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Bilingual word embedding has been shown to be helpful for Statistical Machine Translation (SMT). However,
most existing methods suffer from two obvious drawbacks. First, they only focus on simple contexts such as an
entire document or a fixed sized sliding window to build word embedding and ignore latent useful information
from the selected context. Second, the word sense but not the word should be the minimal semantic unit;
however, most existing methods still use word representation.

To overcome these drawbacks, this paper presents a novel Graph-based Bilingual Word Embedding (GBWE)
method that projects bilingual word senses into a multi-dimensional semantic space. First, a bilingual word
co-occurrence graph is constructed using the co-occurrence and pointwise mutual information between the
words. Then, maximum complete sub-graphs (cliques), which play the role of a minimal unit for bilingual
sense representation, are dynamically extracted according to the contextual information. Consequently,
correspondence analysis, principal component analyses, and neural networks are used to summarize the
clique-word matrix into lower dimensions to build the embedding model.

Without contextual information, the proposed GBWE can be applied to lexical translation. In addition,
given the contextual information, GBWE is able to give a dynamic solution for bilingual word representations,
which can be applied to phrase translation and generation. Empirical results show that GBWE can enhance the
performance of lexical translation, as well as Chinese/French-to-English and Chinese-to-Japanese phrase-based
SMT tasks (IWSLT, NTCIR, NIST, and WAT).
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1 INTRODUCTION
Bilingual word embedding can enhance many cross-lingual natural language processing tasks, such
as lexical translation, cross-lingual document classification, and Statistical Machine Translation
(SMT) [23, 24, 40, 42, 51, 54, 69, 78, 89]. Bilingual word embedding can be considered to be a cross-
lingual projection [76, 87] of monolingual word embedding [52, 59]. According to the cross-lingual
projection object, there are three primary types of bilingual embedding methods.
1) Each language is embedded separately, and then the transformation of projecting one em-

bedding onto the other are learned using word translation pairs. Mikolov et al. proposed a linear
projection method [51], which was further extended with a normalized objective method [81] and
a canonical correlation analysis [19, 46]. Zhang et al. propose a series of methods, such as earth
mover and adversarial training, for cross-lingual projection and word embedding transformation
by using Non-Parallel Data [86–88].

2) Parallel sentence/document-aligned corpora are used for learning word or phrase representa-
tion [18]. Recently, Neural Network (NN)-based projection methods have been widely used for this
type of embedding [21, 26, 27, 42, 85]. One typical method is to use the aligned phrase pair from
phrase-table to train the neural network translation model and estimate the phrase translation
probabilities [21, 67].
3) Monolingual embedding and bilingual projection objectives are optimized jointly [1, 36, 48,

68, 77, 90]. Typically, a large monolingual corpus for monolingual embedding and a small parallel
sentence-aligned corpus for bilingual projection are needed [16, 23].
Most of these methods use bag-of-word, n-grams, skip-grams, or other local co-occurrence to

exploit monolingual word embedding and then use various cross-lingual projection methods to
summarize the bilingual relationship. The question that arises is: Can we construct the cross-lingual
relationship and monolingual word embedding together?
It is known that sense gives a more exact meaning formalization than the word itself and a

graph can obtain a more global relationship than a contextual relationship. For a better and more
exact semantic representation, we propose Bilingual Contexonym Cliques (BCCs), which are
extracted from a bilingual Pointwise Mutual Information (PMI) based word co-occurrence graph.
BCCs play the role of a minimal unit for bilingual sense representation. Several dimension reduction
methods are used to summarize the BCC-word matrix into lower dimensional vectors for word
representation. This study extends a previous monolingual word embedding method [62] that
requires bilingual lexicons or synonyms for bilingual mapping1 and has never been applied to SMT.

The remainder of this paper is organized as follows. We discuss related bilingual word embedding
methods in Section 2. The proposed Graph-based Bilingual Word Embedding (GBWE) method
is introduced in Section 3. The GBWE is applied to lexical translation as preliminary experiment in

1http://dico.isc.cnrs.fr/en/index.html
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Section 4. With contextual information, GBWE can estimate the phrase translation probability (Sec-
tion 5) and generate additional phrase pairs (Section 6) to enhance the SMT. The SMT experiments
and analyses are given in Section 7. We conclude our work in Section 8.

2 RELATEDWORK
Word embedding for vector representation is usually built in two-steps [4, 66, 79]. The first step
concerns selecting the detailed contexts related to a given word. The second step is to summarize
the relationship between the word and its contexts into lower dimensions. For bilingual word
embedding, it is also necessary to project from one language space to another.

2.1 Context Selection
For context selection, four categories can be identified.

1) The first category extracts the word or word relationship information from the full text, which
is usually regarded as document level processing and includes bag-of-words, Vector Space Models,
Latent Semantic Analysis [41], and Latent Dirichlet Allocation [8].
2) The second category uses a sliding window, such as n-grams, skip-grams or other local

co-occurrence relationships [44, 50, 52, 59, 90].
3) The third category used sub-word unit such as characters or the dictionary as the “context”

information [61, 74, 83]. In addition to these methods, there are several other methods that attempt
to solve the memory and space problem in word embedding [45, 63], cross-domain word embedding
[82].
4) The fourth category, which has seldom been considered, uses a much more sophisticated

graph style context. Ploux and Ji [62] described a graph based semantic matching model using
bilingual lexicons and monolingual synonyms2. They then represented words using individual
monolingual co-occurrences [34]. Saluja et al. [64] proposed a graph based method to generate
translation candidates using monolingual co-occurrences. Oshikiri et al. proposed spectral graph
based cross-lingual word embeddings [58]. This paper would extend the graph-based monolingual
word embedding method [62] to bilingual word embedding with parallel sentences for SMT.

2.2 Relationship Summarizing
For relationship summarizing (dimension reduction), NN have recently become very popular for
word/phrase embedding and SMT [14, 17, 21, 21, 29, 42, 50, 52, 71, 73, 85, 90]. In addition, there are
also several studies that use matrix factorization [59, 68] for word embedding, such as Singular-
Value Decomposition (SVD) [65], Correspondence Analysis (CA) [34, 62], Principal Component
Analysis (PCA) [43, 45] and canonical correlation analysis [19, 46].

