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a b s t r a c t

In this paper, we propose a support vector machine with automatic confidence (SVMAC) for pattern

classification. The main contributions of this work to learning machines are twofold. One is that we

develop an algorithm for calculating the label confidence value of each training sample. Thus, the label

confidence values of all of the training samples can be considered in training support vector machines.

The other one is that we propose a method for incorporating the label confidence value of each training

sample into learning and derive the corresponding quadratic programming problems. To demonstrate

the effectiveness of the proposed SVMACs, a series of experiments are performed on three bench-

marking pattern classification problems and a challenging gender classification problem. Experimental

results show that the generalization performance of our SVMACs is superior to that of traditional SVMs.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

In the last several years, support vector machine (SVM) has
become one of the most promising learning machines because
of its high generalization performance and wide applicability for
classification as well as for regression [1]. SVM maximizes its
margin of separation and obtains an optimal decision boundary
determined by a set of particular training samples called support
vectors. Although SVM can find an optimal boundary, it is known
to us that the information of the SVM decision boundary is only
contained in the support vector training samples and is not
considered in non-support vector training samples [2].

To improve the generalization performance of traditional
SVMs, it is very important for us to consider the problems of
how to search and utilize the information and distribution of the
whole training samples, how to encode human prior knowledge
widely existing in training samples [3], and how to incorporate
prior knowledge into learning [4]. Recently various learning
machines for pattern classification have been proposed. For
instance, Jiang et al. [5] developed a perturbation-resampling
procedure to obtain the confidence interval estimates centered
at k-fold cross-validated point for the prediction error and apply
them to model evaluation and feature selection. Liu [6] investi-
gated the effects of confidence transformation in combining
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multiple classifiers using various combination rules, where
classifier outputs are transformed to confidence measures. Feng
et al. [7] proposed a scaled SVM, which is to employ not only the
support vectors but also the means of the classes to reduce the
mean of the generalization error. Graf et al. [8] presented a
method for combining human psychophysics and machine learn-
ing, in which human classification is introduced. These methods,
nevertheless, do not consider how to use the label confidence of
each training sample which may be regarded as human prior
knowledge and how to incorporate the label confidence value of
each training sample into learning.

Inspired by the ideas from Feng et al. [7] and Graf et al. [8],
we proposed a support vector machine with confidence (SVMC) in
our previous work [3]. We theoretically analyzed the decision
boundary of SVMCs and shown that the generalization perfor-
mance of SVMCs is superior to that of traditional SVMs. For
SVMCs, however, the confidence value of each training sample
must be labeled by the user manually before training. When the
number of training samples is very large, much time for label-
ing these confidence values is required. Furthermore, we cannot
guarantee that all these labeled confidence values are reasonable
because of subjectivity. To overcome these deficiencies of SVMCs
and to explore how to label rational confidence value of each
training sample automatically, we propose a support vector
machine with automatic confidence (SVMAC). The flowchart of
training SVMACs and SVMCs1 is illustrated in Fig. 1. The main
1 http://bcmi.sjtu.edu.cn/� jizheng/
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Sample :  X       Y

The confidence of those
training samples that can
not be discriminated well
is labeled automatically.

The confidence of those
training samples that can
not be discriminated well is
labeled manually by users.
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SVMC Training Module
SVMAC Flow SVMC Flow

Fig. 1. The flowchart of training SVMACs and SVMCs.
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difference between SVMACs and SVMCs is that the confidence
value of each training sample is calculated by using an algorithm,
instead of labeling the confidence value for each training sample
by the user manually. For training SVMACs, we use both the labels
and the label confidence values of all of the training samples.

To evaluate the effectiveness of the proposed SVMAC, we apply
SVMAC to gender classification problem as a case study. Gender
classification based on facial images is a complicated and challen-
ging two-class pattern classification problem, because the principle
that the human brain can identify the gender from a facial image
is still understood little. Although we can determine the gender of
each facial image, sometimes we have no enough confidence for
the real-life doubtless gender of some facial images. In other
words, the gender of each facial image in a given face database
can be confirmed, but in reality we have some misgivings for iden-
tifying gender of some face images. From the viewpoint of learning
machines, these misgivings can be expressed as the label con-
fidence values of these facial images for discriminating the gender.
Experimental results on a total of 10,788 facial images indicate that
the generalization performance of our SVMACs is superior to that
of traditional SVMs and kNN, regardless of features used.

