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ABSTRACT

Hashing for image retrieval has attracted lots of attentions in
recent years due to its fast computational speed and storage
efficiency. Many existing hashing methods obtain the hashing
functions through mapping neighbor items to similar codes,
while ignoring the non-neighbor items. One exception is
the Local Linear Spectral Hashing (LLSH), which introduces
negative values into the local affinity matrix to map non-
neighbor images to non-similar codes. However, setting 10th
percentile distance in affinity matrix as a threshold, which
is used to judge neighbors and non-neighbors, is not reason-
able. In this paper, we propose a novel unsupervised hashing
method called Distance Preserving Marginal Hashing
(DPMH) which not only makes the average Hamming dis-
tance minimized for the intra-cluster pairs and maximized
for the inter-cluster pairs, but also preserves the distance of
non-neighbor points. Furthermore, we adopt an efficient se-
quential procedure to learn the hashing functions. The experi-
mental results on two large-scale benchmark datasets demon-
strate the effectiveness and efficiency of our method over oth-
er state-of-the-art unsupervised methods.

Index Terms— hashing, image retrieval, margin, non-
neighbor images, sequential procedure

1. INTRODUCTION

Thanks to the rapid advances of the Internet, we can easi-
ly share our pictures and images on the website for various
purposes, such as Flickr and YouTube. This makes hundred-
s of millions of images available online. Therefore there is
an emerging need of searching visually relevant images from
very huge databases. Content-Based Image Retrieval (CBIR)
methods have attracted substantial attentions over the past
decades. In a traditional CBIR system, given one query im-
age, it exhaustively searches the nearest neighbors over all
images in the database, which has a linear time complexity
and is thus not scalable when the number of images is very
large.
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Over the past decades, numerous techniques have been
proposed to accelerate the nearest neighbors search. For ex-
ample, many tree-based approximate nearest neighbor (ANN)
search techniques, such as kd-tree [1], metric tree [2], have
been developed. These techniques aim to speed up nearest
neighbors search and achieve promising performance in re-
al applications. Unfortunately, these methods don’t perform
very well in the condition of high-dimensional data. Recent-
ly, hashing methods have attracted considerable attentions in
computer vision community and has been successfully ap-
plied to computer vision, information retrieval, and data min-
ing. In these problems, hashing methods aim to encode high-
dimensional images into compact binary codes, while main-
taining aspects of the structure of the original data as much as
possible, so that the search in the Hamming space becomes
efficient and effective. The early exploration of hashing fo-
cuses on using random projections to construct randomized
hash functions. One of the most popular method is Locality
Sensitive Hashing (LSH) [3].

Following LSH, its several variations, including kernel-
ized LSH [4], mahalanobis distance [5], p-stable distribution-
s [6], which accommodate more distance metrics, have been
proposed. Another effective method called Spectral Hashing
(SH) [7] formulates the hashing problem as a particular for-
m of graph partition to seek a code with balanced partitioned
and uncorrelated bits. However, its assumption of uniform da-
ta distribution is usually not true and it doesn’t take the non-
neighbor points into consideration. Due to these drawbacks
of SH, LLSH [8] has been put forward which minimizes the
average Hamming distances and introduces negative values
into new local neighbor matrix to map neighbor items into
similar codes, and non-neighbor items to non-similar codes.
LLSH judges the neighbor items and non-neighbor items by
comparing their distances with a predefined threshold. But
this threshold is not reasonable and has no theoretical basis.

In this paper, we propose a Distance Preserving
Marginal Hashing for image retrieval to solve the prob-
lems of SH and LLSH mentioned above. Similar to LLSH,
we encode neighbor points into similar binary codes and map
non-neighbor points to non-similar codes. More specifical-
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Fig. 1. The experimental results on CIFAR10 dataset: (a)
Precision curves at different thresholds with the 10th, 20th,
60th, 70th, 90th percentile distance in A. (b) Hamming rank-
ing precision of the first 1000 returned samples with different
thresholds.

ly, we not only make the average Hamming distance mini-
mized for the intra-cluster pairs, and maximized for the inter-
cluster pairs, but also preserve the distance of non-neighbor
points. With the spectral relaxation, we apply a sequential
procedure to relax the orthogonality constraints and solve the
proposed model efficiently. The experimental results on two
large datasets demonstrate that our method achieves a promis-
ing performance.

