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Abstract

Dictionary generation is a core technique of the bag-of-
visual-words (BOV) models when applied to image cate-
gorization. Most of previous approaches generate dictio-
naries by unsupervised clustering techniques, e.g. k-means.
However, the features obtained by such kind of dictionaries
may not be optimal for image classification. In this paper,
we propose a probabilistic model for supervised dictionary
learning (SDLM) which seamlessly combines an unsuper-
vised model (a Gaussian Mixture Model) and a supervised
model (a logistic regression model) in a probabilistic frame-
work. In the model, image category information directly
affects the generation of a dictionary. A dictionary ob-
tained by this approach is a trade-off between minimization
of distortions of clusters and maximization of discriminative
power of image-wise representations, i.e. histogram repre-
sentations of images. We further extend the model to incor-
porate spatial information during the dictionary learning
process in a spatial pyramid matching like manner. We ex-
tensively evaluated the two models on various benchmark
dataset and obtained promising results.

1. Introduction

The bag-of-visual-words (BOV) model is an important
component for a recently popular image categorization
framework (i.e. local features, BOV models and SVM clas-
sifiers) [7, 15, 19, 22-24], which achieves state-of-the-art
performances in PASCAL VOC challenges (e.g. [4, 5, 19]).
A core technique of the BOV model is to generate a dictio-
nary which is applied to quantize continuous local features
to the so called discrete visual words.

Various dictionary generation approaches have been pro-
posed in literatures, e.g. k-means [23], mean-shift [12] and
manifold learning [10]. These approaches are designed to
train a dictionary that contains sufficient information for
representing the original features by minimizing the recon-
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(a) toy data (b) k-means (c) our model

Figure 1. (a) The 2-D synthetic data. Colors of points indicate
their categories. (b) K-means results and Voronoi boundary of the
words. Red and yellow points are grouped onto the same word
and as a result cannot be distinguished. (c) Partition generated by
our model. Categories information are completely preserved at the

price of distortion.

struction error or expected distortion. Vocabularies are usu-
ally learned without taking category information into ac-
count. Consequently, the histogram representations of im-
ages over the learned dictionary may not be optimal for
classification task. We illustrate the problem on a toy data
shown in Figure 1(a). k-means groups the red and yellow
clusters into one word (Figure 1(b)) and separate the two
green clusters to two words because it only considers to
minimizing the overall distortion. Histogram features ob-
tained by this dictionary (blue dots in the figure) are not
optimal for classification.

Therefore, the discriminative issue should be considered
when constructing dictionaries, especially when the task is
classification. In our perspective, a good dictionary for clas-
sification is: with small distortion, discriminative, and com-
pact in size. Dictionaries with small distortion (or say, re-
construction error) are relatively robust against intra-class
variations and noise [25]. “Discriminative” means that the
histogram representations, which are obtained by applying
a dictionary, of images belonging to different categories
should be distinguishable. The size of dictionary is also
an important factor for applications that need efficiency [&].
However, the three properties are contradict in some ex-
tent: Overemphasizing on discriminative ability may in-
crease the size of a dictionary and weaken its generaliza-
tion ability, and over-compressing to a dictionary will more
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or less lose the information as well as its discriminative
power [8, 14,25]. Thus a good dictionary learning method
should find a balance between reconstruction, discrimina-
tion and compactness. As shown in Figure 1(c), although
the dictionary obtained by our model has a bigger distor-
tion than the dictionary obtained by k-means, it is more dis-
criminative than the first one; and no dilemma exists if the
dictionary size is larger than four.

Motivated from recent works on supervised dictionary
learning [14, 18], and progress on supervised topic mod-
els [1,24], we propose a probabilistic model for supervised
dictionary learning, which is named as Supervised Dictio-
nary Learning Model (SDLM) in this paper. SDLM essen-
tially is a two-layer hidden variable model, which is com-
posed of two logic parts: a generative part and a discrim-
inative part. The first part describes the generation of an
image which is assumed as a discrete distribution (i.e. a
histogram) over words of a dictionary. The dictionary is for-
mulated as a Gaussian Mixture Model (GMM) in the space
of local descriptors. The second part requires that the his-
tograms should be distinguishable in the perspective of a lo-
gistic regression loss function. Intuitively, the supervisory
information containing in image labels will first be passed
to histogram features of images by the logistic function, and
then further be passed to affect parameters of the GMM, i.e.
dictionary.

