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itive, neutral and negative emotions. The results
demonstrate that neural signatures associated with
positive, neutral and negative emotions do exist. The
lateral temporal areas activate more for positive e-
motions than negative emotions in beta and gamma
bands, and the energy of the prefrontal area is in-
creased for negative emotions over positive emotions
in beta and gamma bands. While the neural patterns
of neutral emotions are similar to those of negative
emotions, which both show less activation in the tem-
poral areas, the neural patterns of neutral emotions
have higher alpha responses at parietal and occipital
sites. For negative emotions, the neural patterns have
significant higher delta responses at parietal and oc-
cipital sites and significantly higher gamma responses
at prefrontal sites. The existing studies [58], [59] have
shown that EEG alpha activity reflects attentional
processing and that beta activity reflects emotional
and cognitive processes. When participants watched
neutral stimuli, they tended to be more relaxed and
less attentional, which evoked alpha responses. For
positive emotion processing, the energy of the beta
and gamma responses was increased. The findings
of these neural patterns are consistent with previous
emotion studies [14], [17], [41], [58], [60].

5.2.3 Dimensionality Reduction

As discussed above, the brain activities of emotion
processing have critical frequency bands and brain ar-
eas, which imply that there must be a low-dimension
manifold structure for emotion-related EEG signals.
Therefore, we investigate how the dimension of fea-
tures will affect the performance of emotion recogni-
tion. Here, we compare two dimensionality reduction
algorithms, the principle component analysis (PCA)
algorithm and the minimal redundancy maximal rel-
evance (MRMR) algorithm, with DE features of 310
dimensions as inputs and GELM as a classifier.

We find that dimensionality reduction does not
affect the performance of our model greatly. For the
PCA algorithm, when the dimension is reduced to
210, the accuracy drops from 91.07% to 88.46% and
then reaches a local maximum value of 89.57% at the
dimension of 160. For the MRMR algorithm, the ac-
curacies vary slightly with lower dimension features.
Comparing PCA and MRMR, it is better to apply
the MRMR algorithm for EEG-based emotion recog-
nition. Because the MRMR algorithm yields the best
emotion-relevant and minimal redundancy features,
it also preserves original domain information such as
channel and frequency bands, which have the most
discriminative information for emotion recognition
after transformation. This discovery helps us reduce
the computations required for the features and the
complexity of the computational models.

Fig. 8 presents the distribution of the 20 top
participant-independent features selected using the

(a) Beta Band (b) Gamma Band
One electrode location “FT8” is from alpha frequency band

Fig. 8. Distribution of the 20 top participant-
independent features selected using the correlation
coefficients.

TABLE 6
The average accuracies (%) of our emotion model

across sessions.

Stats. Train Test
First Second Third

Mean
First 90.83 72.55 67.22
Second 75.86 88.22 76.62
Third 76.28 78.17 87.80

Std.
First 8.64 10.29 10.42
Second 7.71 8.59 15.34
Third 11.47 13.41 10.97

correlation coefficient. These 20 top features were se-
lected from the alpha frequency bands at the electrode
location FT8, the beta frequency bands at electrode
locations AF4, F6, F8, FT7, FC5, FC6, FT8, T7, and
TP7 and the gamma frequency band at the electrode
locations FP2, AF4, F4, F6, F8, FT7, FC5, FC6, T7, and
C5. These selected features are mostly from the beta
and gamma frequency bands and at the lateral tem-
poral and frontal brain areas, which is consistent with
the above findings for the time frequency analysis.

5.2.4 Stability of the Emotion Recognition Model over
Time

It should be noted that SEED consists of 15 partic-
ipants, and each participant performed the experi-
ments three times. The interval between two sessions
is one week or longer. By using SEED, we evaluated
whether the performance of our emotion recognition
model is stable with time. We split the data from
different sessions for one participant into training
data and testing data and trained the model using
GELM. The features employed here are the DE fea-
tures extracted from the total frequency bands after
LDS smoothing.

The results are presented in Tables 6 and 7. From the
mean values of the accuracy and standard deviation,
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TABLE 7
The classification accuracies (%) of the training and test data from different sessions using GELM.

Participant Train Test Participant Train Test
1st 2nd 3rd 1st 2nd 3rd

#1
1st 91.62 60.26 60.26

#2
1st 100.00 68.28 60.84

2nd 68.28 80.2 68.28 2nd 85.12 71.68 81.65
3rd 68.28 52.53 92.56 3rd 85.12 80.42 90.82

#3
1st 95.95 100.00 75.51

#4
1st 100.00 68.28 68.28

2nd 76.95 97.04 82.95 2nd 83.02 100.00 91.69
3rd 80.20 88.08 68.93 3rd 76.81 100.00 100.00

#5
1st 75.94 59.61 61.05

#6
1st 79.70 71.60 53.83

2nd 80.78 75.00 69.65 2nd 67.92 80.78 55.71
3rd 56.50 54.48 98.12 3rd 70.30 71.75 86.27