The remaining part of this paper is organized as follows.
In Section 2, a method for incorporating the label confidence
value of each training sample into learning is described and the
corresponding quadratic programming problems are derived.
In Section 3, a new algorithm for calculating the label confidence
value for each training sample is described and an illustrative
example is presented to demonstrate the performance of
SVMACs. In Section 4, experimental results on three benchmark-
ing pattern classification problems are described, and an applica-
tion of SVMACs to gender classification is presented. Conclusions
and future work are outlined in Section 5.

2. Support vector machine with confidence

In this section, we present how to incorporate the label confi-
dence value of each training sample into training support vector
machines and derive the corresponding quadratic programming
problem.

2.1. Traditional support vector machine

The quadratic programming problems for the standard and
soft margin forms of a traditional SVM [2] can be, respectively,
expressed as

min
w

1

2
JwJ2

þC
X

i

xi

s:t: 8i,yiðw
T xiþbÞZ1�xi,

xiZ0 ð1Þ

and

min
w

1

2
JwJ2

þD
X

i

x2
i

s:t: 8i,yiðw
T xiþbÞZ1�xi,

xiZ0, ð2Þ

where w is an adjustable weight vector, C is the parameter which
is used to control the size of norm JwJ, the parameter D is to
keep kernel matrix positive, xi is the i-th sample vector, yi is the
label of sample vector ðyiAf�1,1gÞ, b is the bias, and xi is to
measure the cost of generalization error on the i-th training
sample.

The difference between Eqs. (1) and (2) is that the modes of
measuring the cost of generalization error are distinct. Specifi-
cally, in Eq. (1), the parameter C can determine the optimal choice
for JwJ2, and make JxJ1 (the first-order norm of x, where
x¼ ðx1, . . . ,xi, . . .Þ) minimal. In Eq. (2), the parameter D can
generate the best JwJ2, keep kernel matrix positive, and make
JxJ2 (the second-order norm of x) least.

2.2. Incorporation of label confidence into learning

One way of incorporating confidence values into learning is to
re-scale the soft margin as follows:

min
w

1

2
JwJ2

þD
X

i

x2
i

s:t: 8i,yiðw
T xiþbÞZtðpiÞ�xi,

xiZ0, ð3Þ

where tðpiÞ is a monotonic function to scale the confidence value.
In this paper, we select tðpiÞ as the following linear function:

tðpiÞ ¼ h � pi,
1
2rpio1, ð4Þ

where h is the scale parameter. The meaning of introducing this
scale parameter h is to map the confidence values of training
samples into another subspace, where we seek an optimal
decision boundary maximizing the margin. Therefore, it is very
important that we need to understand how the decision boundary
is influenced by the scale parameter h. For a two-class problem,
the confidence value of each training sample should not be less
than 1

2 because each training sample has a determined label.
Many researchers reported that support vectors obtained by

traditional support vector machines tend to be those training
samples that people cannot discriminate well [8,9]. Based on this
fact, we proposed a support vector machine with confidence in
our previous work [10]. First, we divide the given training sample
set T into two disjointed subsets U and VðT ¼ U [ VÞ, which are
later treated in a different way in the training process. Then, we
put the training samples in U with confidence pi less than 1, and
the remaining training samples in V with confidence pi equal to 1.
In essence, U contains the training samples that tend to be
support vectors after training. In the following, we denote
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the number of training samples in U and V by nu and nv,
respectively.