Another limitation of the traditional bag-of-visual-words
model is the ignorance to spatial relationships of local fea-
tures. This simplification is reasonable in object classi-
fication task due to large variances of objects’ poses and
shapes. While as stated in [15], in the scene categoriza-
tion task where images are considered in holistic, statistics
of local features over subregions provide rich cues for se-
mantics. This assumption has been proved to be reasonable
even for object images in VOC challenges [5, 1 9]. We there-
fore embed spatial constraints into SDLM and obtain the
Spatial-SDLM (S?’DLM) model. Extensive experiments on
various benchmark datasets demonstrate the effectiveness
of the proposed supervised dictionary learning models.

2. Related Work

Supervised dictionary learning have attracted much at-
tention in recent years. Existing methods can be roughly
divided into three categories.

Some approaches construct multiple dictionaries or
category-specific dictionaries. Zhang et al. wrap dictionary
construction inside a boosting procedure and learn multiple
dictionaries with complementary discriminative power [27].
[21] learns a category-specific dictionary for each category.
Yang et al. [26] unifies the dictionary generation with classi-
fier learning. Compared with them, our method produces a
universal dictionary for all categories which can be applied
to any BOV-based image analysis approaches.

Another category of approaches compresses an initial
dictionary by merging visual words. The merging process
is guided by mutual information between visual words and
categories [8], or trade-off between intra-class compactness
and inter-class discrimination power [25]. The performance
of such approaches is highly affected by the initial dictio-
nary since only merging operation is considered in them.
To ease this problem a large dictionary is required at the be-
ginning to preserve as much discriminative abilities as pos-
sible.

The third category of approaches learning a dictionary
via pursuing a descriptor-level discriminative ability, e.g.
empirical information loss minimization method [14], ran-
domized decision forests [20], and sparse coding-based ap-
proaches [9,17,18]. Most of these approaches are first moti-
vated from coding of signals, where a sample (or say signal)
is only analogous to a local descriptor in an image rather
than a whole image which is composed of a collection of
local descriptors. Actually, this requirement is over strong
since local descriptors of different objects are often over-
lapped (i.e. a white patch may appear both in the sky and
on a wall). Instead, our model only requires the image-wise
representations should be distinguishable This relaxation is
critical for dictionary learning: it lead a good trade-off be-
tween distortions and discriminative abilities in a learned
dictionary.

Topic models were first proposed to simulate a genera-
tive process of a document which is represented by a bag of
words [2]. They have been developed for supervised tasks
recently [1]. With the popular of BOV models, supervised
topic models have been widely applied to image classifica-
tion and segmentation [7,24].

3. Supervised Dictionary Learning Models

In this section, we introduce the SDLM and discuss how
to learn the parameters. We also present the analysis on how
the discriminative part of the model affects the dictionary
construction by examining the update rules. In section 3.4
we extend SDLM to a so called Spatial-SDLM (S’DLM).

3.1. SDLM

The motivation of our model is that a discriminative
dictionary should make histogram representations of im-
ages over it discriminative with respect to image categories.
Therefore, we integrate a dictionary learning module, a im-
age quantization module and a discriminative ability veri-
fication module in a single probabilistic model. Let C be
the number of categories, N be the number of local features
in an image and M be the dimension of feature descriptors.
Our model assumes that an image containing /N local fea-
tures wi.y arises from the following generative process:

1. Draw a discrete distribution (i.e. a histogram represen-
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tation) 6 ~ Dir(a).
2. For each image descriptor w,,, n € {1,2,...,N}:

(a) Draw a word assignment z,, | 6 ~ Mult(6).

(b) Generate a descriptor wy, ~ N (g, ,22,)-

3. Draw class label ¢ | z1.y ~ softmax(Z,n), where Z =
% 25:1 zn, 1s the empirical word frequencies, and the
probability of choosing class label c is subject to

c

ple| Zme) =exp (nf2)/ Y exp (n]'2)
=1

It is noted that, to facilitate the computation, we add the dis-
criminative constraint on Z rather on 6 in Step 3, although
the latter formulation is more straightforward. Figure 2(a)
is a graphical illustration for SDLM. The parameters of our
model are K word assignments 21.x, K codeword param-
eters {uk,Ek}fle, and C class coefficients 7;.c, where
pr and Xy is the mean and covariance matrix for a M-
dimensional multivariate Gaussian distribution and each 7,
is a K-dimensional vector.

