size subset of samples at a time. Polikar et al. [4] defined a criteria of
incremental learning algorithm as follows:
1. It should be able to learn additional information from new data.
2. It should not require access to the original data used to train the existing

classifier.
3. It should preserve previously acquired knowledge (that is, it should be not

suffer from catastrophic forgetting).
4. It should be able to accommodate new classes introduced with new data.

Syed et al. early started the work of incremental learning of support vector
machines (SVMs) [5]. Their proposed algorithm preserves only support vectors
at each incremental step and add them to the training set for the next step.
Based on the work of Syed et al., Dominiconi and Gunopulos made a further
research on it [6]. They explored four different techniques for SVMs incremental
learning: Error-driven technique, Fixed-partition technique, Exceeding-margin
technique, and Exceeding-margin+errors technique. Cauwenberghs and Poggio
[7] proposed an algorithm of SVMs online learning. In their algorithm, adiabatic
increments retain the Kuhn-Tucker conditions on all previously seen training
data once a new sample acquired. Diehl and Cauwenberghs expanded this algo-
rithm to incrementally accommodate many samples at a time [8]. However, these
algorithms should keep all the training data gathered so far to scan. Ralaivola
and colleague proposed a local strategies for SVMs online learning [9]. Liu et al.
[10] explored incremental batch learning with SVMs and showed that the incre-
mental batch learning is to solve a convex quadratic programming the same as
the standard SVMs algorithm.

At present, however, the essence of the training algorithms of various kinds
of artificial learning systems is an optimization procedure that aims to ensure
the generalization ability based on the current learning environment. Therefore,
all the current machine learning algorithms don’t adapt for incremental learning
in nature. The non-adaption lies in that the computation model lacks the ability
to get new knowledge or cannot retain the knowledge learned before [11]. The
training of artificial neural networks is a gradient descent process, and therefore
the modification of connection weights will damage the learned knowledge. The
training of SVMs is a global optimization based on all training data. As a result,
new added training data will make support vectors change. A lot of work has been
done for handling this non-adaption problem. Artificial neural networks always
get new knowledge and decrease forgetfulness by bounded weight adaptation or
modifying the number of hidden units [12], however, the learning ability and
knowledge capacity of neural networks will be limited. When there are concept
drift in unseen training data, the algorithm proposed by Syed et al. will lost its
availability [13].

Classifier combining is a useful method for machine learning [14] [15]. Classi-
fier combining learning includes ensemble learning, modular learning, and meta

learning. Many scholars have applied classifier combining techniques to incre-
mental learning and various algorithms based on classifier combining have been
proposed. Polikar et al. proposed Learn++ based on AdaBoost algorithm [4].
Learn++ satisfies the criteria of incremental learning. However, once a batch
of incremental training data occurs, Learn++ should train many classifiers. Lu
and Ichikawa proposed an incremental learning model based on emergence theory
[16]. This computation model uses two emergence rules to integrate submodules
[14], however, all the learned samples should be preserved. Macek proposed in-
cremental learning algorithms based on bagging and boosting and successfully
applied them to EEG data classification [17]. Wang et al. used weighted ensem-
ble classifiers to mine concept-drifting data stream [18]. Like bagging, a model of
incremental learning by classifier combining (ILbyCC) is proposed in this paper.

2 Incremental Learning by Classifier Combining

2.1 Definition of Batch Incremental Learning

The batch incremental learning problem can be defined as follows:

Definition 1. : Given a sequence of training dataset S1, S2, ..., Sm, ,where Si =
{(xij

, cij
)|xij

∈ Rn, cij
∈ Li ⊆ {1, 2, ..., k}, 1 ≤ j ≤ ni}, 1 ≤ i ≤ m. Li indi-

cates the set of class label in training dataset Si. Lets E1 denotes the classifier
trained on S1, the batch incremental learning procedure IL can be illustrated as:
IL(Si, Ei−1) = Ei, 2 ≤ i ≤ m.