Most of the above existing methods only apply one dimension reduction method. This paper
would introduce PCA, CA and NN methods to summarize the BCC-word relationship.

2.3 Bilingual Projection
One straightforward way is to use some seed translation pairs as gold standard to learn the
transformation matrix between two language spaces [51]. Canonical correlation analysis [19, 46]
was then be applied to learn this transformation matrix. Several neural network-based methods
were proposed to learn bilingual word/phrase embedding using parallel sentences [21, 26, 27, 42, 85].

Recently, unsupervised methods were investigated, Cao et al. proposed a distribution matching
method to learn bilingual word embeddings from monolingual data [11] . Artetxe et al. exploited
the structural similarity of embedding spaces, and worked with as little bilingual evidence as
2http://dico.isc.cnrs.fr
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a 25 word dictionary or even an automatically generated list of numerals [2]. Earth mover and
adversarial training using Non-Parallel Data were also proposed for cross-lingual projection and
word embedding transformation [86–88].

In this paper, we use the bilingual contexonym cliques to represent the bilingual word relationship.

2.4 Multi-sense Representations
It is known that a word may belong to various senses (i.e. be polysemous). There are several studies
that focus on sense-specific word embedding. Guo et al. [25] propose an NN based recurrent neural
network based word embedding method that makes use of previous contextual word information.
Jauhar et al. [32] used semantic vector space models for multi-sense representation learning. Šuster
et al. [72] learned multi-sense embedding with discrete autoencoders using both monolingual and
bilingual information. Iacobacci et al. [30, 31] proposed SensEmbed, which can be applied to both
word and relational similarities.

The key to distinguishing word sense is the contextual information, which is applied to nearly
all of the above methods. For lexicon translation, we do not make use of contextual information;
however, for SMT, we need to consider contextual information. In this paper, we evaluate the
proposed method in both lexical translation and SMT.

2.5 Neural Machine Translation
Recently, Neural Machine Translation (NMT) has set new state-of-the-art benchmarks on many
translation tasks [3, 14, 33, 49, 75, 84]. In NMT, word embedding, alignment (attention) and transla-
tion prediction are jointly learned by a neural network; therefore, independent word embedding is
not so necessary in NMT as that in SMT. However, SMT still outperforms NMT in some low-resource
language pair and domain-specific tasks [39].

3 GRAPH-BASED BILINGUALWORD EMBEDDING
We first illustrate the whole pipeline of the graph-based bilingual word embedding in Fig. 1.

Co-occurrence Graph

Edges Pruning

Pruned Graph

Input:

Word with context

Nodes Selection

& Cliques Extraction

Clique-Word

Matrix

Dimension Reduction 

(CA)

Output: Vectors of

Words&Co-occurrences

Statically Training

Dynamically Representing

Fig. 1. The whole pipeline of the graph-based bilingual word embedding (CA as dimension reduction for
example). The statically training includes Section 3.1, where the bilingual co-occurrence graph is constructed
using the entire corpus. The dynamically representing includes Sections 3.2 and 3.3, where the clique-word
matrix and dimension reduction are conducted according to the input word and its context.
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3.1 Bilingual Co-occurrence Graph Construction
An edge-weighted graph can be derived from a bilingual corpus through formally regarding words
by nodes (vertices) and their co-occurrence relationships as edges,

G = {W ,E}, (1)
whereW is the node set and E is the set of edges weighted by a co-occurrence relationship defined
as follows. For a given bilingual parallel corpus, each source sentence SF = (wf1 ,wf2 , ...,wfk ) and
its corresponding target sentence SE = (we1 ,we2 , ...,wel ) are combined to construct a Bilingual
Sentence (BS) = (wf1 ,wf2 , ...,wfk ,we1 ,we2 , ...,wel ). For words (either source or target words) wi
andw j , if they are in the same BS , they are called co-occurrences and are marked ni and nj on the
graph G. Because the node ni in G is always referred as word wi , we will not distinguish
between them in this paper. The Edge Weight (EW ) connecting nodes ni and nj is defined by a
modified Pointwise Mutual Information (PMI) measure,

EW =
Co(ni ,nj )

fr(ni ) × fr(nj )
, (2)

where Co(ni ,nj ) is the co-occurrence counting of ni and nj and fr(n) stands for how many times n
occurs in the corpus.

For nearly all languages, stop words such as of, a, the in English or de, une, la in French that have
a wide distribution result in most nodes in the graph being unnecessarily connected. Therefore, a
filter is set to prune these non-informative connecting edges [9] with an EW less than a threshold3
of γ , which is tuned using the development data to allow the resulting graph to retain the more
useful edges based on the empirical results of a given task.

3.2 Bilingual Contexonym Clique Extraction
In this paper, Amaximum clique defines a maximum complete sub-graph [47]. If every two
nodes in the subset of nodes with edges in the graph are connected to each other by an edge, this
subset of nodes forms a clique. Suppose that both N1 and N2 are complete graphs in G. If N1 ⊂ N2,
N1 cannot be a maximum clique. In the remainder of this paper, the “clique” indicates the maximum
clique.

Figure 2 illustrates an example of how to define cliques in an undirected graph. Figure 2 shows
that {n1,n2,n3,n4}, {n2,n5}, and {n5,n6,n7} form three cliques. However, {n1,n3,n4} is not a clique,
because it is a subset of {n1,n2,n3,n4}.

n1

n3

n2

n4

n5

n6

n7

Fig. 2. Three cliques are formed with {n1,n2,n3,n4} (in green), {n2,n5} (in red) and {n5,n6,n7} (in yellow).