The remainder of this paper is organized as follows. We
briefly introduce the related work in Section 2. Section 3
presents the formulation as well as our solving algorithm for
DPMH. Section 4 provides the experimental evaluation on re-
al image datasets. The conclusions are given in Section 5.

2. RELATED WORK

2.1. Spectral Hashing (SH)

Spectral Hashing (SH) is proposed by Weiss et al.. The goal
of this method is to learn binary codes by mapping neighbors
in the input space to similar codes in the Hamming space, as
well as enforcing the codes to be balanced and uncorrelated
to each other. The objective function that SH codes H(x) =
{hr(x)}, k= 1,..,K can be written as:

min > w(ag,ag)||H(wi) — H(z))|]? ey
i

s.t. hi(z;) € {-1,1}
th(xi) =0
zhk(xi)hl(xi) =0,k#1

Here W = (w;j)nxn With w;; = exp(—||z; — z;[|*/0?) is
the graph affinity matrix, where o is the bandwidth parame-
ter. For a single bit (K = 1), the solution for above optimiza-
tion (1) is equivalent to balanced graph partitioning and is

NP hard. The combination of K -bit balanced partition makes
it more difficult. The above optimization can be solved by
spectral graph analysis [9] with relaxation of the constraints.
Furthermore, after assuming a uniform data distribution, the
out-of-sample extension problem can be efficiently overcome
by a closed-form solution [7]. Along the principal directions
of the data, the final SH algorithm can produce very compact
hash codes by thresholding with a nonlinear function.

2.2. Local Linear Spectral Hashing (LLSH)

In order to overcome the limitation of SH, LLSH has recently
been proposed to solve this problem. The goal of LLSH is to
minimize the following objective function:

min Y Aylly; -y, (@)
i,

s.t. Y e {-1,1}"™*"
17y =0
Y'Y = nl

Here, Y is the 7-bit codes of n points, and y, € {—1,1}" is
the ith row in Y. The difference between LLSH and SH is the
affinity matrix. The size of the affinity matrix in SHis nxn. It
is intractable when n is very large. However, LLSH uses a lo-
cal affinity matrix A constructed from m samples, whose size
is m x m(m < n). LLSH introduces negative values into the
local affinity matrix and judges neighbors and non-neighbors
based on a threshold which is the 10th percentile distance in
A calculated with Ly norm. Thus, the point pair whose dis-
tance is close to the threshold will be inevitably classified to
either the neighbor points or non-neighbors points. Fig.1 il-
lustrates that the experimental results significantly fluctuate
with small change of thresholds. Note that when the number
of retrieved samples is 100, the range of precision varied at
different thresholds is more than 0.1. Hence, it is not reason-
able to set the 10th percentile distance in affinity matrix as a
threshold.

3. DISTANCE PRESERVING MARGINAL HASHING

This section presents the proposed unsupervised method Dis-
tance Preserving Marginal Hashing. For the first step, we ap-
ply the Principal Component Analysis (PCA) [10] to reduce
the original data to appropriate dimensions. The core part
of our method is in the second step detailed in Section 3.2,
where we try to preserve the neighbor and non-neighbor rela-
tionships in the projection data. In Section 3.3, a sequential
procedure is applied to solve the proposed model and learn
the projection directions.

Let us first introduce some notations. Given a data set X
=11, 29, ..., 2,]T € R and assuming X is zero-centered,
ie,>. ,x; = 0, our goal is to map each point z; to a
K-dimensional binary code y; € {—1,+1}%. In this paper,
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Fig. 2. The adjacency relationships between the marginal data
pairs from different clusters.

we restrict the transformation to a linear one. Thus, we can
obtain the hash code y; of the sample x; by a sign function as
follows:

yi = sgn(z; W) 3)

where W = [wy, ..., wx| € R¥*X is the projection matrix that
we need to learn.