In this paper, we only consider the case where the number of class labels
don’t decrease, i.e., L1 ⊆ L2 ⊆ ... ⊆ Lm. For convenience, three concepts are
defined as follows:
1. Incremental batch—a new batch of training data.
2. Incremental step—an incremental learning on an incremental batch.
3. Incremental sequence—a sequence of incremental step.

For example, suppose there are six training datasets in a given sequence of
incremental batch and their corresponding class label sets are like as {1, 2, 3},
{1, 2, 3}, {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 4}, and {1, 2, 3, 4}. Following the defina-
tions mentioned above, the incremental step is 6. These 6 incremental steps
form an incremental sequence. According to the work [2], obviously, example-
incremental learning takes place from the first to the third incremental steps,
another example-incremental learning takes place from the fourth to the sixth
incremental steps, while class-incremental learning takes place from the third to
the fourth incremental steps.

ILbyCC takes a frame of modular architecture. Modular architecture can
make classifier easy to be expanded, aiming to adapt to incremental learning.
ILbyCC trains a new classifier on an incremental batch and save it. All the
classifiers trained by far are combined into one combined classifier. The training
algorithm of ILbyCC can be illustrated as: M(f1, f2, ..., fi−1, fi) = Ei, where, M
denotes the strategy for classifier combining, Ei denotes the current combined
classifier. Fig.1 illustrates the model of ILbyCC.

…

OutputClassifier
Combining

Input x

Classifier-1 trained on the 1-th batch data

Classifier-2 trained on the 2-th batch data

Classifier-m trained on the m-th batch data

Fig. 1. The model of incremental learning by classifier combining

2.2 Combining Classifiers by Averaged Bayes

Classifier combining is an important strategy for pattern recognition. Various
work has demonstrated that combining classifiers can promote generalization
ability of single classier because of the complementarity between classifiers. Xu
surveyed the field of classifier combining and proposed that classifiers combining
can be implemented at three level: abstract level, rank level, and measurement
level [19]. The Averaged Bayes used in this paper belongs to measurement level.

Given m classifiers that can output posterior probability information, when
a test input x comes, the j-th classifier outputs the posterior probability of x
belonging to all the classes:

Pj(y = i|x), i ∈ {1, 2, ..., k}, j = 1, 2, ..., m (1)

According to Averaged Bayes, the combined classifier Em computes the pos-
terior probability of x belonging to all classes as follows:

PEm
(y = i|x) =

1
m

m∑

j=1

Pj(y = i|x), i ∈ {1, 2, ..., k} (2)

According to Bayes rule, x can be classified as the i-th class:

i = arg maxi=k
i=1PEm

(y = i|x) (3)

2.3 Incremental Learning Algorithm by Classifier Combining

Considering the difference between example-incremental learning and class-incremental
learning, we can classifiy the training algorithms for ILbyCC into two types:
example-incremental learning algorithm and class-incremental learning algorithm.

The example-incremental learning algorithm can be described as follows:

1. Input: given example-incremental learning sequence: S1, S2, ..., Sm, where,
Si = {(xij

, cij
)|xij

∈ Rn, cij
∈ Li ⊆ {1, 2, ..., k}, 1 ≤ j ≤ ni}, 1 ≤ i ≤

m,L1 = L2 = ... = Lm = L.

2. For t = 1, 2, ..., m

(a) Taking cross-validation on St to select the optimal parameters of train-
ing algorithm and train a classifier ft on the incremental batch St.

(b) Saving classifier ft and St can be discarded.
3. Testing:

(a) Import a test input x into each ft, 1 ≤ t ≤ m, and calculate the posterior
probability of x belonging to all the classes: P j

t , 1 ≤ t ≤ m, 1 ≤ j ≤ k.
(b) Take the rule of classifier combining M to a combination ft, 1 ≤ t ≤ m,

and get the combined classifier Em = M(f1, f2, ..., fm). Em outputs the
posterior probability of x belonging to all the classes: P j

Em
, 1 ≤ j ≤ k.