In Step 3, we use the same setup as the multi-class
sLDA [24] for modeling the image labels, where multi-
class logistic regression is applied on empirically estimated
Z. However the meanings of the z are different. In [24]
a pre-computed dictionary is required; given a topic z, a
codeword index is picked from a multinomial distribution
associated with that topic. Therefore, Z is the empirical fre-
quency of topics. In SDLM, we denote by z the codeword
index to a pool of multivariate Gaussian distributions which
are used to generate image descriptors in Step 2. Hence z
is exactly the codeword frequency of the image. We eval-
uate the quality of a dictionary by checking its discrimi-
native ability with respect to histogram representations of
images over it rather than on topic frequencies. In terms of
dictionary learning, modeling the image labels with respect
to histograms over codewords is more straightforward than
over topics.

An important insight of Step 3 is that logistic parameter
7. plays the role as a codeword filter for category c. Posi-
tive/negative value of a particular component 7).; indicates
that the model prefers the presence/absence of the ¢-th code-
word in favor of enlarging inter-class difference. As will be
explained later, SDLM utilizes this property to refine the
codeword parameters.

3.2. Variational inference

Like the Latent Dirichlet Allocation (LDA) model [2],
direct estimation of the posterior distribution of the latent
variables given an image and its label is intractable. Thus
we employ the variational inference algorithm [ 1] to ap-
proximate the posterior. Since the detailed derivation is
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(b) S°DLM

Figure 2. Graphical model representations for (a) SDLM and (b)
S2DLM. The shaded circles stand for the observations and others
are variables to be inferred.

not necessary for understanding our main ideas, we only
present an outline in this paper.
To start we lower bound the log likelihood of a single
image with Jensen’s inequality:
logp(ya wi1:N | a,M:.CHy Kk, Zk:)
2 E(’y; ¢1:N; o, M.C, Lk, Zk)

N
=E, [logp(f | )] + ) Eq[logp(zn | )] W
n=1

N
+ Z ]Eq [logp(wn ‘ Rny U1K ZI:K)}

n=1
+ Eq [log p(y | m:c, z1:n)] + H(q)
where ¢ is a variational distribution defined as
N

90,215 | v, 61n) = a0 | 7) [[ alzn [ 00) @
n=1
where the Dirichlet parameter v and the multinomial pa-
rameters ¢1. are variational variables.
The coordinate ascent update equation of v is the same
as that in [2]:

N
y=a+) dn 3)
n=1

To optimize £ with respect to ¢,,, we select terms which
contain ¢,

Ls,
K K
= ¢ni | Ulm) = ¥ y;) + log p(wn|pi, i)
i=1 j=1
77T¢ < T 5 K
+ yN - — E’q log Z em Z) - Z ¢nz 1Og ¢ni
=1 =1
4
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The third term in equation 4 is not efficiently computable as
its expectation is taken on variables in log-sum of exponen-
tials. By lower bounding this term with Jensen’s inequality
again, we get

-E, [log (i e )] > —log (i E, e D

=1

®)

Noting that the term in logarithm in equation 5 can be writ-
ten as a linear function of ¢,,, we obtain a computable lower
bound for L, :

K 77T¢ K
n
:]jn - Z ¢n’itni + yN - IOg (th)n) - Z ¢ni 10g ¢nz
i=1 i=1
(6)
where
K
tni = U(7:) = U(Y ;) +logp(wy | i, %) (7)
7=1
and h = (hi,...,hk) does not contain ¢,. We bound
log (h™ ¢,,) using the inequality proposed in [3]
log (A" ) < ChT ¢ —log ¢ — 1, ®)

where the equality holds if and only if ¢ = (hT¢, )~ L. By
treating ¢ as a new variational parameter, we can update
¢y, through a two-step iteration: in the first step ¢ is set to

(hT ¢old)=1 where ¢2? is obtained in the last iteration; in
the second step ¢,,; is updated by
fni o exp (W (7:) + log plwaluis o) + 2 — Chi) (9)

