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Abstract— In this paper, we use EEG signals to classify two
emotions—happiness and sadness. These emotions are evoked
by showing subjects pictures of smile and cry facial expressions.
We propose a frequency band searching method to choose an
optimal band into which the recorded EEG signal is filtered.
We use common spatial patterns (CSP) and linear-SVM to
classify these two emotions. To investigate the time resolution
of classification, we explore two kinds of trials with lengths
of 3s and 1s. Classification accuracies of 93.5% ± 6.7% and
93.0%±6.2% are achieved on 10 subjects for 3s-trials and 1s-
trials, respectively. Our experimental results indicate that the
gamma band (roughly 30–100 Hz) is suitable for EEG-based
emotion classification.

I. INTRODUCTION

Emotions play an essential role in many aspects of our
daily lives, including decision making, perception, learning,
rational thinking and behavior. Assessing emotions is key to
understanding human nature. Emotion classification1 is a step
towards aiding people such as in care taking and designing
brain-computer interfaces.

As a mental and physiological state, emotion is associated
with a wide variety of feelings, thoughts, and behaviors. The
modern study of emotions began in the 19-century. Various
models and theories have been proposed in psychology, cog-
nition, neuroscience and other disciplines. There is, however,
much controversy concerning how emotions are to be defined
and discriminated. Whether emotions are cognitive or non-
cognitive is one major question of interest. The former claims
that cognitive activities are necessary for an emotion to
occur [1], while the latter argues that emotional experience
is largely due to the experience of bodily changes.

Another question is whether emotions are distinctive dis-
crete states or continuous ones. One opinion is to divide
emotions into basic and complex emotions, where the latter
are blended with the former [3]. Another opinion is to let
emotions vary along several scales with respect to the rela-
tions between them. A well-known continuous model is the
valence-arousal model [4], in which the valence dimension
represents the scale from pleasant to unpleasant and the
arousal dimension indicates the intensity of excitement.
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of emotions, but we refer it as the machine learning approach to classify
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The EEG signals under different frequency bands have
gained much research interest. Typically, low frequencies
such as alpha and mu rhymes are related to vigilance and
motion while high EEG frequencies, like gamma, are relevant
to high cognitive processes. Researches continue to suggest
connections between gamma band activities and emotions
[5][6]. Further, ERD/ERS responses to pictures of facial
expressions in the gamma band show that ERD decreased
150–350 ms after presenting the stimuli [7].

II. RELATED WORK

In neuroscience and psychology, event related potential
(ERP) is popular in the research of the brains rapid pro-
cessing of affective stimuli [8]. In computer science, re-
search is focused on detecting human emotions from af-
fective displays or physiological signals. Several studies [9]
have utilized facial expressions, tone of voice, and body
movement to recognize emotions. However, those signals
share a disadvantage—they are not reliable affective displays.
Emotions occur without corresponding facial emotional ex-
pressions or tone changes and body movements, especially
when the emotion intensity is not very high. In addition, such
displays could easily faked, as when one is telling a lie.

Many studies [10] utilized signals from peripheral ner-
vous system, e.g. electrocardiogram and skin impedance.
Nevertheless, EEG–the signal directly recorded from central
nervous system–has not received much interest[11]. There
are only a few studies using EEG to classify emotions.
Choppin [12] used neural networks to classify EEG signals
from three emotions and got 64% classification accuracy.
Chanel et al. [13] also confirmed that EEG and other phys-
iological signals can be used to recognize emotions along
one arousal dimension. The classification results are around
70% using two classes and 60% using three classes. Bos
[14] classified arousal and valence emotions and obtained an
average accuracy of 70% for two classes.

III. EXPERIMENT

A. Subjects

The study protocal conforms to local ethics guidelines.
In total 10 subjects (2 females; mean age 25; all normal
sight and right handed) participated in our experiment, and
all were paid for their participation. Subjects were informed
about the purpose of this experiment.

B. Stimuli

The stimuli, an excerpt is shown in Fig. 1, consisted of
two kinds of emotional facial expression pictures—smile and
cry. The smiling people were mainly Asian actors and the
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Fig. 1. Excerpt of a sequence of stimuli. The first two are smile facial
pictures and the last two are cry facial pictures.

others pictures were taken of people who recently lost family
members. Pictures were resized to be of similar size.

This type of stimuli was chosen for two reasons. Facial
expressions are the main channels with which people use to
transmit emotions, and are universal recognized. Moreover,
smiling and crying are the expressions most likely to evoke
empathy [3].

The emotional contents of these pictures were measured
by a self-assessment manikin (SAM) [15] containing 9
scales for both valence and arousal dimensions. Each subject
was required to label every picture using SAM after the
experiments. The results of the valence-arousal scales were
(2.51± 0.91, 4.60± 1.41) and (7.41± 1.03, 4.37± 1.94) for
smiling and crying pictures, respectively.