According to Eq. (3) for training subset U and Eq. (1) for
training subset V, we can express the quadratic programming
problem for soft margin form as follows:

min
w
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2
JwJ2

þD
Xnu

i ¼ 1

s2
i þC

Xnv

j ¼ 1

xj

s:t: 81r irnu,

yu
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T uiþbÞ ¼ tðpiÞ�si,

81r jrnv,

yv
j ðw

T vjþbÞZ1�xj, xjZ0, ð5Þ

where ui is the i-th vector in U , vj is the j-th vector in V, yu
i is the

label of the i-th vector in U , yv
j is the label of the j-th vector in V,

and xi in Eq. (3) is substituted by si.
Using the standard Lagrangian dual technique, we obtain the

Lagrangian function of Eq. (5) as follows:
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At the saddle point, we get
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From Eqs. (7)–(10), we have
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and take the place of si and C. Thus, the following dual form is
obtained
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By substituting w with
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in above Lagrangian function (11), we have
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Therefore, from Eqs. (12), (5) can be rewritten by
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Fig. 2. Comparison of the decision boundaries formed by the proposed SVMACs with different values of the scale parameter h. (a) h¼0.1. (b) h¼1.0. (c) h¼1.5. (d) h¼2.0.

(e) h¼5.1. (f) h¼108.
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Fig. 3. Comparison of the decision boundaries formed by traditional SVM (left) and our proposed SVMAC (right), where we only assign the confidence values (less than 1)

to non-support vector training samples in V for training SVMAC and do not consider any confidence values for support vector training samples in U . (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Distribution of training and test data of the three benchmarking problems.

Data set Training Test No. of input dimensions

Positive Negative Positive Negative

Arcene 44 56 44 56 2000

Dexter 150 150 150 150 4000

Gisette 3000 3000 500 500 4000
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For simplicity of description, we can express Eq. (14) in a
matrix form as follows:

min
W
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WT HWþGT W

s:t: WT e¼ 0,

81r irnnu , 0rlioþ1,

81r jrnnv , 0rajrC, ð15Þ

where e denotes the vector with each component equal to 1, and
W, G and H are defined as follows:
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UT UþB UT V

VT U VT V

" #
ð18Þ

where U ¼ ½u1 � � � unu �, V ¼ ½v1 � � � vnv �, and B¼ ð1=2DÞInu�nu .
3. Support vector machine with automatic confidence

In this section, we will answer the question of how to auto-
matically calculate the confidence values of training samples and
present an illustrative example to demonstrate the generalization
performance of our proposed SVMACs.
3.1. Algorithm for labeling confidence

Although we have shown that the generalization performance
of SVMCs is superior to that of traditional SVMs [3], SVMCs face
the following three problems: (a) we must spend much time to
manually label the confidence value for each of the training
samples, especially when the number of the training samples is
large; (b) we cannot guarantee that all the labeled confidence
values are reasonable because people’s action on determining the
confidence values is very subjective; and (c) it is hard for the user
to determine the label confidence values of training samples in
some pattern classification problems such as text categorization
and patent classification. To deal with these problems, we
introduce a novel logical method for dividing the training sample
set into two subsets U and V, and propose an algorithm for
labeling the confidence (ALC) automatically. The ALC algorithm is
described in Algorithm 1.

In comparison with traditional SVMs, the main additional cost
of training SVMACs is to construct a decision boundary g for
labeling the confidence value of each training sample. If a
traditional SVM is used to label the confidence value of each
training sample, the distances between support vector samples
and the decision boundary g are smaller than those between
non-support vector samples and the decision boundary g for the
training samples with the same class label. Thus, D need not be
calculated in the ALC Algorithm 1.

As a matter of fact, the distance between a training sample and
the decision boundary g suggests whether the sample can be
discriminated well or not. Obviously, the training sample which is
far from the decision boundary can tend to be discriminated and
should be appended into V. Otherwise, it needs to be added to U .
Therefore, the confidence values calculated automatically by the
ALC algorithm is consistent with the confidence values labeled by
the user manually.

Algorithm 1. ALC

Step 1: Train a pattern classifier such as SVM and multi-layer

perceptron on a given training sample set T ¼ fðxi,yiÞj1r irNg

and obtain a decision boundary g
Step 2: Calculate the distances between all of the samples in T
and the decision boundary g and form the distance set

O¼ fdij the distance between the i�th sample and gg;
Step 3: Set a threshold value D,

for all i from 1 to N

if dioD,
Add the sample (xi, yi) to U;

else
Add the sample (xi, yi) to V;

end if
end for
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Fig. 4. Nine different-pose facial images from the CAS-PEAL face database.