(c) Classify x according to the value of argmaxj∈LP j
Em

.
4. The algorithm ends.

The class-incremental learning algorithm can be described as follows:

1. Input: given two example-incremental learning sequences: List1 = {S1
1 , S2

1 , ..., Sm
1 }

and List2 = {S1
2 , S2

2 , ..., Sn
2 }. where, L1

1 = L2
1 = ... = Lm

1 = L1, L1
2 = L2

2 =
... = Ln

2 = L2, L1 ⊂ L2.
2. For t = 1, 2, ..., m

(a) Take cross-validation on St
1 to select the optimal parameters of training

algorithm and train a classifier f t
1 on the incremental batch St

1.
(b) Save classifier f t

1 and St
1 can be discarded.

3. For t = 1, 2, ..., n

(a) Take cross-validation on St
2 to select the optimal parameters of training

algorithm and train a classifier f t
2 on the incremental batch St

2.
(b) Save classifier f t

2 and St
2 can be discarded.

4. Testing:

(a) Import a test input x into each f t
2, 1 ≤ t ≤ n, and calculate the posterior

probability of x belonging to all classes: P j
t , 1 ≤ t ≤ n, j ∈ L2.

(b) Take the rule of classifier combining M to combine classifiers f t
2, 1 ≤ t ≤

n, and get the combined classifier En = M(f1
2 , f2

2 , ..., fn
2), where En out-

puts the posterior probability of x belonging to all classes: P j
En

, j ∈ L2.
5. If argmaxj∈L2P

j
En

∈ (L2−L1), x can be classified by the value of argmaxj∈(L2−L1)P
j
En

.
The algorithm ends.

6. If argmaxj∈L2P
j
En

∈ L1, modify the outputs of En by setting P j
En

= 0, j ∈
(L2 − L1) and P j

En
=

P j
En∑

j∈L1 P j
En

, j ∈ L1, then take the classifier combining

rule M to combine classifiers {f1
1 , f2

1 , ..., fm
1 , En} and get the combined clas-

sifier E. E outputs the posterior probability of x belonging to all classes:

P j
E , j ∈ L1.

7. Classify the test input x by the value of argmaxj∈L1P
j
E .

8. The algorithm ends.

3 Posterior Probabilistic Outputs for SVMs

Standard SVMs do not provide posterior probability information, for the reason
of Vapnik’s principle of never solving a problem that is more general than you
actually need to solve. However, posterior probability P (class|input) is very
useful in practical recognition situations, such as combining several classifier’s
outputs for overall decision. Platt has proposed a model of SVM+sigmoid that
can yield posterior probability while still retaining the sparseness of SVMs [20].
He employed a sigmoid function to approximate P (y = 1|x).

P (y = 1|x) =
1

1 + exp(Af(x) + B)
(4)

where, x is a test sample, f(x) means the decision value of the trained SVMs,
and A and B are parameters estimated by minimizing a negative log-likelihood
function l(A,B).

l(A,B) = −
N∑

i=1

tilog(pi) + (1− ti)log(1− pi) (5)

where, ti = yi+1
2 , pi = 1

1+exp(Afi+B) , and fi is estimated by cross-validation. Wu
et al. improved the implementation of Platt’s model and proposed a method to
estimate for multi-class posterior probability by pairwise coupling [21].

4 Experiments

4.1 Datasets

In this paper, the experiment platform is PCs with 1G RAM and 3G CPU. The
training algorithm is libSVM [22] with cache of 40M and kernel function of RBF.

In order to evaluate the performance of ILbyCC algorithm, experiments are
run on four data sets. The first three data sets, Optical Digits Database, Vehicle
Silhouette Database, and Concentric Circle Database, are took from Poliker’s
paper [4]. The fourth data set is a part of Yomiuri News Corpus database. The
statistics of the tasks are illustrated in Table.1. The parameters used in SVMs
are selected by cross-validation.