C. Protocol

The pictures were shown on a black background with
a visual angle of approximately 6 × 6◦. Each picture was
presented for 6 seconds before a small horizontal bar was
presented for 1s to require the subject’s attention. Between
each trial, 3s of black screen was shown to allow subjects to
rest. We did not adopt a completely random stimuli sequence
to prevent subjects from feeling discomfort due to high
frequency change of different emotional pictures. Instead,
we divided the pictures into groups that each group consists
of 5 randomly chosen pictures from the same class. Then,
we randomly ordered 12 groups into a stimuli sequence as a
session. Each experiment consists of 2 sessions, and between
each session was a 10 minute long rest to assure attention
during the whole trial.

The experiment was carried out in an illuminated and
sound proof room. The temperature of the room was about 27
degrees and the humidity was between 40% and 60%. During
the experiment, subjects were asked to focus their attention
only on the facial expressions.They were also required to
keep their head and body steady during the presentation of
the pictures.

D. Data recording

Subjects were fitted with a 62-channel electrode cap dur-
ing the experiment. The Ag/AgCl electrodes were mounted
inside the cap with bipolar references behind the ears. The
electrodes were arranged according to the international 10-
20 system. The contact impedance between electrodes and
skin was kept to a value less than 10kΩ. The EEG data was
recorded with 32-bit quantization level at a sampling rate of
1000Hz.

IV. METHOD

A. Artifact Detection

The time wave and energy of each trial (the segment
of EEG when a single picture was present) were visually
checked. Trials seriously contaminated by electromyogram
(EMG) were manually removed. Trials that were removed
typically showed larger amplitude wave and energy (about
10 times), compared to normal ones. We removed an average
of 3 trials from each experiment.

B. Filter

The EEG signal was filtered into a specific frequency band
after removing artifacts. We utilized Fourier transform (FT)
to filter instead of using the widely used IIR or FIR filters.
We firstly transformed the signal into frequency domain, then
set the unwanted frequency components to zero.

Since we did not know the optimal band to filter, we
needed to search many bands. The IIR or FIR approach
requires a separate filtering every time for each band; and
thus has a high time complexity. For FT, however, we only
need to perform FFT once since we only need to calculate
the covariance matrix in the following steps [16].

C. Common Spatial Patterns

Common Spatial Patterns (CSP) [17] is a surpervised
dimension reduction method that is suitable for extracting
ERD/ERS features. CSP searches directions to maximize
the variances of two kinds of signals projected to these
directions. Denote these two kinds of signals by D

(1)
i1

and
D

(2)
i2

, where i1 = 1, · · · , n1, i2 = 1, · · · , n2, and n1 and n2

are the numbers of trials for each kind of signal. For each
trial D(k)

ik
, which is a time × channel matrix, its covariance

matrix Σ(k)
ik

is calculated by considering channels (column)
as variables. The mean covariance matrix Σ(k) for each class
is

Σ(k) =
1
nk

nk∑
i=1

Σ(k)
i .

Now, CSP finds the directions w, which is a channel × 1
vector, to minimize or maximize wT Σ(1)w

wT Σ(2)w
. This optimization

problem is equal to the generalized eigenvalue equation,

Σ(1)w = λΣ(2)w.

The eigenvalue λ stands for the ability of the direction w to
discriminate two classes trials—weak when λ is near 1 and
strong when λ is larger or smaller. Let w1, · · · , wc be the
directions according to the eigenvalues sorted in ascending
order, where c is the number of channels. Then, m directions

W = [w1, · · · , wm
2
, wk−m

2 +1, · · · , wc]

are selected to deduce the dimension.

1324



D. Classification

After deducing the dimension using CSP, we fed the
logarithm variance of the dimension-deduced trials as the
features into a linear support vector machine (linear-SVM)
[18]. Let the feature of a trial D be f , then f was computed
as

f = log(Var(DW )) = log(diag(WT ΣW )),

where Var(·) computed the variance of each column, and
diag(·) denoted the diagonals of a matrix.

In order to obtain reliable classification result, we ran-
domly divided the trials into training set and testing set
with ratio 7 : 3. The parameters, frequency band and m,
were selected using 5-fold cross validation on the training
set. After that, we performed CSP on the training set and
calculated the features for both training set and testing set.
The former was fed into a linear-SVM and the latter was
used to test classification accuracy.

Fig. 2. Classification accuracies using different frequency bands for two
subjects. The low and high cut-offs are presented in X-axis and Y-axis,
respectively. The intensity represents the accuracy.

V. RESULTS

We divided the original 6s length trials into two kinds of
short trials, 3s and 1s, to increase the number of classification
trials and demonstrate our ability to classify emotions with a
high time resolution. Each experiment consists of around 240

trials for 3s-trials and around 720 trials for 1s-trials (several
EMG contaminated ones were removed, Sec. IV-A) .