Table 3
Description of training and test data from three face databases for gender

classification.

Data set Description Training Test

Male Female Male Female

CAS-PEAL (C) PD00 311 311 284 134

PD15 296 296 220 127

PD30 296 296 220 127

PM00 310 310 285 134

PM15 295 295 221 127

PM30 295 295 221 127

PU00 311 311 284 134

PU15 296 296 220 127

PU30 296 296 220 127

FERET (F) PM00 282 282 307 121

BCMI (B) PM00 361 361 168 155
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Step 4: The confidence values of the samples in V are set to
1.0 while the confidence values of the samples in U are

projected onto the confidence space ½12 ,1Þ according to their

distances and a linear mapping principle;
Step 5: Train an SVMAC on these training samples with both
labels and label confidence values and obtain an SVMAC
classifier

3.2. An illustrative example

Now we examine the performance of SVMACs by using an
illustrative example [11]. According to the ALC algorithm and
SVMACs defined in Eq. (5), we set the confidence values of
training samples in U less than 1. Those training samples are
marked by small circles (green) shown in Fig. 2, and the right
figure in Fig. 3. From these figures, we can see that the decision
boundaries are changed if the confidence values of the support
vector training samples in U are assigned by using the ALC
algorithm. Here a traditional SVM is trained on the training
sample set, T ¼ fðxi,yiÞj1r irNg, to form the decision boundary g.

From Fig. 2, we can observe that the change of the decision
boundaries of SVMACs is negligible when the scale parameter h

changes from 0.1 to 1 or from 2 to a very large value. This
phenomenon suggests that a small variation in h ðhA ð0,1�Þ or a
large variation in h (hA ð2,108

Þ is hardly to affect the performance
of SVMACs. Figs. 2(e) and (f) show the decision boundaries of
SVMACs, where the scale parameter h is set to 5.1 and 108,
respectively. Although these two decision boundaries of SVMACs
are quite different from those of SVMACs shown in Figs. 2(a) and
(b), they also moves from the side of dense training samples
(lower left area) to that of sparse training samples (the upper
right area). According to the discussions mentioned above, we can
conclude that the movement of the decision boundaries formed
by SVMACs is reasonable, and is identical to that of SVMCs [3].
Besides, because in Fig. 2 the different ranges of the scale
parameter h, i.e., the range from 0.1 to 1.0 and the range from
2 to a large number, influence the position of the SVMAC decision
boundary greatly, in practical applications we need to adjust the
scale parameter h to obtain the best classification result.

The support vectors obtained by traditional SVMs can be
regarded as the training samples closing to noise. Therefore, we
should assign them with confidence values less than 1. By
training the proposed SVMACs on all the training samples with
proper confidence values, we can obtain the decision boundaries
shown in Fig. 2. From this figure, we can see that if the support
vectors obtained by the traditional SVMs are assigned with
appropriate confidence values, some of them may be turned into
non-support vectors after training SVMACs. The decision bound-
aries obtained by SVMACs can be regarded as a fitting achieved
by training a pattern classifier on the training sample set in which
some noise samples are removed. As a result, the decision bound-
aries obtained by SVMACs are superior to those obtained by
traditional SVMs. For example, since the training samples located
in the lower left area in Fig. 2 are much denser and closer to the
Table 2
Comparison of classification accuracy of our SVMAC with that of kNN and

traditional SVM. Here both SVMACs and traditional SVMs use a linear kernel.

Method Data set

Arcene Dexter Gisette

kNN 79.0 66.0 96.3

SVM 83.0 79.7 97.0

SVMAC 84.0 82.3 97.2
boundary formed by traditional SVMs than the training samples
located in the upper right area, the movement of the decision
boundary from the lower left corner to the upper right corner
caused by the proposed SVMACs no doubt yields a better separa-
tion than that of traditional SVMs.
Fig. 5. Examples from the FERET face database (left two) and the BCMI face

database (right two).
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Fig. 6. Comparison of gender classification accuracy in kNN, SVMs, and SVMACs: (a) MLBP feature; (b) LBP feature; (c) Gabor feature; and (d) Gray feature. Here both SVMs