In order to test whether ILbyCC can get new knowledge from new training
data while retaining the knowledge learned before in example-incremental learn-
ing scenario. Vehicle Silhouette Database was divided into three training subsets
to form an incremental sequence, S1, S2, and S3, each of which contains 210 in-
stances, and a validation dataset, TEST , of 216 instance, near uniformly in four

Table 1. The problem statistics and the parameters used in SVMs

Data set #attributes #training data #test data #class C γ

Optical Digits 1024 1200 4420 10 128 0.002

Vehicle Silhouette 18 630 216 4 1500 0.00001

Concentric Circle 2 1200 500 5 128 0.125

Yomiuri News Corpus 5000 424310 87268 9 64 0.125

classes. In Optical Digits Database, 1200 instances were used as training data
and all the remaining data were used for validation. The training data set was
divided into six subsets to form an incremental sequence, S1 through S6, each
of which contains 200 instances uniformly distributed over all the ten classes.

In order to evaluate whether ILbyCC can get new knowledge from new train-
ing data that correspond to previously unseen classes while retaining the knowl-
edge learned before in class-incremental learning scenario. Concentric Circles
Database was generated for testing ILbyCC’s performance on incremental learn-
ing when new classes are introduced. Six training datasets, S1 through S6, are
randomly generated for an incremental sequence. S1 and S2 contain 50 instances
from each of the classes 1, 2, and 3; S3 and S4 have 50 instances from each of
the classes 1, 2, 3, and 4; S5 and S6 have 50 instances from each of the classes 1
through 5. A validation dataset TEST is randomly generated to contain 500 in-
stances from all the five classes. From Yomiuri News Corpus database, we select
all the instances of nine classes, such as crime, sport, Asian-Pacific, North-South-
American, health, accident, by-time, society, and finance, which will be called as
class 1 through class 9. The training data set is randomly divided into 9 incre-
mental batches, S1 through S9, where S1 through S3 have instances from classes
1, 2, and 3; S4 through S6 contain instances from classes 1 through 6; and S7 to
S9 have instances from classes 1 through 9.

In order to test ILbyCC’s performance on incremental learning when dif-
ferent incremental step takes different parameters. Optimal parameters in each
incremental step were chosen among 25 pairs of (C, γ) by 10-cross-validation.
25 pairs of (C, γ) were generated around the values of (C, γ) in Table.1 by a
product factor of 2.

In order to ensure the reliability of the experimental results, the first three ex-
periments were repeated 10 times and averaged results were presented. Only the
last experiment was run one time because of its large size. In order to evaluate
the performance of ILbyCC on incremental learning, several exsiting algorithms
were run for a comparison study. We adopted the algorithm of Syed [5] that was
denoted as ILbySV for convenience. In addition, the basic incremental learn-
ing algorithm is to use all training data gathered so far to train a classifier.
In other words, when the i-th incremental batch comes, the classifiers trained
before are all discarded and S1

⋃
S2

⋃
...

⋃
Si is used to train a new classifier.

For convenience, this learning way is called Batch-training. Obviously, Batch-

training should keep all training data gotten by far, and further, catastrophic
forgetting takes place when new data comes. In order to compare ILbyCC with
Learn++, the paper directly quotes the experimental results of Learn++ [4]. For
convenience, when all the training sessions of ILbyCC uses the same parameters,
ILbyCC is denoted as ILbyCC1, when different session of ILbyCC use different
parameters, ILbyCC is denoted as ILbyCC2.

4.2 Results and Analysis

Class1 Class2 Class3 Class4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Te
st

 a
cc

ur
ac

y

Step1
Step2
Step3

Fig. 2. The generalization performance
of ILbyCC1 on each class in Vehicle Sil-
houette database

1 2 3
0.77

0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

Incremental learning steps

Te
st

 a
cc

ur
ac

y

ILbySV
Learn++
ILbyCC1
ILbyCC2
Batch−training

Fig. 3. Accuracy comparison of various
incremental learning algorithms on Ve-
hicle Silhouette database