3.3. Parameter estimation

In the variational E-step, we maximize the lower bound
of posterior distribution for each image with respect to
the variational parameters. In the M-step, we estimate
the model parameters 7;.c and {p;, Ei}le by maximiz-
ing the log-likelihood of the corpus of images D =

{(w(li:Nd’ yd)}dDzl:

D
L(D) =Y logp(wf,n, y* | @;m.cspx, Sx) (10)
d=1
We simply fix o; to & fori = 1,..., K in practice. The
codeword parameters are optimized as
. M 11
i SR a6l (v
> Zd 1 Z d)i@(wn*lh)(wn*l‘i)t (12)
’ Zd 1 Zn 1¢g1

Level O Level 1 Level 3

Figure 3. An example of a three-level pyramid.

As in [24], parameters of softmax function are optimized by
minimizing the following function with conjugate gradient
method

L(D)y,
D c

Zqu y' =zt — E, [log <ZeXp (n 2 ))H
d[_)1 . Ndz 1

> Z I(y nydd)d log (ZH Z(;S exp 7712
d=1 =1 n=1 i=1

(13)

Here we use the lower bound derived in equation 5 again.

3.4. S°DLM

In [15] Lazebnik et al. propose a spatial pyramid match-
ing (SPM) scheme to measure the similarity between im-
ages. Figure 3 shows an example pyramid structure with
L = 3 levels and in total R = 21 regions. The R his-
tograms of an image are computed for each region over
the visual words falling in the corresponding regions and
then are concatenated to form a R x K-dimensional vec-
tor. This “long” vector is used to train Support Vector Ma-
chine (SVM) classifiers with the histogram intersection ker-
nel [15]. The motivation is that the semantics of images
are well captured by aggregating statistics of local features
over fixed subregions. We demonstrate that this scheme
can be easily embedded into SDLM. We term this extension
as S’DLM, in which beyond the expectation that the origi-
nal histogram representations of images are distinguishable,
we expect images are distinguishable in the perspective of
SPM [15]. Consequently, the learned dictionary is optimal
for this objective.

As shown in figure 2(b), we add an observation H to
the original model which represents the pyramid struc-
ture of an image. It has two attributes: pyramid level L
and region number R. We assign R softmax parameters,
{Ne1,- - Nert to each class c. Every visual word will fall
in L regions, one on each level (e.g. the blue triangle in fig-
ure 3 falls in three regions: region 1, 3 and 8). We denote by
I(z,; H) the set of indices of regions that z, falls in. The
generative process is nearly the same as that for SDLM, ex-
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cept that the distribution over class labels is changed to

p(y | 2,m.0)
(14)
:exp( ({nyr r=1)% Zexp nlr r= 1,2’))
where
| XN
Fnhn2) = 5 D2 My (19)

Most of the inferring steps are similar with SDLM, while
the update equation for ¢,,; is modified as

+Z77;J\;i—(hi>

$ni X €xXp (‘I'(%) — log p(wh |, X4
rel,
(16)

and the lower bound of equation 13 is changed to

D
LDy 2> 1 =)nba, Y %ﬂ
d=1 r€l(zn;H) d
D C Ni K
Z log ZH ox 771”) Z i)
d=1 =1 n=1 i=1 Na rel(zn;H)

a7

3.5. Discussion

Mean vectors t1.c and covariance matrix 3. are ma-
jor parameters for a dictionary. They have apparently phys-
ical explanations from their update equations, i.e. Equation
(11) and (12). The mean p; for the i-th codeword is ob-
tained by taking weighted mean of all descriptors in all im-
ages, and the X; has the same explanation. The weight

d /5D S Ne g for the n-th descriptor of the d-th
image reflects the contribution of w? when forming the i-
th codeword. Therefore, the essence of SDLM lies on the
equation 9 for updating ¢,,;, which depends on the four
terms in the exponential. The first term (+;) is propor-
tional to ¢,;’s prior, i.e. the Dirichlet parameter c;. The
second term is the likelihood that a local descriptor w,, is
generated by the i-th codeword. This term encourages ¢,;
to decrease the reconstruction error. The last two terms are
related to the logistic function which punish the classifica-
tion error. As explained earlier, codewords with larger 7;
can be seen as critical features for histogram representations
of the images belonging to category c. The effects of the
two terms are refining the weights, ¢,,;, of descriptors to
updating the -th codeword in the perspective of discrimi-
native learning. We can treat these terms in ¢,,;’s equation
as forces which pull the codewords with their values as the
strengths. Generative forces (the first two terms) pull the

DO @g:%
K

L1

®
o)

Figure 4. Graphical model representation for an alternative proba-
bilistic dictionary learning model.