and SVMACs use a RBF kernel, and m¼9�9 blocks for each facial image are selected.
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From the angle of the label confidence, the decision boundaries
formed by our SVMACs as shown in Fig. 2 are superior to those
generated by traditional SVMs. However, the decision boundaries
produced by traditional SVMs and the proposed SVMACs are the
same as shown in Fig. 3, where only the non-support vector
training samples in V are assigned with confidence values less
than 1 according to their distances to the original decision
boundary g and none of support vector training samples in U
are assigned with confidence value. From Fig. 3, we see that non-
support vector training samples in V with less than 1 confidence
values do not affect the decision boundary. In other words,
after the confidence values less than 1 are assigned to some
non-support vector training samples by using the ALC algorithm,
the whole generalization performance of the proposed SVMACs
will not be decreased.
2 http://archive.ics.uci.edu/ml/
4. Benchmarking problems and application

To demonstrate the performance of the proposed SVMAC and
compare it with traditional SVMs, we perform experiments on
three benchmarking pattern classification problems and a
challenging gender classification problem. The kNN algorithm is
used as a baseline pattern classifier. Here, an optimal k is selected
from the range of [5, 50].

4.1. Benchmarking problems

We select three benchmarking problems, namely Arcene,
Dexter and Gisette, from UCI Machine Learning Repository.2

Table 1 shows the distributions of these data sets. The Arcene’s
task is to distinguish cancer versus normal patterns from mass-
spectrometric data, the Dexter data set is a text classification
problem in a bag-of-word representation, and the Gisette task is a
handwritten digit recognition problem of separating the highly
confused digits ‘4’ and ‘9’.

The experiment results on these benchmarking problems are
shown in Table 2. From this table, we can see that our proposed
SVMACs achieve the best classification accuracy among three
pattern classifiers. It should be noted that the parameter C in
Eqs. (1) and (14) is set to the same value.

http://archive.ics.uci.edu/ml/
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Fig. 7. Examples of facial images and their confidence values. Here ‘‘M’’ and ‘‘A’’ denote the confidence values labeled manually and calculated automatically, respectively.

These facial images are numbered from 1 to 12 from left to right and from upper to lower.
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4.2. Gender classification

In the last several years, various feature extraction and pattern
classification methods have been developed for gender classifica-
tion [12–15]. Support vector machine is the most common used
pattern classifier in gender classification [16,13,15]. To demon-
strate the effectiveness of our proposed SVMAC, we apply it to
solving the gender classification problem. In this study, we use
multi-view facial images from the CAS-PEAL face database [17]
and frontal facial images from both the FERET3 face database and
the BCMI4 face database.
4.2.1. Experimental setup

A total of 10,788 different-pose facial images from the
CAS-PEAL, the FERET, and the BCMI face databases are organized
into 11 groups. The distributions of these training and test data
are shown in Table 3. A total of 8751 facial images are selected
randomly from the CAS-PEAL face database. These facial images
belong to nine different poses (see Fig. 4) including looking down
pose, looking middle pose, and looking up pose with 01, 151, and
303, respectively. For simplicity of description, the CAS-PEAL,
the FERET, and the BCMI face databases are represented by ‘‘C’’,
‘‘F’’, and ‘‘B’’ in front of pose description names, respectively. For
example, ‘‘C-PU30’’ denotes the facial images belonging to the
group of looking up pose with 303 from the CAS-PEAL face
database. In training phase, we performed five cross-validation
to find the best parameters for both SVMACs and traditional
SVMs. The parameters h and D are selected from fhjh¼ n=5,
1rnr8g and fDjD¼ 2i,�10r ir10g, respectively. All experi-
ments are performed on a Pentium fourfold CPU (2.83 GHz) PC
with 8 GB RAM (Fig. 5).
3 http://www.frvt.org/FERET/default.htm
4 BCMI face database is set up and packed up by the Center for Brain-Like