3.1. Dimensionality Reduction by PCA

In our method, we first project the data set into m-
dimensional subspace by PCA:
max (WL X' XW,e,) )

pca

s.t. Wz;l;aWpca =Lnxm

where Wyeq = (w1, ..., wp] € RI>™ denotes the transforma-
tion matrix of PCA, ¢r(-) denotes the matrix trace. Here m is
larger than K so that we can remove some redundant infor-
mation while without losing too much information. This step
can increase the robustness and accelerate the method. We
denote the data matrix after PCA projection as X = XW,.,.
The subsequent processing will be made on the projected data
X.

3.2. DPMH Formulation

As mentioned above, we intend to map the points from the
same cluster to binary codes that are as close as possible,
while those from different clusters to binary codes that are
far away from each other, and at the same time we preserve
the Hamming distance of non-neighbor points. Since we have
no label information, we first obtain u clusters via clustering
algorithm such as K-means. Let 7. and n. denote the index
set and number of the samples belonging to the c¢t* cluster
respectively.

Inspired by Marginal Fisher Analysis [11], we make use
of neighbor relationships of the points in the same cluster and

marginal point pairs from different clusters to achieve intra-
cluster aggregation and inter-cluster separability.

Apparently, the data pairs in the same cluster have the
neighbor relationships, we map these similar points to similar
binary codes within a small Hamming distance. We construct
an adjacency matrix B, whose entry is defined as:

. . + . . + .
bij:{ 1, 1fz€Nk1(j)07'j€Nk1(z) )

0, otherwise

here, N, ,jl (7) indicates the index set of the k; nearest neigh-
bors of the sample x; in the same cluster. To realize intra-
cluster aggregation, we minimize the following objection
function [12]:

min ) bijlly: — ;I (©)

]

Empirically, if x; and z; are similar, then y; and y; will be
close as well. By substituting Y with sgn(XW), we apply
the spectral relaxation trick to drop the sign functions, then
Eq.(6) becomes an optimization problem for solving W:

min tr(WTXTL,XW) 7

where L, = D, — B is the graph Laplacian [13], D, =
diag(Bl,x1).

Furthermore, considering the neighbor relationships be-
tween marginal data pairs from different clusters, we define a
similarity matrix S as below:

L,
Sij = 0’

Here, Ei, (c) is a set of data pairs that are the ko nearest pairs
among the set {(¢,7),7 € m.,j & m.}. For each cluster c, if
the pair (7, ) is one of the ko shortest pairs among the set
{(1,4),i € me,j & m}, we set s;; = 1, otherwise, s;; =
0. As Fig.2 shows, the adjacency relationships between the
marginal data pairs are taken into account for separating the
clusters. The problem of solving W for inter-cluster separa-
bility is formulated as:

if (4, j) € Ek,(ci) or (i,7) € Ex,(cj)
otherwise

®)

max Y sijlly; — il ©)
.3
Applying similar spectral relaxation to problem (9), we have
another optimization problem :

max tr(WIXTL,XW) (10)

where Ly = Ds; — S, D = diag(S1,x1).

Having considered the neighbor relationships of the data
pairs in the same cluster and marginal pair points from differ-
ent clusters, we also need to pay close attention to the non-
neighbor relationships to preserve the Hamming distance of
non-neighbor points. Suppose p;; is the Euclidean distance



Algorithm 1 Distance Preserved Marginal Hashing (DPMH)
Input: data X = [x1,Xo,- -
number of hash bits K.
Output: projection matrix W.
1: Use PCA to project the data set into m dimensions, the
project matrix Wy, € R4*™ ig generated by (4), then
X =XWpea
2: Constructing the matrix S,, by X Tr,X, and S; by
XT(Ls+ L)X, where Ly, Lg, L, are the graph Lapla-
cian.
3. w; « the largest eigenvector of (S,,)~!'S;.
4: fori =2,..., K do
5: w; 4+ the largest eigenvector of matrix (S, +
Ny T ww] ) TS,
6: end for
7. Get W* = [wy, ..., wg]| € R™* XK,
8: The final linear projection direction is W = W, W*