D

words in order to reduce the reconstruction error, while the
discriminative forces (the last two terms) pull the words to
make the histograms of images distinguishable. Therefore,
the learned dictionary is a consequence of a trade-off be-
tween minimization of distortion and maximization of dis-
criminative power.

3.6. Other supervised dictionary learning models

Inspired by SDLM, we proposed two more supervised
dictionary learning models. The first model is derived from
the update rule for ¢,,; in equation 9. We directly optimize
a hybrid generative and discriminative energy function:

min 3 5 m i = wl||* + CLL(y, ¢%m.c)

HH d=1n=1i=1
< T
+Co Z Tle™ Te
c=1
st YK ¢d.=1, ¢t >0

where ¢¢ is the soft assignment for we over codewords,
o = Nid Zivil #% is the histogram representation of the
d-th image, and C; and C are coefficients to balance the
three terms. The second term L£(y?, ¢%|n;.c) can be any
loss function to punish classification error, e.g. the Hinge
loss or the logistic loss function. This formulation is simi-
lar as those in [9, 17, 18]. However, their approaches adopt
a classification error term which is based on a patch-wise
representation in loss function.

The second model is a probabilistic model in which the
topic mixture () of an image is generated from a category-
specific prior distribution, that is, § ~ Dir(T,«). Simi-
lar with the linear transformation 7% in DiscLDA [13], the
matrix Ty selects a group of codewords for the associated
category. For example, suppose C' = 2, the two matri-
ces could be 71 = diag (1n; xnys Onyxngs Lngxng)s T2 =
diag (0 xny s Lngxnas Lngxng)- BY doing this, each cate-
gory will exclusively possess some codewords and mean-
while share some with other categories. Figure 4 shows the
graphical representation of the model.

4. Experiments

In this section, we compare performance of the pro-
posed models with state-of-the-art dictionary generation ap-
proaches on various benchmark dataset.
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Figure 5. (a) Performance on caltech10 dataset for different ap-

proaches. (b) Performance on VOC 2006 dataset for different ap-

proaches

4.1. Performance of SDLM

Dictionary Size

To evaluate the performances of SDLM, we choose two
benchmark dataset: a subset of Caltech101 [6] and VOC
2006 [5]. We select the biggest 10 categories from Cal-
tech101 dataset, which is termed as caltech10 in following
experiments. Images in caltech10 are typical object images:
objects usually locate at the centers of images and their
backgrounds are clean. Images in VOC 2006 are more like
real images: objects may appear at any positions in images,
with occlusions and in various sizes, and their backgrounds
are complex.

We extract SIFT descriptors every six pixels [16]. The
support of each descriptor is a 16 x 16 patch. k-means is one
of the state-of-the-art dictionary generation approaches [5],
which is chosen as a baseline algorithm. Classifiers are
trained by SVM with y? kernel. 40 images from each cate-
gory are utilized to train dictionaries and classifiers, and the
rest is used for test on caltech10 dataset. We train two dic-
tionaries under two different settings: use all local features
and only use local features in objects’ rectangles. The two
dictionaries are termed as dict! and dict2 respectively. The
binary classification performance for each object class is
quantitatively measured by mean average precision (mAP).

With the increasing of dictionary size, performances of
all approaches increase first but finally drop. Figure 5(a) and
Figure 5(b) show the mean average precision (mean AP)
obtained by all approaches. When the dictionary size is too
big, the dictionary is likely to be overfitting on training set,
or say, may have low generalization capabilities.

Table 1 and Table 2 list best results of all approaches
under different dictionary learning settings. On both of
the two dataset, SDLM significantly outperform k-means.
On the caltech10 dataset, the best performance of SDLM
is achieved when the dictionary size is around 200, while
the k-means obtains its best performance when the dictio-
nary size is around 400. On the VOC 2006 dataset, we can
get a similar observation. However, the sizes of dictionar-
ies achieving the best results on VOC 2006 are bigger than
on caltech10. This results indicate that 1) The dictionary
learned by SDLM is more discriminative than k-means, 2)
the dictionary learned by SDLM is likely to be more com-

Table 3. Performance on the fifteen scene dataset of different ap-
proaches under different dictionary sizes.