A. Frequency band selection

The cross validation results on the training set of 3s-trials
for frequency bands under 200Hz are shown in Fig. 2. One
can observe five interesting facts from the figure. One, the
high performance areas are in the shape of a vertical strip.
The optimal strips always reach the region whose band width
is at most 50Hz. Two, the low cut-offs of the optimal strips
in the figure are both around 40–50 Hz, despite the fact that
the highest accuracies are different. This fact does not hold
for other subjects. Three, the high cut-offs of bands with
acceptable accuracy are always above 30 Hz; this holds for
all subjects. Four, both low and high cut-off frequencies of
suitable bands are enough to enter into the 100Hz–150Hz
range. This was surprising. Five, one can clearly note that
accuracy varies much with the frequency band and the
suitable frequency band distribution varies across subjects.
Therefore, searching the suitable band for each subject is
necessary.

Inspired by these observations, we chose a band selection
method. The basic idea is that, if we have chosen a suitable
low cut-off, then we are limited to a few several high cut-
offs not far from the low cut-off. Since it is not practical to
search every low cut-off for each experiment, we only choose
several bands with the low cut-off of {31, 36, · · · , 91} Hz
and a width of {5, 10, · · · , 50} Hz. Denote r(i, j) the cross
validation results on these bands, where i = 1, · · · , 25 and
j = 1, · · · , 10. We calculate the mean result for each low
cut-off, that is, r(i) = 1

10

∑
j r(i, j). Then we select the low

cut-off with maximum r(i), namely argmaxir(i). At last we
select the band width such that argmaxjr(i, j) and we get
the optimal band.

B. Classifier parameters

We need to choose the dimension reduction m for CSP,
which is used to control the complexity of the classifier.
We used the default settings of the linear LibSVM [18].
Though SVM can efficiently avoid over-fitting, considering
the number of trials, feature dimension, and the low signal-
noise ratio of EEG signal, the curse of dimension is still
a big problem. In our method, four different values, m =
2, 4, 20, 40, were considered. We chose m with average good
cross validation performance.

C. Classification Accuracy

Using the selected parameters, we performed CSP on the
filtered training set. Then, the features of the training set
were used to train a linear-SVM. We then obtained the testing
accuracy on the testing set features.

The testing accuracy of 3s-trials, see Table I, is 93.5%±
6.7%, with 5 subjects (1, 4, 5, 7, 8) above 95%; and of 1s-
trials is 93.0% ± 6.2%, with 6 subjects (1, 4, 5, 7, 8, 10)
above 95%.
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TABLE I
CLASSIFICATION RESULTS FOR 10 SUBJECTS. EACH EXPERIMENT CONTAINED AROUND 240 3S-TRIALS OR 720 1S-TRIALS, OF WHICH 70% WERE

USED TO SELECT PARAMETERS BY 5-FOLD CROSS VALIDATION AND THE REST WERE USED FOR TESTING. THE PARAMETERS, LOW AND HIGH CUT-OFF

FREQUENCY, NUMBER OF CSP FEATURES, AND TESTING ACCURACY WERE SHOWN IN ROWS FOR EACH SUBJECT.

Trial length = 3s Trial length = 1sSubject
Low (Hz) High (Hz) m accuracy(%) Low (Hz) High (Hz) m accuracy(%)

1 46 50 4 99.0 46 55 4 100.0
2 51 80 40 91.7 71 85 40 91.0
3 36 55 20 82.9 81 115 40 81.4
4 61 80 40 97.8 76 100 40 95.3
5 41 60 40 100.0 36 85 40 89.7
6 26 40 4 87.1 66 110 20 86.2
7 56 70 20 100.0 86 105 20 98.1
8 31 80 40 98.6 51 100 40 97.2
9 21 55 4 83.8 56 95 20 91.4

10 66 115 20 93.8 66 95 20 100.0
Total 43.5±15.1 68.5±21.5 23±16 93.5±6.7 63.5±16.0 94.5±16.9 26±13 93.0±6.2

VI. DISCUSSION

The subjects whose results are greater than 95% and
ones whose results less than 85% point to the diversity of
subjects and quality of experiments—some claimed that they
were emotional arosed by the stimuli while others said they
experienced little emotion.

The average optimal frequency bands are 43.5–68.5 Hz
for 3s- and 63.5–94.5 Hz for 1s-trials. Most bands are in the
gamma band. The result confirms that GBA is related to the
emotions of happiness and sadness.

When comparing the results of 3s- and 1s-trials, it is
interesting to see that using short length trials does not
reduce the classification accuracy by much, and even induces
improvement for several subjects. This means that 1s EEG
signals are enough to classify emotions.

VII. CONCLUSION

These two different emotions—smiling and crying— were
classified based on EEG signals. We received 93.5%±6.7%,
and 93.0%±6.2% classification accuracies on 10 subjects for
3s length and 1s length trials using CSP, SVM and frequency
band selection strategies. Our experimental results indicate
that the ERD/ERS activities in gamma band EEG can be used
to classify happiness and sadness with high time resolution.
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