,X,]"; parameters ,7 and ~;

between z;, x; in the original data space, we define a distance
matrix P = (p;;)nxn. Then, we maximize the following ob-
jective function:

max Y pllyi — vl (11)
ij
Intuitively, Eq.(11) implies that the farther data pair is, the
larger the hamming distance ||y; — y;|| is. Hence, we can
preserve the Hamming distance of non-neighbor points. With
the relaxation, problem (11) becomes:

max tr(WTXTL,XW) (12)

where L, = D, — P, D,, = diag(P1,x1).

In summary, getting hashing project W, we should not
only minimize (7), but simultaneously maximize (10), (12).
The formulation of our hashing is:

tT(WTStW)

W B (WTS, W) (13)

where S; = X7(Ls + L)X, Sy = XT Ly X. Such formu-
lation forces the learned hash functions to preserve the Ham-
ming distance of point pairs and separate the points in differ-
ent clusters, while mapping similar points into close binary
codes according to the adjacency relationship.

3.3. An Efficient Algorithm for Solving DPMH

Problem (13) can be easily solved by solving the following
generalized eigendecomposition problem:

S, W =S, WA (14)

However, such a method doesn’t take the independence of the
hash bits into consideration. Motivated by SH, we would like

the hash bits to be independent and then relax the pairwise
decorrelation of bits Y7Y = nl by imposing the constraints
WTW = 1as in [14], which requires all the projection direc-
tions to be unite vectors and mutually orthogonal. Thus, the
relaxed problem can be expressed as :

t?"(WTStW)
B (WS, W) 1)

s.t. wWTw =1

Actually the strict orthogonality constrains don’t perform
well, so we learn the hash functions by adopting a sequen-
tial procedure inspired by [15] to relax the strict orthogo-
nality constrains. We learn one projection w; by gradually
reducing the correlation with previously learned projections
Wi—1,...,wi. Thus, we add it as a penalty term to the objec-
tive function and determine w; by solving:

g w,
max - Wi L_tiul — (16)
wi w; Sww; + 772]':1 A (wz wj)2
s.t. wi w; =1,

where v € (0, 1) is a weight parameter which is used for pre-
senting the correlation between w; and the earlier-computed
projection vectors, and 7 is a tradeoff parameter. Finally, our
sequential objective function in Eq.(16) can be rewritten as:

TS, w,
max =~ i DtWi (17)
Wi wiTS%)wi

T —
s.1. w,; w; =1,

where S = S, +17 Z;;ll Y wjw]

By solving (17), we can get the projection direction-
s W* = |wi,..,wg] € R™¥ which map the dataset
X € R™™ to K-dimensional dataset X W*. By combining
the first step, W = W.,W* € R¥*K s the final projection
matrix we want. The whole procedure of DPMH is outlined

in Algorithm 1.

3.4. Complexity Analysis

The computational cost of our DPMH contains two parts, the
offline and online part. The offline calculation mainly con-
tains three phases : the first phase is K-means, the second
phase is PCA and the last phase is solving DPMH. The time
complexity of K-means and PCA are O(unt) (¢ is the num-
ber of iterations) and O(min(n?K,nK?)). In order to derive
matrices B, S, P, the time complexity of the matrices calcu-
lations is O(n?). Thus, the time complexity of the offline
part is O (unt + min(n?K,nK?) +n?). Although it is time-
consuming to obtain, the calculation of matrices B, P can be
parallelized. The online part is the learning procedure. In this
sequential learning procedure, matrix inversion and eigenval-
ue decomposition both cost O(m3) (m < d), then the total
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Fig. 3. Experimental results on on CIFAR-10 datasets and
STL-10 datasets. a) and b): Precision of the first 1000 re-
trieved samples; ¢) and d): The precision-recall results at 128
bits on CIFAR-10 datasets and STL-10 datasets.

time complexity of this online part is O(K(m3 + Km?)).
Hence, this algorithm is fairly scalable since its time com-
plexity only relies on the dimensionality m and the number
of bits K.