3The tuning experiments of parameter γ will be further shown in Figure 5 of Section 7.3.1.
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Clique extraction is a non-trivial task. There are two reasons why some nodes in the graph may
need to be pruned prior to clique extraction. I) Sparsity of the graph. There are nodes that do not
connect to any input words (the words to be translated). Take Figure 2 as example, if the input word
is n2, the n6 and n7 do not connect to n2. Therefore, these nodes actually have no direct impact over
clique extraction or further word representations. II) Computational complexity. Graph problems
are primarily associated with high computational complexity such as finding all cliques in a graph
(the Clique Problem). The Clique Problem has been shown to be NP-complete [35]. Without any
pruning, it is time consuming or even impossible to find all the cliques in a graph built from a very
large corpus (such as millions of sentences).
For an input phrase (a word n and its contextual words {n1,n2, ...,ni , ...nt })4, only the co-

occurrence nodes (co-occurrence words) ni j of each ni (including n itself) are defined as useful5.
The set of nodes {ni j } with their weighted edges form an extracted graph Gextracted for further
clique extraction.

The number of nodes |Nextracted |, in the extracted graph Gextracted, is computed by

|Nextracted | =

�����⋃∀i, j{ni j }
����� . (3)

Take Figure 2 as example again, if the input word is n2, the Gextracted is {n1,n2,n3,n4,n5}. In
practice, |Nextracted | is much smaller than |V | (the vocabulary size of a bilingual corpus). For a
typical corpus (IWSLT in Section 7.1), |Nextracted | is approximately 371.2 on average and |V | is
162.3K. Therefore, clique extraction in practice is quite efficient because it works over a very small
graph6.

Table 1. Several example of BCCS.

Words BCCs
{employees_e, travail_f (work), unemployed_e, work_e }

work_e
{heures_f (hours), travaillent_f (to work, third-person plural form), travailler_f
(work), week_e, work_e }
{readers_e, work_e }...
{informations_f (information), journaux_f (newspapers), online_e, readers_e}

readers_e
{journaux_f (newspapers), lire_f (read), newspaper_e, presse_f (press), read-
ers_e, reading_e}
{readers_e, work_e}...

Note: The suffixes “_e” and “_f ” are used to indicate English or French, respectively. The English
words in parentheses are the corresponding translations.

Clique extraction may follow a standard routine [47]. Because the clique in this paper represents
the fine-gained bilingual sense of a word given a set of its contextual words, it is called a Bilingual
ContexonymClique (BCC). Similar butmore fine grained than a synset (a small group of synonyms
4For SMT tasks, the words in aligned phrases are used as contextual words, please refer to Section 5 for details.
5We can also use the immediate co-occurrence nodes as seed words and select more connected nodes (co-occurrence
words) with these seed words. However, empirical results show that the computational cost increases exponentially when
using these two-step co-occurrence nodes as input and that the performance does not improve. Therefore, we adopted the
immediate co-occurrence strategy in this paper.
6Please refer to Section 7.3.5 to see efficiency comparison in details.
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labeled as a concept) defined in WordNet [53], the BCC plays the role of a minimal unit for bilingual
meaning representation. Therefore, BCC-Word relationship can obtain a more exact semantic
relationship between a word and its senses, compared to using simple bag-of-words or sliding
window contexts.

Taking the word work_e (The suffixes “_e” and “_f ” are used to indicate English or French,
respectively) and readers_e as an example (without context), some of the BCCs (in alphabetical
order) are listed in Table 1. This shows that BCCs can distinguish multiply word meaning. The
BCC containing employees_e, travail_f (work) and unemployed_e may indicate the sense of job. The
BCC containing readers_e may indicate the sense of literature.
Note that edge pruning is static and that node selection is dynamic depending on the input

word sequences. The proposed node selection and clique extraction follows Ploux & Ji’s study
[62], except that we use a bilingual co-occurrence graph rather than monolingual synonym or
hypo(hypero)nym graphs. BCCs can be regarded as loose synsets because only strongly related
words can be nodes in a clique that possesses full connections and different senses will naturally
result in roughly different cliques from our empirical observations, even though noise or improper
connections also exist simultaneously.

3.3 Dimension Reduction & Semantic Spatial Representation
To obtain concise semantic vector representation, three dimension reduction methods are intro-
duced. Both Principal Component Analysis (PCA) [60] and Correspondence Analysis (CA) [28]
can summarize a set of possibly correlated variables into a smaller number of variables which is
also called principal components in PCA. All these variables are usually in a vector presentation,
therefore the processing is performed as a series of matrix transformations. The importance of
every output components may be measured by a predefined variable, which is variance in PCA
and is called inertia in CA. The most difference between them is that CA treats rows and columns
equivalently. For either method, we can select top ranked components according to their importance
measure so that dimension reduction can be achieved. Besides PCA and CA, we also apply a neural
network-based method to dimension reduction and obtain the principal dimensions.

3.3.1 Principal Component Analysis. In this paper, PCA was conducted over the clique-word
matrix constructed from the relationship between the BCCs and the words. An initial correspon-
dence matrix X = {xi j } is built, where xi j = 1 if wordi ∈ BCCj and 0 if not. Take the example in
Table 1 again, part of BCC-word initial matrix is shown in Table 2.

Table 2. A BCC-word initial matrix example.

BCC-Word word1 (work_e) word2 (travail_f ) word3 (employees_e) ...
BCC1 1 0 1
BCC2 1 1 0
BCC3 1 0 0
...

We want to linearly transform this matrix X (whose vectors are normalized to zero mean), into
another matrixY = PX , whose covariance matrixCY maximizes the diagonal entries and minimizes
the off-diagonal entries (the diagonal matrix):

CY =
(PX )(PX )T

n − 1
=

P(XXT )PT

n − 1
=

PSPT

n − 1
, (4)
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where S = XXT = EDET . E is an orthonormal matrix whose columns are the orthonormal
eigenvectors of S , and D is a diagonal matrix that has the eigenvalues of S as its (diagonal) entries.
By choosing the rows of P to be the eigenvectors of S , we ensure that P = ET and vice-versa. The
principal components (the rows of P ) are the eigenvectors of S , and in order of importance.