#7
1st 90.39 66.69 66.47

#8
1st 75.07 67.77 51.01

2nd 67.49 95.81 59.83 2nd 72.83 91.33 45.95
3rd 83.60 81.79 74.93 3rd 59.61 75.94 73.05

#9
1st 91.98 80.56 78.47

#10
1st 85.12 70.38 69.29

2nd 81.36 100.00 95.95 2nd 60.12 86.05 87.14
3rd 93.42 95.52 93.42 3rd 87.07 83.02 95.74

#11
1st 96.24 67.99 76.01

#12
1st 86.78 74.86 63.29

2nd 77.89 85.33 95.59 2nd 84.39 91.62 68.06
3rd 65.39 66.04 100.00 3rd 75.58 83.45 73.48

#13
1st 93.71 76.88 92.63

#14
1st 100.00 86.27 64.02

2nd 70.38 90.75 94.00 2nd 76.23 86.42 77.67
3rd 84.10 87.21 100.00 3rd 91.69 82.15 89.31

#15
1st 100.00 68.79 67.34
2nd 85.12 91.26 75.14
3rd 66.47 70.16 80.35

’1st’, ’2nd’, and ’3rd’ denote the data obtained from the first, second, and third experiments, respectively, for a participant.

we find that the accuracies obtained with the training
set and test set from the same sessions are much
higher than those obtained from different sessions.
The performance of the emotion recognition model
is better with training data and test data obtained
from sessions performed for a short time. In Table 6, a
comparative mean classification accuracy of 79.28% is
achieved using our emotion recognition model with
training and test datasets from different sessions. This
result implies that the relation between the variation
of the emotional states and the EEG signal is stable
for one person over a period of time. With the passage
of time, the performance of the model may become
worse. Therefore, the adaption of the computational
model should be further studied in the future.

We now consider the situation of cross-participants
and examine the participant-independent emotion
recognition model. We employ a leave-one-out cross-
validation to investigate the classification perfor-
mance in a participant-independent approach and
use linear SVM classifier with DE features from five
frequency bands as inputs. The average accuracy
and standard deviation with participant-independent
features are 60.93% and 13.95%, respectively. These
results indicate that the participant-independent fea-
tures are relatively stable and that it is possible to
build a common emotion recognition model. How-
ever, on the other hand, the factors of individual
differences should be considered to build a more

robust affective computing model.
We have investigated how stable our emotion

recognition model is across both participants and ses-
sions, and we find that the performance of the model
across participants and sessions is worse than that for
a single experiment. In general, we want to train the
model on the EEG data from a set of participants or
sessions and perform inference on the new data from
other unseen participants or sessions. However, this
is technically difficult due to individual differences
across participants with the inherent variability of the
EEG measurements such as environmental variables
[61]. Although different emotions share some com-
monalities of neural patterns as we have reported
above, they still contain some individual differences
for different participants and different sessions, which
may lead to changes in the underlying probability
distribution from participant to participant or from
session to session. This is why the average accuracy
of the classifiers trained and tested on each individual
participant or session is much higher than that of a
classifier trained on a set of participants or sessions
and tested on other participants or sessions.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have systematically evaluated the
performance of different popular methods for feature
extraction, feature selection, feature smoothing and
pattern classification for emotion recognition on our
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SEED dataset and the public DEAP dataset. From the
experimental results, we have found that GELM with
the differential entropy features outperforms other
methods. We have achieved the best average classifi-
cation accuracies of 69.67% and 91.07% on the DEAP
and SEED datasets, respectively. The comparative
classification accuracies achieved show the reliability
and superior performance of our machine learning
methods in comparison with the existing approaches.
We have utilized these methods to investigate the
stability of neural patterns over time.

On our SEED dataset, an average classification ac-
curacy of 79.28% is achieved with training and testing
datasets from different sessions. The experimental
results indicate that neural signatures and stable EEG
patterns associated with positive, neutral and nega-
tive emotions do exist. We have found that the lateral
temporal areas activate more for positive emotion-
s than negative emotions in the beta and gamma
bands, the neural patterns of neutral emotions have
higher alpha responses at parietal and occipital sites,
and the negative emotion patterns have significant
higher delta responses at parietal and occipital sites
and higher gamma responses at prefrontal sites. The
experiment results also indicate that the stable EEG
patterns across sessions exhibit consistency among
repeated EEG measurements of the same participant.

In this study, we investigated the stable neural pat-
terns of three emotions: positive, neutral and negative.
For future work, more categories of emotions will be
studied, and we will evaluate extending the general-
ization of our proposed approach to more categories
of emotions. The order of presentation is the same
for different sessions in this study. We are developing
a larger stimuli database for emotion experiments
and make the stimuli different for different sessions.
Moreover, several important factors such as gender,
age, and race should be considered. To render the au-
tomatic emotion recognition models to be adaptable,
factors such as individual differences and temporal
evolution should be considered. One possible way
of dealing with these problems is to adopt transfer
learning techniques [62]–[65].
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