Class1 Class2 Class3 Class4 Class5
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Te
st

 a
cc

ur
ac

y

Step1
Step2
Step3
Step4
Step5
Step6

Class6 Class7 Class8 Class9 Class10
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Te
st

 a
cc

ur
ac

y

Step1
Step2
Step3
Step4
Step5
Step6

Fig. 4. The generalization performance of ILbyCC1 on each class of Optical digits
database

Fig.2 presents the generalization performance of ILbyCC on each class in
Vehicle Silhouette database at each incremental step. Except the test accuracy
of the first class drops slightly during incremental learning procedure, the test
accuracy of the rest class increase when new examples are introduced, indicat-
ing ILbyCC was able to preserve the knowledge learned before and acquire new
information. As seen in Fig.3, ILbyCC can incrementally learn successfully. IL-
byCC1 is slightly good then Learn++. ILbyCC1 and ILbyCC2 have nearly the

1 2 3 4 5 6
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Incremental learning steps

Te
st

 a
cc

ur
ac

y

ILbySV
Learn++
ILbyCC1
ILbyCC2
Batch−training

Fig. 5. Accuracy comparison of various
incremental learning algorithms on Op-
tical digits database

Class1 Class2 Class3 Class4 Class5
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Te
st

 a
cc

ur
ac

y Step1
Step2
Step3
Step4
Step5
Step6

Fig. 6. The generalization performance
of ILbyCC1 on each class of Concentric
Circle database

1 2 3 4 5 6
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Incremental learning steps

Te
st

 a
cc

ur
ac

y

ILbySV
Learn++
ILbyCC1
ILbyCC2
Batch−training

Fig. 7. Accuracy comparison of vari-
ous incremental learning algorithms on
Concentric Circle database

Class1 Class2 Class3 Class4 Class5 Class6 Class7 Class8 Class9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Te
st

 a
cc

ur
ac

y
Step1
Step2
Step3
Step4
Step5
Step6
Step7
Step8
Step9

Fig. 8. The generalization performance
of ILbyCC1 on each class in Yomiuri
News Corpus database

1 2 3 4 5 6 7 8 9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Incremental learning steps

Te
st

 a
cc

ur
ac

y

ILbySV
ILbyCC1
ILbyCC2
Batch−training

Fig. 9. Accuracy comparison of vari-
ous incremental learning algorithms on
Yomiuri News Corpus database

1 2 3 4 5 6 7 8 9
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Incremental learning steps

Tr
ai

ni
ng

 ti
m

e
(m

)

Batch−training
ILbySV
ILbyCC

Fig. 10. Comparison of training time
on Yomiuri News Corpus database

same generalization ability. Because all incremental batches are not always in the
same distribution, the incremental learning performance of ILbySV fluctuates.

Fig.4 illustrates the generalization performance of ILbyCC on each class
in Optical digits database at each incremental step. It can be seen that the
test accuracy of ILbyCC on each class nearly uniformly increase, indicating the
learned knowledge don’t lost and new knowledge are acquired. Fig.5 illustrates
that ILbyCC has nearly the same incremental learning performance with Batch-
training. ILbyCC works better that Learn++ and ILbySV. ILbyCC2 perfor-
mances well than ILbyCC1. The generalization ability of ILbySV fluctuates.

Fig.6 shows the generalization performance of ILbyCC on each class in Con-
centric Circle database at each incremental step. It can be seen that, during the
whole incremental learning procedure, the test accuracy of ILbyCC on class-1
and class-2 increase gradually while the test accuracy of ILbyCC on the other
classes first decrease slightly when new classes are introduced and increase when
training data with the same class labels are continuously added, indicating that
ILbyCC can preserve the learned knowledge. In Fig. 7, a large improvement on
the performance is obtained after the third and fifth incremental steps, since
these incremental steps introduced new classes that were not available earlier.
However, only minor improvements in the performance can be observed from
the test accuracy curves when new classes are not introduced. Fig.7 shows that
ILbyCC1 and ILbyCC2 performance as good as Batch-training and better than
Learn++ and ILbySV. ILbyCC2 works a little better than ILbyCC1.