3.3.2 Correspondence Analysis. Similar to PCA, CA also determines the first n factors of a system
of orthogonal axes that capture the greatest amount of variance in the matrix. CA is primarily
applied to categorical rather than continuous data [5, 28]. It assesses the extent of matching between
two variables and determines the first n factors of a system of orthogonal axes that capture the
greatest amount of variance in the matrix. The first axis (or factor) captures the largest variations,
the second axis captures the second largest, and so on. CA has been applied to several related
semantic tasks [34, 62].
In this paper, PCA and CA use the same initial BCC-word matrix as original BCC-word matrix

X . A normalized correspondence matrix P = {pi j } is directly derived from X , where pi j = xi j/NX ,
and NX is

∑
i, j xi j (the grand total of all the elements in X ). Let the row and column marginal totals

of P be r and c , which are the vectors of the row and column masses, respectively, and let Dr and
Dc be the diagonal matrices of the row and column masses, respectively. The coordinates of the
row and column profiles with respect to the principal axes are computed by using the Singular
Value Decomposition (SVD).

The principal coordinates of rows F and columns G are:

F = Dr
− 1

2U Σ, G = Dc
− 1

2V Σ, (5)
whereU ,V and Σ (the diagonal matrix of the singular values in descending order) are derived from
the matrix of the standardized residuals S and the SVD,

S = U ΣV ∗ = Dr
− 1

2 (P − rc∗)Dc
− 1

2 , (6)
where ∗ denotes the conjugate transpose and U ∗U = V ∗V = I .

According to the above processes, CA projects the BCCs (F ) and words (G) into the semantic
geometric coordinates as vectors. The inertia χ 2/NM is used to measure the semantic variations of
the principal axes for F and G:

χ 2/NM =
∑
i

∑
j

(xi j − ric j )
2

ric j
. (7)

Following the standard setting of CA [5], the top principal dimensions (axes) (please refer to
Figure 4 for dimension tuning experiments) of the vectors are chosen for the word and clique
representation.

3.3.3 Neural Network (NN). We applied the NN-based Continuous Bag-of-Words (CBOW) Model
structure in word2vec [50], and BCC is considered to be bilingual Bag-of-Words. The difference
between CBOW and CA/PCA is that the model of CA/PCA is fixed and the NN parameters of
CBOW model should be trained before being using. Therefore, we need some samples to train the
CBOW model. The original monolingual CBOW use the monolingual words in the n-grams as the
input bag-of-words. In comparison, we use the bilingual words in BCCs as the input bag-of-words.

For CA and PCA, only the BCCs related with one word itself or it context are used to construct
the BCC-word matrix. However, the NN-based method cannot be directly applied to this size of
BCC-word matrix summarization as can PCA/CA, because only using these BCCs is too sparse
(there is only several hundreds of BCCs for each word on average) to train a robust CBOW model
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for each word. Therefore, we use the BCCs for all of the words to train a single CBOWmodel for all
of the words. That is, all the BCCs of each word in the corpus are pre-computed, and they are then
used as a whole as the input of the CBOW Model. The window size of CBOW is set to eight. We
discard the BCCs containing more than eight words and set the projections of the missing words to
zero for BCCs containing less than eight words.

Graph-based Bilingual Word Embedding (GBWE) is consequently constructed from one of
these principal dimensions (PCA, CA, or NN). In short, a word (itself or with its context) is used
as input for the GBWE and vectors of the word and its (it self’s or together with its context’s)
bilingual co-occurrence words are output.

3.4 Visualization
To visualize the results, the top two dimensions were chosen and illustrated via a spatial map (CA
is adopted for example). We only present a few typical words due to the limited space.

work_e

travail_f

workplace_e

travailler_f

professionnelle_f

vacation_e

heures_f

week_e

longues_f

hours_e
partiel_f

vacances_f

unemployed_e
travaillent_f

employed_e

dur_f
travel_e

foyer_f

concert_f
travaille_f

carmen_e carmen_f

talented_e collaborer_f
formuler_f

consacrent_f

experiments_e
marcher_f

reinhart_e

dirty_e lecteurs_f reinhart_f

guiding_e readers_e

familiales_f

concilier_f

salary_e
excellent_f

visas_f rigides_f

decent_e
productif_f

rewarding_e
apprentissage_f

permits_e
duration_e

graduates_e

discouraged_e

work_e (without context) as input.

work_e

travail_f

workplace_e

travailler_f

professionnelle_f

vacation_e

fonctionner_f

spend_e

pay_e

payer_f

moins_f

travaux_f

employees_e

consacrent_f

print_e

lire_f

concert_f

carmen_e

carmen_f

talented_e

collaborer_f

consulter_f

experiments_e
journaux_e

dirty_e

lecteurs_f

readers_e

papier_f

excellent_f

productif_f

rewarding_e

newspaper_e

content_e

graduates_e

discouraged_e

getting_e

willing_e

formuler_f

reinhart_f

reinhart_e

book_e

livre_f

informations_f

temps_f

reading_e

presse_e

Both work_e and its context readers_e as input.

Fig. 3. Word representation illustration (CA is adopted for example). The English words are in red and the
French words are in blue.

Figure 3 illustrates the spatial representation of all the co-occurrence words when we input
work_e without context and with readers_e as context using GBWE (CA), respectively. We can
obtain the following observations from these graphs:
1) There are several good translation pairs, where the French and English words are close in

distance. For example, (work_e, travailler_f ) and (readers_e, lecteurs_f ) in both Figures 3 (left) and 3
(right), (hours_e, heures_f ) in Figure 3 (left), and (reading_e, lire_f ) and (book_e, livre_f ) in Figure 3
(right).

2) For work_e as input in Figure 3 (left), the word work_e itself is placed at the center and the
other words around it are about employment (such as hours_e at right), evaluation of job (such as
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salary_e at upper left), and publication (such as experiments_e at bottom). The senses of the words
around work_e are quite different and it’s hard to determine which sense work_e belongs to.
3) For work_e+readers_e as input in Figure 3 (right), we can determine the sense of work_e by

the words close to both work_e and readers_e, such as book_e, print_e and paper_f.

4 PRELIMINARY EXPERIMENT–LEXICAL TRANSLATION
GBWE was firstly evaluated on lexical translation task as a preliminary experiment. Lexical trans-
lation can be viewed as one-word phrase translation case, where contextual information is not
necessary.