4. EXPERIMENTS

In this section, we evaluate our method on two large scale
datasets in our experiment.

CIFAR-10: It consists of 60,000 32 x 32 color images in
10 classes which are manually labeled with 6,000 images per
class.! The entire dataset is partitioned into two parts: 50,000
images for training and 10,000 for testing. This dataset has
been used in [8,18]. We choose 50,000 images as our training
set and 1,000 from 10,000 test images as our test set, then
convert original images to 512-dim GIST feature [16].

STL-10: It is an image recognition dataset, which has 10
classes, 5,000 training images, 8,000 test images and 100,000
unlabeled images.? In our experiment, images are represent-
ed as 384-dimensional grayscale GIST descriptors [16]. This
dataset has been used in [8]. We choose 100,000 images for
training and 1,000 for testing.

Hashing methods can be divided into three categories: su-
pervised, semi-supervised and unsupervised. For fair com-
parison, we compare the proposed DPMH with the following

Thttp://www.cs.toronto.edu/ kriz/cifar.html
Zhttp://www.stanford.edu/ acoates/st110/
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state-of-the-art methods : PCAH [14], LSH, SH, and LLSH
(we use the variant of sequential projection learning hashing),
AGH [17] (we use its two-layer hash functions to generate
hash bits), ITQ [18]. As in dimension reduction algorithms
such as ISOMAP, LLE, and Laplacian Eigenmap, how to set
parameters k1 and ks is still an open problem. In our exper-
iments, we set the parameters k; and ks, just as the method
MFA [11] did. For our method, we empirically sample five
values of k; between two and (min.{n.}-1) and choose the
best ko between 200 and 5n. at sampled intervals of 20. The
other parameters are given as ¢ = 10, u = 400, n = 103, and
=0.9.

For quantitative evaluation, the retrieval results are as-
sessed with Hamming ranking. The precision of the first 1000
retrieved samples with different hash bits is recorded. Fig.3
(a) and (b) show the results in details. Fig.3 (c) and (d) show
the precision-recall results at 128 bits on two datesets. Fig.4
illustrates the precision curves with different number of re-
trieved samples at 96, 128 bits respectively. From these fig-
ures, we find that our method achieves accuracy comparable
to ITQ. Our method performs better especially for higher bits
because of relaxation of the orthogonality constraints, while
the improvement of performance of other methods including
ITQ is limited with higher bits. LLSH, which adopts a se-
quential procedure to relax the orthogonality constrains, is al-
ways a better method than other methods except ITQ. But in
most cases, DPMH is superior to LLSH. We also can see that
our method significantly outperforms SH and AGH which on-



ly preserve the neighborhood relationships. PCAH has al-
most the worst performance, since the maximum variance
projection can hardly preserve locality structure. Our method,
which not only preserves local similarity but also forces dis-
similar data apart in the low-dimensional space, achieves the
best results in most cases.

5. CONCLUSIONS

In order to capture meaningful local information, most ex-
isting hashing methods have been developed to preserve the
neighbor relationships while ignoring the non-neighbor rela-
tionships. In this paper, we propose a novel hashing method
called DPMH which takes advantage of the neighbor and non-
neighbor points to learn hash codes. The experimental result-
s on two large-scale benchmark datasets show better perfor-
mance of DPMH over the state-of-the-art methods. Our ap-
proach which uses linear hash functions can be generalized to
other hash functions, such as kernel hash functions or multi-
layers neural nets. On the other hand, although our method
is entirely unsupervised in this work, it can be easily extend-
ed to semi-supervised or supervised scenarios for semantic
neighbor search.
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