Fig.8 presents the generalization performance of ILbyCC on each class in
Yomiuri News Corpus database at each incremental step. Note that, in class-
incremental learning scenery, the introduced examples with new class label can
make the test accuracy of ILbyCC on the earlier classes to decrease in a small
degree, for the reason of that new introduced classes make classification planes
between classes more clear. In example-incremental learning scenario, the test
accuracy of ILbyCC1 on each class increase. Therefore, ILbyCC can preserve
the knowledge learned before even new class introduced. In Fig.9, there are
larger improvements on the generalization performance when new classes are
introduced, indicating that ILbyCC can learn from new introduced classes. From
Fig.9, it can be noted that ILbyCC and Batch-training have nearly the same
generalization ability. In Fig.10, it can be seen that the training time of ILbyCC
is far smaller than the training time of Batch-training and ILbySV. The large
speedup of ILbyCC can compensate the slight decrease of its generalization
performance compared with Batch-training.

Why can ILbyCC work effectively? According to the theory of bias-variance
[23], decomposing training data will introduce bias and makes the generalization
ability of single classifier decrease, however, decomposing training data will in-
crease the variances between all classifiers and increase the generalization ability
of the combined classifier, which compensates the decrease of the generalization
ability caused by decomposition. Therefore, ILbyCC has nearly the same test
accuracy with Batch-training. In addition, the combining rule (2) can automat-
ically invalidate the classifiers that is not much confident of its outputs, i.e.,

given Pj(y = 1|x) ≈ ... ≈ Pj(y = k|x), the result of the equation (3) will not be
influenced by the outputs of the j-th classifier. Therefore, Averaged Bayes can
automatically select the classifiers that is confident of its outputs to combine.

Note that the performance of ILbyCC1 and ILbyCC2 in all the simulations
are nearly the same, it is very interesting to observe that the time complexity
for selecting optimal parameters is decreased by training data decomposition. It
is not reasonable for incremental learning algorithm to wait for all training data
to select optimal parameters. It is also not reasonable to apply the parameters,
which is gotten from the first incremental batch, to the following incremental
steps. Therefore, ILbyCC not only decreases the time complexity of parameter
selection but also makes incremental learning possible.

4.3 Discussions

Compared with Learn++, the proposed ILbyCC satisfies the criteria proposed
by Polikar and has comparable incremental learning ability, but ILbyCC can be
implemented more simply. Learn++ is a kind of AdaBoost in essence, Learn++
should use more parameters and train more classifiers. Note that ILbyCC is a
bagging-like algorithm, ILbyCC can be parallized for training speedup, while
Learn++ can only be implemented in serial. In addition, ILbyCC needs no com-
munication between classifiers, it can well protect the privacy of data. ILbyCC is
a good application of SVMs that can outputs posterior probabilistic, the work in
this paper proved the availability of the algorithm estimating the posterior prob-
abilistic of SVMs. From the point of author, this paper is the first application
to apply posterior probabilistic SVMs to real problem.

5 Conclusions

In this paper, we have proposed a novel incremental learning algorithm, ILbyCC
that uses Averaged Bayes rule to combine classifiers. The experimental results
indicate that ILbyCC can not only preserve the knowledge learned before but
also can learn new knowledge from new added data and further new knowledge
from new introduced classes. Three main advantages of ILbyCC over existing
algorithms are simply implementing, small time complexity for parameter selec-
tion, and training time saving. In addition, the proposed algorithm is a general
framework of incremental learning and any machine learning algorithm that can
output posterior probabilistic can be integrated into ILbyCC.