Following the previous lexical translation settings of Mikolov et al. [51], the 6000 most frequent
words from the WMT11 Spanish-English (Sp-En) data7 were translated into the target languages
using online Google Translation (individually for English and Spanish). Because theMikolovmethod
requires translation-pairs for training, they used the first 5000 most frequent words to learn the
“translation matrix” and the remaining 1000 words were used as a test set. The proposed method
only uses parallel sentences for training; therefore, we used the first 5000 most frequent words for
dimension tuning and remaining 1000 test-pairs for evaluation. To translate a source word, we find
its k nearest target words using the Euclidean distance and then evaluate the translation precision
P@k as the fraction of the target translations that are within the top-k returned words. We also
evaluated these methods on the IWSLT-2014 French-English (Fr-En) task8 with the same settings
as the WMT11 task.
Three methods reported in Mikolov et al. [51] were used as baselines, the Edit Distance,Word

Co-occurrence, and Translation Matrix methods, together with two state-of-the-art bilingual word
embeddings: BilBOWA [23] and Oshikiri et al.’s method[58]9. Their default settings were followed.

4.1 Dimension Tuning
Figure 4 shows the dimension tuning (using the average score of four sub-tasks) experiments on
the development data of the IWSLT-2014 task. Because the Mikolov method requires this data
for transformation matrix training, their default dimension of 300 was applied. As mentioned in
Section 3.3.3, the BCC-word matrix of the PCA/CA-based method is an extracted graph; therefore,
the original dimension is much smaller than that of the NN based method, where nearly all the
BCCs in the entire graph are used as input for the NN models. The best performing dimension on
the development data was evaluated on the test data.

4.2 Evaluation Results
Similar to Mikolov method [51], we also discarded word pairs whose Google translations were
out-of-vocabulary. The evaluation results on the test data are shown in Table 3. For WMT11, the
baseline results are from the reports of the corresponding papers. For IWSLT14, the baseline results
are from our re-implementations of the corresponding methods, because neither BilBOWA nor
Mikolov [51] implemented their method in IWSLT14 task. The results in bold indicates the best
outperforming system for each task. The numbers in parentheses show how much the best results
outperformed the best baseline results.

As shown in Table 3:
1) The GBWE-based methods achieved the best performances in seven out of eight sub-tasks.

7http://www.statmt.org/wmt11/
8https://wit3.fbk.eu
9The settings of their method in the WMT task are different from ours; therefore we only compared their performance in
the IWSLT task.
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Fig. 4. Dimension tuning for the IWSLT lexical translation task

Table 3. Lexicon Translation Evaluation Results.

WMT11 En-Sp Sp-En En-Sp Sp-En Time
P@1 P@1 P@5 P@5 /hours

Edit Distance [51] 13 18 24 27 -
Word Co-occurrence [51] 30 19 20 30 -
Translation Matrix [51] 33 35 51 52 -
BilBOWA [23] 39 44 51 55 -
GBWE-PCA 34 40 55 53 2.7
GBWE-CA 36 42 56(+5) 60(+5) 3.2
GBWE-NN 41(+2) 37 53 54 28.7
IWSLT14 En-Fr Fr-En En-Fr Fr-En Time

P@1 P@1 P@5 P@5 /hours
Translation Matrix [51] 23 27 37 32 2.1
BilBOWA [23] 26 25 38 31 1.4
Oshikiri [58] 24 26 32 33 1.6
GBWE-PCA 18 26 38 41(+8) 0.9
GBWE-CA 22 29(+2) 41(+3) 36 1.1
GBWE-NN 27(+1) 28 36 38 12.3

Note: For WMT11, the baseline results are from the reports of the corresponding papers. For
IWSLT14, the baseline results are from our re-implementations of the corresponding methods,
because neither BilBOWA nor Mikolov [51] implemented their method in IWSLT14 task.

2) The GBWE-CA achieved the best performances among the three dimension reduction methods
in four out of eight sub-tasks.

3) The model training and calculating CPU time of GBWE-PCA/CA are slightly better than those
of existing methods. GBWE-NN is more time consuming than GBWE-PCA/CA.

Since the proposed GBWE methods works in the preliminary lexical translation task, we would
try to phrase translation task, where the contextual information is necessary.
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5 PHRASE TRANSLATION PROBABILITY ESTIMATION
Contextual information is important and should be considered for phrase-based translation task.
GBWE represents words as vectors dynamically in various geometric space according to the
contextual words. For each word in a source phrase of the SMT, its contextual words are fixed, so
that all the translation candidate target words can be represented as vectors in the same geometric
space. This makes GBWE capable of selecting translated phrase candidates in phrase-based SMT.

5.1 Bilingual Phrase Semantic Representation
The phrase-table of phrase-based SMT can be simply formalized as10

(PF , PE , scores, word-alignment), (8)
where PF (wf1 ,wf2 , ...wfi , ...,wfk ) and PE (we1 ,we2 , ...,wej , ...,wel ) are the source and its aligned
target phrase, respectively, and scores indicates the various feature scores, including directed
translation probability, lexical weights, and the phrase penalty. The phrase length is limited to
seven, which is the default setting for the phrase-based SMT. The word-alignment indicates the
word alignment information betweenwfi ∈ PF andwej ∈ PE .

GBWE (CA is adopted here) is applied to represent words in the phrase-table as vectors. Note
that the clique extraction depends on the contextual words and that CA then projects a clique-
word matrix into the corresponding semantic geometric space accordingly. Therefore, the same
contextual words should be used for all the words in PF , and all its aligned PE , to represent them in
the same geometric space. For each wordwf i (orwei ) in a phrase pair (PF , PE ), we consider two
strategies for selecting the context words,

Strategy-A: Only the source words in PF are used as the contextual words {wf1 ,wf2 , ...,wfk }.
Strategy-B: Both the source words in PF and the target words in all the aligned PEβ are used as

its the contextual words {wf1 ,wf2 , ...,wfk ,we1 ,we2 , ...,wel }.
Wordwf i (orwei ) is represented11 as a vector Vwfi (or Vwej ). The co-occurrence wordwco can

also be represented as a vector Vwco , which is described in Section 3.3. Note that all the source and
target words for the same source phrase PF are represented as vectors in the same geometric space.