Computing and Machine Intelligence, Shanghai Jiao Tong University, Shanghai,

China.
4.2.2. Feature extraction

Before training, the original facial images are preprocessed by
locating eye positions, geometric normalization, and cropping to
obtain its face area. We use five feature selection methods,
namely gray, Gabor, local binary pattern (LBP) [18,19],
multi-resolution local binary pattern (MLBP) [14], and local
Gabor binary pattern (LGBP) [20]. The numbers of dimensions
corresponding to these five kinds of features are 20m, 40m, 59m,
3�59m, 40m, respectively. Here, m is the number of subregions,
into which each facial image is divided.
4.2.3. Experimental results

In this application study, the confidence value of each training
sample is calculated automatically by using the ALC algorithm
described in Section 3.1. For example, we see that the 2nd and the
10th facial images shown in Fig. 7 are non-support vector training
samples. Although their confidence values labeled manually are
less than 1, this labeling results will not affect the whole classi-
fication accuracy according to the analysis described in Section 2.
The 4th sample is a support vector training sample, but its label
confidence value is assigned to 1 manually. Thus, this indicates
that we cannot guarantee all the confidence values labeled
manually because of subjectivity. The confidence values of other
samples labeled manually are almost consistent with these
calculated by the ALC algorithm. Consequently, the manual and
automatic label confidence values are equivalent approximately
in most situations.

From Table 4, and Fig. 6, we conclude the following three
observations: (a) the average classification accuracy achieved by
SVMACs is higher than that of traditional SVMs and kNN [21];
(b) the corresponding standard deviation brought by SVMACs
is lower than that of traditional SVMs and kNN in most cases;
and (c) the maximum improvement achieved by SVMACs on
classification accuracy reaches 3.0%. We can also see that SVMACs
achieve a largest improvement on classification accuracy when
the Gabor and Gray features are used. This demonstrates that
SVMACs can control more influence of noise data by introducing

http://www.frvt.org/FERET/default.htm


Table 4
Gender classification accuracy (%) in mean (odd row) and standard deviation (even

row) achieved by kNN, SVMs, and SVMACs, where SVMs and SVMACs use a RBF

kernel, the number of window blocks is set to m¼K�K, and K is ranged from 5 to

10.