32 64 128 256 400 | 1000

k-means [14] |0.5950|0.6580 | 0.7040 | 0.7330 | 0.7671 | 0.7532

info. loss [14] | 0.6390 | 0.6800 | 0.7160 | 0.7470

SDLM 0.6407|0.7112 | 0.7449 | 0.7734 | 0.7850

pact, and 3) The dictionary size may be bigger on a com-
plex dataset than a simple one. It is interesting to note the
performance of the dictl is a little better than the dict2 on
caltech10 dataset. By checking the images in caltech10, we
find lots of artifacts on background of images, which may
lead the improvement of performance of dictl.

As we have discussed in Section 3.1, 7, has a functional-
ity to select the important words for a category. We plot the
top 40 most significant words for each category in Figure 6.
Most of the significant words are on objects. This property
may have potential applications in object localization. At
least, supervised learned dictionaries are able to help deter-
mine the candidate windows of objects.

4.2. Comparisons with other supervised approaches

Due to difficulties on re-implementation, we have to
compare our approaches with previous supervised dictio-
nary learning approaches on the same dataset, same fea-
tures and same experimental configurations as that utilized
in their papers. Two approaches are selected: an infor-
mation loss minimization-based approach [14], and a word
merging-based approach [&].

In the first experiment, we compare the performance of
our approaches with the approaches proposed in [14] on the
fifteen scene dataset [15]. This dataset consists of fifteen
kinds of scene images, e.g. highway, kitchen and street. The
results are shown in Table 3. Our approach outperforms the
baseline approaches. With the increasing of sizes of dictio-
naries, the differences between performance of the informa-
tion loss approach [14] and k-means are becoming smaller
and smaller. However, our approach has reached the upper
bound (observed in experiments) of the baseline approaches
even when the size of dictionary is very small (e.g. 256).

In the second experiment, we compare the performance
of our approaches with the approaches proposed in [8] on
the Graz-02 dataset. This dataset consists of three cate-
gories of images, i.e. cars, people and bicycles. Actually,
their experiments target on object localization rather than
image categorization. They use the trained classifiers to
classify each pixel, and then evaluate how many pixels on
objects are correctly classified. We evaluate our approaches
under the same settings. The results when the sizes of dic-
tionaries are 200 are reported in Table 4. It is noted that all
dictionaries are trained with local features on whole images
rather than in rectangles of objects. The performance of
SDLM is significantly better than the baseline approaches.
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Table 1. The best performance on caltech10 dataset for different approaches and dictionary settings. Results are reported with dictionary

size 400 and 200 for k-means and SDLM.

airplanes | motorbikes | faces | watch | leopards | bonsai | car side | ketch | chandelier | hawksbill | mAP
k-means,dict1(400) | 0.8105 0.8958 | 0.9823 | 0.7625 | 0.9157 | 0.8784 | 0.7333 | 0.9153 | 0.8276 0.7500 | 0.8471
SDLM, dict1(200) | 0.8803 09314 | 0.9772 | 0.9750 | 0.9157 | 0.8649 | 0.8000 | 0.9153 | 0.9310 0.7375 | 0.8928
k-means,dict2(400) | 0.8304 0.8658 | 0.9742 | 0.7450 | 0.9215 | 0.8872 | 0.7125 | 0.9217 | 0.8270 0.7141 | 0.8399
SDLM, dict2(200) | 0.8981 0.9431 | 0.9655 | 0.9511 | 0.9231 | 0.8573 | 0.8239 | 0.9064 | 0.9253 0.7218 | 0.8916

Table 2. The best performance on VOC 2006 dataset for different approaches and dictionary settings. Results are reported with dictionary

size 800 and 400 for k-means and SDLM.