5.2 Semantic Similarity Measurement
Because the lengths of the phrases are different, the Phrase Distance (PD) is adopted to measure the
distance between the source and the target phrases incorporated by the word-alignment model:

PD(PF , PE ) =

√√∑
align(wfi ,wej )

ED2(Vwfi ,Vwej )∑
i, j | align(wfi ,wej )|

, (9)

where ED(Vwfi ,Vwej ) stands for the Euclidean Distance between the word vectors Vwfi and Vwej ,
aliдn(wfi ,wej ) is from the word-alignment model in Eq. (8), and |

∑
i, j align(wfi ,wej )| is the sum of

alignments betweenwfi andwej .
Because there are usually multiple PE (PEm ) that are aligned with PF , the distance is normalized

to ensure that the summary of PD(PF , PEm ) for each PF is equal to one. Therefore the Normalized
Phrase Distance (NPD) from PF to PEm is adopted:

NPD(PEm |PF ) =
PD(PF , PEm )∑
m PD(PF , PEm )

. (10)

10The alignment is from the standard IBM alignment model [6, 10].
11The unknown words are empirically represented as default vectors.
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Using the same pipeline, NPD(PF |PE ) can also be calculated. Both NPD(PE |PF ) and NPD(PF |PE )
can be additional phrase-table features for phrase-based SMT decoding.

6 BILINGUAL PHRASE GENERATION (BPG)
A few phrases that are not in the corpus may share a similar meaning as those inside the corpus.
Takes the source French phrase la bonne réponse as an example; the corresponding aligned target
English phrase the right answer is in the corpus and the phrase-table. The other phrases, such as
the correct answer or the right response, may not be in the corpus or phrase-table; however, they are
also good translation candidates.
Because the GBWE can be used to represent words as vectors and to measure their similarities

by measuring their distance, it is possible to find similar words to replace the original words in the
phrase-table to generate a new phrase with a similar meaning as the original one.

6.1 Phrase Pair Generation
Section 3 focused on phrase pairs inside the phrase table; however, in this section, we focus on
measuring the similarity between phrase pairs outside the phrase-table and selecting new phrase
pairs to enhance the SMT.
As mentioned in Section 5, for each word w (source or target), both the source words in PF

and the target words in PE are used as its contextual words (Strategy-B). The word w and its
co-occurrence words {wco } are represented as vectors.
For an aligned word pair (wfi ,wej ), we find a new translation replacementw ′

ej in {wco } to help
generate new phrases. For either the source phrase PF or the target phrase PE , each word in the
phrase is tentatively replaced by the nearest word in its corresponding co-occurrence according
to the word vector distance (here, the Euclidean distance is adopted). However, only one word
replacement with theminimal distance for either phrase will be chosen and implemented to generate
two new phrases P ′

E and P ′
F , respectively

12.
NPD(P ′

E |PF ) and NPD(P ′
F |PE ) can be calculated using Eqs. (9) and (10). Because there are no

original phrase translation probabilitiesψ (P ′
E |PF ) orψ (P

′
F |PE ) for the generated (PF , P

′
E ) and (PE , P

′
F )

in the original phrase-table, NPD(P ′
E |PF ) and NPD(P

′
F |PE ) are used asψ (P

′
E |PF ) orψ (P

′
F |PE ) instead.

The updated lexical weighting lex(P ′
E |PF ) and inverse lexical weighting lex(P ′

F |PE ) are computed
using IBM models [6].

The generated phrases are filled-up [7] into the original phrase-table. That is, a penalty score is
added as a feature. For original phrase pairs, the penalty is set to one; for the generated pairs, the
penalty is set to the natural logarithm base e (= 2.71828...). All the score weights in phrase-table are
further tuned using MERT [56].

6.2 Phrase-table Size Tuning
Using the phrase generation approach, numerous new phrase pairs can be generated. We need to
select the most reasonable of these. The Distance Ratio (DR) of the normalized distance in Eq. (10)
between the generated phrase pair (PF , P ′

E ) and the original phrase pair (PF , PE ),

DR(P ′
E , PE ) =

NPD(PF , P ′
E )

NPD(PF , PE )
, (11)

is used to measure the usefulness of the generated word pairs.

12Two or more words can be replaced; However, this may lead to serious sense bias, and the experiments also show that
replacing more than two words does not result in performance.
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A threshold ε is set to retain only the most useful generated phrase pairs. Namely, for a source
phrase PF , only the P ′

E whose DR(P ′
E , PE ) is smaller than ε are selected as the generated word pair

(PF , P
′
E ). Using the same pipeline, the sizes of the generated source candidate phrases are also tuned.

For the SMT task, the threshold is tuned using the SMT performance of the developmental data.

7 EXPERIMENTS
7.1 Set up
We evaluated the performance of GBWE in SMT using corpora with various language pairs, domains
and sizes (from 186.8K to 2.4M sentences): 1) IWSLT-2014 French-to-English (EN) [13], with dev2010
and test2010/2011 as development (dev) and test data, respectively; 2) NTCIR-9 Chinese-to-English
[22] and 3) NIST OpenMT0813 Chinese to English, with NIST Eval 2006 and NIST Eval 2008 as
development data and test data, respectively. The corpora statistics are shown in Table 4. For
the GBWE method, we only report the CA-based dimension reduction method, which
performed the best in lexical translation task.

Table 4. Sentences statistics on parallel corpora.