Description Method LGBP-CCL LGBP-LDA MLBP LBP Gabor Gray

C-PD00 KNN 93.4 99.7 93.3 92.4 73.6 76.9

1.6 0.4 10.8 5.8 12.8 3.5
SVM 96.7 99.6 95.5 94.2 90.6 92.5

11.4 0.4 2.9 10.2 16.3 4.9

SVMAC 97.4 99.9 96.4 95.3 92.6 93.8
4.8 0.2 1.1 4.4 15.1 4.3

C-PD15 KNN 94.2 99.8 89.4 90.3 81.0 83.5

4.1 0.1 19.3 2.6 16.0 1.0
SVM 97.4 99.7 94.9 93.5 88.7 91.3

7.5 0.1 1.1 3.0 26.0 1.1

SVMAC 97.7 99.8 95.6 94.6 90.5 92.6
7.3 0.1 0.9 2.1 17.2 2.0

C-PD30 KNN 91.3 99.7 89.8 88.1 75.6 76.6

2.6 0.7 6.1 14.1 30.6 9.3

SVM 96.4 99.8 92.7 92.2 89.9 89.4

6.2 0.4 2.0 3.2 13.1 1.5
SVMAC 96.8 100.0 93.3 93.2 90.4 90.6

4.8 0.0 2.1 1.9 8.4 2.5

C-PM00 KNN 94.7 99.6 90.3 89.2 71.5 77.5

9.3 0.6 6.9 15.6 29.1 4.7

SVM 97.3 100.0 96.1 94.5 91.6 94.6

10.6 0.0 2.7 10.4 26.3 6.0

SVMAC 97.5 100.0 96.6 95.5 92.7 95.4
10.8 0.0 3.3 8.5 16.7 3.6

C-PM15 KNN 95.0 99.8 91.4 91.7 81.3 85.3

6.1 0.3 5.5 10.5 21.6 4.9
SVM 97.1 99.7 95.1 94.2 92.7 94.5

2.9 0.3 0.9 14.6 30.2 7.4

SVMAC 97.3 99.9 95.7 94.7 93.2 95.0
2.7 0.2 2.5 15.3 23.4 6.9

C-PM30 KNN 91.3 99.6 88.1 87.9 79.5 79.5

5.0 0.9 28.1 7.3 24.1 8.7

SVM 96.3 99.7 93.7 92.4 91.9 92.1

6.8 0.5 9.1 15.3 17.4 1.5
SVMAC 96.9 100.0 95.1 93.2 93.1 92.6

2.8 0.0 6.0 11.3 8.3 2.0

C-PU00 KNN 92.7 99.8 90.1 88.7 69.9 74.4

13.3 0.6 4.8 6.5 13.9 12.2
SVM 96.7 99.9 95.4 94.5 90.2 89.0

5.4 0.1 4.2 4.7 33.2 28.4

SVMAC 97.6 100.0 96.3 95.3 91.6 92.0
5.6 0.0 2.4 4.8 18.4 17.9

C-PU15 KNN 94.9 99.7 88.5 89.5 77.5 80.9

13.7 0.5 38.2 5.3 38.4 1.3
SVM 97.6 99.9 96.0 95.6 92.6 89.3

1.3 0.1 4.2 1.8 8.9 16.5

SVMAC 98.3 100.0 96.6 96.0 93.1 90.2
2.5 0.0 0.8 2.5 6.5 18.8

C-PU30 KNN 93.9 99.8 88.3 87.4 76.9 81.5

3.0 0.4 10.0 2.5 30.4 13.0

SVM 96.9 99.9 94.0 92.8 89.0 88.2

8.6 0.2 4.0 5.1 21.1 9.1

SVMAC 97.0 100.0 95.0 93.6 90.2 89.6
6.3 0.0 1.2 5.5 13.0 5.9

F-PM00 KNN 89.9 96.2 87.3 84.4 73.9 72.5

4.8 3.2 9.8 9.4 0.6 3.7
SVM 94.6 98.8 93.7 92.3 90.4 89.5

11.6 2.3 1.3 9.0 9.8 3.7

SVMAC 95.1 99.1 93.8 93.1 91.6 91.2
8.8 0.6 1.0 3.9 15.1 4.6

B-PM00 KNN 91.5 98.9 91.0 90.4 86.0 89.8

16.6 0.8 15.1 11.4 23.2 6.1

SVM 97.3 99.4 96.3 96.2 93.4 95.4

8.3 1.4 2.0 3.2 10.2 2.1

SVMAC 98.1 99.7 97.2 97.3 95.1 95.7
0.7 0.2 0.9 0.9 6.1 1.2
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the label confidence value for each training sample. The reason is
that there are more noises in the Gabor and Gray features than
those in the LGBP, MLBP, and LBP features.

In addition, we observe that the classification accuracy is also
dependent on the distributions of training samples. Generally
speaking, there are two kinds of sample distributes as illustrated
in Fig. 2. One is dense and the other is sparse. In this situation,
if the confidence values less than 1 are set for the support vector
samples, the decision boundary obtained by SVMACs will favor
the sparse samples in comparison with traditional SVMs. Conse-
quently, from both experimental results and theoretical analysis,
we see that SVMCs separate the data samples more reasonably by
modifying the confidence values of the support vector training
samples. In a word, SVMACs can improve gender classification
accuracy, regardless of the high-dimension features (LGBP, MLBP,
and LBP) and low-dimension features (Gabor and Gray).
5. Conclusions and future work

We have proposed a novel support vector machine classifier
with automatic confidence and introduced a simple algorithm for
calculating the label confidence value of each training sample. We
have derived the quadratic programming problem for this new
SVM and discussed its generalization performance through an
illustrative example. The most important advantage of the
proposed SVMs over traditional SVMs is that some explicit human
prior knowledge estimated by our confidence labeling algorithm
on training samples can be incorporated into learning. By using a
gender classification task based on facial images, we have shown
that the manual confidence and the automatic confidence are
quite consistent in most cases. Experimental results on three
benchmarking problems and a gender classification task indicate
that the proposed SVMs can improve generalization performance,
especially when the input features have much noise.

As future work, we would like to study the bound for the
improvement on classification accuracy theoretically and apply
SVMACs to other real-world pattern classification problems such
as text classification and age estimation.
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