bicycle bus car cat cow dog horse motor | person | sheep mAP
k-means,dict1(800) | 0.7439 | 0.6226 | 0.6694 | 0.7217 | 0.5061 | 0.688 | 0.5241 | 0.5286 | 0.5852 | 0.5911 | 0.6181
SDLM, dict1(400) | 0.8198 | 0.8538 | 0.8122 | 0.7537 | 0.7581 | 0.7234 | 0.6322 | 0.7946 | 0.6307 | 0.7376 | 0.7516
k-means,dict2(800) | 0.7682 | 0.6433 | 0.6875 | 0.7318 | 0.539 | 0.6592 | 0.5142 | 0.5309 | 0.5863 | 0.6102 | 0.6271
SDLM, dict2(400) | 0.8242 | 0.8652 | 0.8232 | 0.8103 | 0.7893 | 0.7407 | 0.6645 | 0.7739 | 0.6486 | 0.7507 | 0.7691

Table 4. A comparison of the pixel precision-recall equal error
rates on Graz-02 dataset. Dictionary size is 200.

cars people bicycles

AIB200-KNN [8&] 0.5090 0.4970 0.6380
AIB200-SVM [8] 0.4010 0.5070 0.5990
SDLM 0.5531 0.5485 0.6628

Table 5. Performance of the six approaches on the fifteen scene
dataset. Dictionary size is 200.

L=0 [L=0+1 | L=0+1+2
k-means+SVM [15] 0.7220
SDLM+SVM 0.7687
S’DLM+SVM 0.7845
k-means+SPM+SVM [15] | 0.7220 | 0.7900 | 0.8110
SDLM+SPM+SVM 0.7687 | 0.8156 | 0.8227
S’DLM+SPM+SVM | 0.7845 | 0.8189 | 0.8276

4.3. Performance of S>DLM

Spatial information has been observed very useful for
image categorization [4, 5, 19].  We compare the pro-
posed models with a state-of-the-art approach, i.e. spa-
tial pyramid matching (SPM) kernel [15], on the fif-
teen scene dataset under different configurations. Six
approaches are evaluated: k-means+SVM (obtain a dic-
tionary by k-means and train SVM classifiers with his-
togram intersection kernel, SDLM+SVM (learn a dictio-
nary with SDLM and train SVM classifiers with histogram
intersection kernel), S2DLM+SVM(learn a dictionary with
S’DLM), k-means+SPM+SVM(train SVM classifiers with
SPM kernel), SDLM+SPM+SVM(learn a dictionary with
SDLM and train SVM classifiers with SPM kernel), and
S?DLM+SPM+SVM. Three level of SPM schemes are
evaluated, i.e. 1, 2 x 2 and 4 x 4. The results when the
sizes of dictionaries are 200 are shown in Table 5.

All dictionaries when combined with SPM kernels ob-
tain significant better performance. Although SPM ker-
nel looks a little rigorous in terms of utilizing spatial con-
straints, it has been observed effective on both scene and ob-
ject image categorization [5, | 5]. Among approaches which

do not been trained with the SPM kernel, S’DLM+SVM
obtains a much better result than the other two approaches.
Its performance (0.7845) is comparable with the approach
which is trained with up to two level pyramid matching
kernel (0.7900). By utilizing the dictionaries learned by
SDLM and S?DLM, and SPM kernels together, we get per-
formance which outperforms the state-of-the-art results on
this dataset [ 1 5]. These observations indicate 1) the S?DLM
has effectively incorporated spatial information when gen-
erating a dictionary, and 2) the SPM kernel is so strong to
complement the weakness of features, and 3) the perfor-
mance of dictionaries learned by S’DLM can be further im-
proved by applying SPM kernel. These results demonstrate
the effectiveness of the learned dictionaries again.

5. Conclusion

We have proposed two probabilistic models for super-
vised dictionary learning. The first model, SDLM, seeks a
balance between minimization of distortions of clusters and
maximization of discriminative power of image-wise repre-
sentations, i.e. histograms of images. The balance guaran-
tees that the learned dictionary is more discriminative and
generalizable than most of existing approaches. The second
model, SQDLM, which incorporates spatial constraints in a
spatial pyramid matching like manner, is able to further im-
prove the discriminative capabilities of a learned dictionary.

Our experiments demonstrate that the proposed models
are able to outperform both state-of-the-art unsupervised
and supervised dictionary learning approaches. Especially,
only with a small number of codewords, our models achieve
the upper-bound performances of large unsupervised dictio-
naries. The proposed models meet the three criterions of a
good dictionary in the perspective of image classification.
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