Corpus IWSLT NCTIR NIST
training 186.8K 1.0M 2.4M
dev 0.9K 2.0K 1.6K
test 1.6K 2.0K 1.3K

7.2 Baseline Systems
The same basic settings for the IWSLT-2014, NTCIR-9, and NIST08 translation baseline systems
were followed. The standard Moses phrase-based SMT system was applied [38] together with
GIZA++ [57] for alignment, SRILM [70] for language modeling, and MERT for tuning. The tool,
mteval-v13a.pl14, was used to calculate the BLEU scores (we ran MERT three times and recorded
the average BLEU score). The paired bootstrap resampling test[37]15 was then performed. Signifi-
cance tests were done for each round of the test. The marks to the right of the BLEU scores indicate
whether our proposed methods are significantly better/worse than the corresponding baseline
(“++/−−”: significantly better/worse at a significance level of α = 0.01; “+/−”: α = 0.05). In addition,
we evaluated the results using multeval16 [15] and show them in Table 6. All the experiments in
this paper were conducted on the same machine with 2.70GHz CPUs. Note that all the bilingual
embedding models were trained using the same corpus as the SMT systems.
We are aware that there are several state-of-the-art end-to-end neural machine translation

methods [3, 14, 33]. However, the proposed GBWE is a bilingual word embedding method and is
applied to SMT as additional features; therefore, we only compare it with the most related bilingual
word embedding and generation methods for SMT. For the phrase pair translation probability
estimation task, three typical NN based bilingual embedding methods, the Continuous Space
13Zou et al. [90] (a typical bilingual embedding method for comparison) only released their word vectors rather than
their code (http://ai.stanford.edu/~wzou/mt/); therefore, we have to conduct experiments on NIST08 Chinese-to-English
translation task as they did for fair comparison. The training data consists of part of NIST OpenMT06, the United Nations
Parallel Text (1993-2007), and the other corpora [12, 20] that were used by [90].
14Available at http://www.itl.nist.gov/iad/mig/tests/mt/2009/
15The implementation of our system follows http://www.ark.cs.cmu.edu/MT
16https://github.com/jhclark/multeval
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Translation Model (CSTM) [67], BilBOWA [23], and Zou et al. [90]’s bilingual word embedding
method, were selected as baselines. The embedding of each method was added as features to the
phrase-based SMT baseline, with all the other setting the same. For the bilingual phrase generation
methods, the CSTM was used to generate phrase pairs17. In addition, we compared our method
with Saluja et al. [64], which also used a graph-based method to generate translation candidates18.

7.3 Results and Analysis
7.3.1 Filter Tuning. A series of parameter-tuning experiments were conducted on the develop-

ment dataset to select the proper threshold γ for the edge weight EW in Eq. (2) for the SMT. First,
we roughly determined the right order of magnitude (such as 10−1, 10−2, 10−3, 10−4...), and then we
finely tuned the values. Figure 5 illustrates filter tuning on the IWSLT-2014 corpus.
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Fig. 5. Filter tuning on the development data in the IWSLT-2014 corpus.

7.3.2 Phrase Pair Translation Probability Estimation. Table 5 shows the performance of GBWE
for the SMT. Zou et al. released their word vectors on NIST08 but not their codes; therefore, their
method is only applied to NIST08 (Please refer to Footnote 13 for details).

Table 5. The phrase Pair Translation Probability Estimation Results (BLEU).

IWSLT NTCIR NIST
Baseline 31.80 32.19 30.12
+Zou [90] N / A N / A 30.36
+BilBOWA [23] 31.42 31.87 29.63
+CSTM [67] 32.19 32.37 30.25
+GBWE-A 32.32+ 32.56 30.38
+GBWE-B 32.61++ 33.04++ 30.44+

Note: In Tables 5 and 6, the marks to the right of the BLEU scores indicate whether our proposed
methods are significantly better/worse than the corresponding baseline (“++/−−”: significantly
better/worse at a significance level of α = 0.01; “+/−”: α = 0.05).
17They discuss and show phrase generation examples as experimental evidence in their paper, and we followed their basic
idea.
18Their basic implements were followed except for the morphological generation.
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As shown in Table 5:
1) GBWE can improve SMT performance up to +0.85 BLEU, which is better than the best

performance of existing NN methods of up to +0.67 BLEU.
2) Strategy-B (described in Section 5.1) performs better than Strategy-A. The reason for this may

be that both target and source contextual information is used for Strategy-B while only source
contextual information is used for Strategy-A.

7.3.3 Bilingual Phrase Pair Generation. Figure 6 shows the generated phrase size tuning on the
development data for the IWSLT/NIST corpus. The best performing systems on the development
data would be evaluated on the test data. All of the BLEU were computed by mteval-v13a.pl.
multeval is only used for measuring variances of test data selection (s_sel), optimizer instability
(s_opt), and the p-value.
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Fig. 6. Generated phrase size tuning on development data in the IWSLT/NIST corpus.

Table 6 shows the result of the Bilingual Phrase Pair Generation (BPG). “Baseline + BPG” indicates
the addition of the generated phrase pairs to the original phrase-table. “GBWE + BPG” indicates
the addition of the generated phrase pairs to the original phrase-table, as well as replacing the
translation probabilitiesψ (PE |PF ) andψ (PF |PE ) in the original phrae-table with the NPD(PE |PF )
and NPD(PF |PE ) calculated by GBWE (see Section 6.1). For the baselines, we also compared with
CSTM and Saluja et al. method [64]. As in Table 6 shown:

1) The proposed BPG method can slightly improved SMT performances, up to +0.57 BLEU.
2) The proposed BPG method and the GBWE method can work well together and enhance

the SMT performance significantly, up to +1.33 BLEU. They also outperform the best performing
existing methods, which can enhance the SMT performance up to +0.79 BLEU. This indicates
that the proposed BPG method worked synergistically with the GBWE translation probability
estimation method.

7.3.4 Translation Examples. For the GBWE (CA) translation examples, we showed an translation
example of in NIST Chinese-to-English task (to show the efficient of proposed method in Asian
languages) in Table 7.

The Chinese word “duoshao” originally has two primary meanings, one as how many (in most
of the cases) and the other as “somewhat/rather”. As shown in Table 7, the baseline and Zou [90]
did not fully consider the contextual information and translated it into “how many” or “many”. In
comparison, the proposed GBWE method considered the context “gandao yihan” and translated
into “somewhat”.
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Table 6. The Bilingual Phrase Generation (BPG) Results.