References

1. Jantke, P.: Types of Incremental Learning. AAAI Symposium on Training Issues
in Incremental Learning, March 23-25, Standford CA, 1993

2. Zhou, Z.H. and Chen, Z.Q.: Hybrid Decisions Tree. Knowledge-Based System, 15
(2002) 515-528

3. Syed, N.A., Huan, L., and Sung, K.K.: Handling Concept Drifts in Incremental
Learning with Support Vector Machines. In: Proceedings of KDD-99, San Diego,
CA,USA, 1999

4. Polikar, R., Udpa, L., Udpa, S.S., and Honavar, V.: Learn++: An Incremental
Learning Algorithm for Supervised Neural Networks, IEEE Transaction on Sys-
tems, Man, and Cybernetics, 31 (2001) 497-508

5. Syed, N.A., Liu, H., and Suang, K.K.: Incremental Learning with Support Vector
Machines, In: Proceedings of IJCAI-99, San Diego, CA, USA (1999)

6. Domeniconi, C. and Gunopulos, D.: Incremental Support Vector Machine Con-
struction. In: Proceedings of the 2001 IEEE International Conference on Data
Mining, San Jose, California, USA, (2001) 589-592

7. Cauwenberghs, G. and Poggio, T.: Incremental and Decremental Support Vector
Machine Learning. In: Advances in Neural Information Processing Systems, MIT
Press, 13 (2001) 409-415.

8. Diehl, C.P. and Cauwenberghs, G.: SVM Incremetal Learning, Adaptation and
Optimization. In: Proceedings of IJCNN-03 (2003) 2685-2690

9. Ralaivola, L. and d’Alché-Buc, F.: Incremental Support Vector Machine Learning:
a Local Approah. Lecture Notes in Computer Science, 2130 (2001) 322-329

10. Liu, Y.G., He, Q.M., and Chen, Q.: Incremental Batch Learning with Support
Vector Machines. In: Proceedings of the 5th World Congress on Intelligence Control
and Automation, Hangzhou, P.R. China (2004) 1857-1861

11. Grossberg, S.: Nonlinear Neural Networks: Principles, Mechanisms and Architec-
tures. Neural Networks, 1 (1988) 17-61

12. Fu, L.M., Hsu, H.H., and Principe, J.C.: Incremental Back-propagation Learning
Networks. IEEE Transaction on Neural Networks, 7 (1996) 757-761

13. Rüping, S.: Incremental Learning with Support Vector Machines. In: Proceedings
of the IEEE International Conference on Data Mining, San Jose, CA (2001)

14. Lu, B.L., and Ito, M.: Task Decomposition and Module Combination Based on
Class Relations: a Modular Neural Networks for Pattern Classification. IEEE
Transaction on Neural Networks, 10 (1999) 1244-1256

15. Zhou, Z.H. and Chen S.F.: Neural Network Ensemble. Chinese J.Computers (in
Chinese), 25 (2002) 1-8

16. Lu, B.L. and Ichikawa, M.: Emergent Online Learning in Min-max Modular Neural
Networks. In: Proceedings of IJCNN’01 (2001) 2650-2655

17. Macek, J.: Incremental Learning of Ensemble Classifiers on ECG data. In: Pro-
ceedings of CBMS’05 (2005)

18. Wang, H.X., Fan, W., Yu, P.S., and Han, J.W.: Mining Concept-drifting Data
Streams Using Ensemble Classifiers. In: Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining (2003)

19. Xu, L., Krzyżak, A., and Suen, C.Y.: Methods of Combining Multiple Classifiers
and Their Application to Handwriting Recognition. IEEE Transaction on Systems,
Man, and Cybernetics, 22 (1992) 418-434

20. Platt, J.C.: Probabilistic Outputs for Support Vector Machines and Comparisons
to Regularized Likelihood Methods. In: Advances in Large Margin Classifiers, MIT
Press (1999)

21. Wu, T.F., Lin, C.J., and Weng, R.C.: Probability Estimates for Multi-class Clas-
sification by Pairwise Coupling. Journal of Machine Learning Research, 5 (2004)
975-1005

22. Chang, C.C. and Lin, C.J.: LIBSVM-A Library for Support Vector Machines. [on-
line] Available: http://www.csie.ntu.edu.tw/∼cjlin/libsvm

23. Breiman, L.: Bagging Predictors. Machine Learning, 24 (1996) 123-140