Corpora Methods Phrase-table Size BLEU s_sel s_opt p-value
Baseline 9.8M 31.80 0.5 0.2 -
+CSTM [67] 23.1M 32.19 0.5 0.2 0.2368

IWSLT +Saluja [64] 31.5M 32.35 0.5 0.2 0.0573
+BPG 25.6M 32.37+ 0.5 0.9 0.0389
+BPG+GBWE-B 25.6M 33.13++ 0.5 0.2 0.0001
Baseline 71.8M 32.19 0.3 0.1 -
+CSTM [67] 297.8M 32.42 0.3 0.1 0.3024

NTCIR +Saluja [64] 341.3M 32.68 0.3 0.2 0.2231
+BPG 312.6M 32.54 0.3 0.2 0.2617
+BPG+GBWE-B 312.6M 33.47++ 0.3 0.1 0.0001

Note: Phrase-table size indicates the number of phrase pairs in the phrase-table. “s_sel” indicates
the variance due to the test set selection, which was calculated using bootstrap resampling for
each optimizer run; this number reports the average variance over all the optimizer runs. “s_opt”
indicates the variance due to the optimizer instability, which was calculated directly as the variance
of the aggregate metric score over all the optimizer runs. “p-value” is the p-value calculated by
approximate randomization [15].

Table 7. Translation examples of NIST Chinese-to-English task.

Methods Translation

Source sentence
dan cong bisai jieguo laishuo , 2 bi 2 de bifen shi heli de , ye shi zhongguo
nenggou jieshou de . guanjian shi bisai guocheng , duoshao lingren gandao
yihan .

Reference
judging simply from the result of the match , 2-2 seems a reasonable score ,
and is also one that the chinese team can accept. the key problem is that the
way the match went made people feel it was rather a pity .

Baseline judging by the results of 2 2 , is reasonable , and is also the chinese team to
accept . the key is in the process of competition , how many people feel regret .

+Zou [90] from the results of the competition , 2 to 2 are reasonable , and it is also
acceptable to china . the key is competition process , many regrettable .

+GBWE-B
simply judging by the match result , 2 2 score is reasonable and also acceptable
to the chinese team. the key is that the match itself left people feeling somewhat
disappointed .

Note: The words in red is the corresponding translation of the source word “duoshao”.

In addition, we show some examples of phrase pairs generated using CSTM and GBWE of IWSLT
French-to English task in Table 8. The NN-based CSTM tends to replace the articles, such as the, a,
an. For GBWE, the stop words, such as the, a, an, are pruned prior to clique extraction (please refer
to Section 3.1); therefore, more reasonable translation candidates are generated. These generated
translation candidates enhanced translation diversity and thus help SMT performance.
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Table 8. Examples of generated phrases of IWSLT French-to English task.

Source Original Target CSTM Generated GBWE Generated
la bonne réponse the right answer 1. a right answer 1. the correct answer

2. all right answer 2. the right response
3. the right reply 3. the good answer

nettoyer le jardin clean the garden 1. clean a garden 1. clean the yard
2. clean the yard 2. clean the ground
3. clean an garden 3. tidy the garden

Note: We only show short target-side phrases for simplification. The phrases are ranked by their
Distance Ratio in Eq. (11). Some generated phrases overlap with existing phrases in the original
phrase-table. The probabilities of the overlapping generated phrases are interpolated from the
existing ones.

7.3.5 Efficiency Comparison. We compared the efficiencies for model training and computed
the probability scores of the phrases pairs using CSTM and GBWE. A total of 2000 phrase pairs
were randomly selected from the entire IWSLT-2014 FR-EN corpus. The CPU time for the training
models (the whole corpus) and calculating their probability scores (the 2000 phrase pairs) are shown
in Table 9.

Table 9. CPU time for IWSLT-2014.

Methods Training Time Calculating Time
CSTM 59.5 Hours 17.1 Minutes
GBWE-A 1.1 Hours 8.9 Minutes
GBWE-B 1.1 Hours 15.6 Minutes

The results in Table 9 demonstrate that GBWE is much more efficient than CSTM; especially for
training GBWE can be more than 50 times as fast as CSTM. Because the translation probabilities
are all pre-computed, the decoding time for each method is nearly the same.

7.3.6 WAT Chinese-to-Japanese Task. To verify the effectiveness of the proposed approaches on
Asian languages, we also evaluated GBWE (CA) on the Chinese-to-Japanese Asian Scientific Paper
Excerpt Corpus (ASPEC)19 in the 4th Workshop on Asian Translation (WAT2017) [55]. The corpus
statistic is showed in Table 10.

Table 10. Corpus statistic of WAT Chinese-to-Japanese task.

Corpora Sentences Tokens
Training 672.3K 22.2M
Development 2.1K 70.0K
Testing 2.1K 69.0K

The empirical results are shown in Table 11.
19http://lotus.kuee.kyoto-u.ac.jp/ASPEC/
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Table 11. Results on the WAT Chinese-to-Japanese task.

Methods BLEU
Baseline 33.13
+ GBWE-B 33.40
+ BPG 33.90+
+ BPG + GBWE-B 34.30++

As shown in Table 11. The empirical results indicate that the proposed GBWE also worked well
on the WAT Chinese-to-Japanese task and significantly improved the phrase-based SMT baseline.

8 CONCLUSION
In this paper, we proposed a novel cross-lingual sense unit BCC using a graph-based method. BCC
can describe word senses better compared to simple bag-of-words or sliding window methods.
A context-based dynamic bilingual BCC-word matrix was constructed, and then CA, PCA and
NN were applied to summarize this matrix into lower dimensions. The GBWE was accordingly
constructed for dynamical bilingual word embedding.

The usefulness of the proposed model was verified via three bilingual processing tasks. 1) Lexical
translation. The empirical results indicate that GBWE can predict several relevant translation
candidates and enhance the lexical translation accuracy. 2) Phrase translation. We propose two
strategies to select the useful contextual information for GBWE. The experimental results show that
GBWE based features can improve the phrase-based SMT performance with high computational
efficiency. 3) Bilingual phrase generation. The experimental results show that the phrase pairs
generated by GBWE can further improve the SMT performance and work well with GBWE-based
features.
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