














This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 8. Visualization of the DE features and the corresponding labels in one experiment. Here, labels with 0, 1, 2, and 3 denote the ground truth, neutral,
sad, fear, and happy emotions, respectively. The numbers 1, 2, 3, 4, and 5 in the vertical coordinates, respectively, denote the five frequency bands: 1) δ; 2) θ ;
3) α; 4) β; and 5) γ . The dynamic neural patterns in high frequency bands (α, β, and γ ) have consistent changes with the emotional labels during the whole
experiment.

tune the weights. Using this approach, the shared representa-
tions of both modalities were extracted, and linear SVMs were
trained using the new shared representations as the inputs.
The input features of EEG and eye movements for the RBMs
were normalized to the range from zero to one. The num-
bers of neurons in the hidden layers were fixed to be the
same for the three RBMs when training and were tuned in
[200, 150, 100, 90, 70, 50, 30, 20, 15, 10] units using cross-
validation. The learning rate was set to 0.001. The mini-batch
size was 100. The multimodal deep models were implemented

in Python using the deep learning libraries Keras6 and
Tensorflow.7

V. EXPERIMENTAL RESULTS

A. EEG-Based Emotion Recognition

First, we evaluated the performance of EmotionMeter
regarding accuracy for different setups of EEG recordings. Our

6https://keras.io/
7https://www.tensorflow.org/



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

ZHENG et al.: EmotionMeter: MULTIMODAL FRAMEWORK FOR RECOGNIZING HUMAN EMOTIONS 9

objective was to investigate how the performance varies with
the number of attached electrodes. We designed three setups
for EEG recordings: 1) T7 and T8; 2) T7, T8, FT7, and FT8;
and 3) T7, T8, FT7, FT8, TP7, and TP8. The mean accuracies
and the standard deviations of all 45 experiments for different
features obtained from separated and total frequency bands are
presented in Table II. “Total” denotes the direct concatenation
of five frequency bands. We compared the performance of the
PSD and DE features in recognizing four emotions. As shown
in this table, the DE features outperformed the PSD features
with higher accuracies and lower standard deviations in most
cases. The beta and gamma bands performed slightly better
than the other frequency bands in general. These results gave
a further verification on our previous work [71]. The visual-
ization of the DE features and the labels in one experiment
are shown in Fig. 8, which presents the dynamic neural pat-
terns in high-frequency bands. In Fig. 8, the DE features of
the delta band does not show significant changes, whereas the
gamma and beta responses have consistent changes with the
emotional labels. These results indicate that the alpha, beta,
and gamma bands contain the most discriminative informa-
tion. For neutral and happy emotions, the neural patterns have
significantly higher beta and gamma responses than for the
sad and fear emotions, whereas the neural patterns of neutral
emotions have higher alpha responses compared to the other
emotions.

Moreover, the electrode placements with two, four, and six
electrodes can achieve relatively good performance for the
four emotions. As shown in Table II, the best mean accuracies
and their standard deviations of two, four, and six electrodes
are 64.24%/15.39%, 67.02%/15.87%, and 70.33%/14.45%,
respectively. The setup with only six electrodes can achieve
comparable performance with a slightly lower mean accu-
racy compared with 62 electrodes (70.33% versus 70.58%).
Although the system can achieve slightly higher accuracies
with more electrodes as expected, the computational complex-
ity and calibration time used are also considerably increased.
In real-world applications, considering the feasibility and
comfort, fewer electrodes will be preferred. These results
demonstrate the efficiency of our design using only six EEG
electrodes.

B. Analysis of Complementary Characteristics

For emotion recognition using only eye movements, we
obtained an average accuracy and standard deviation of
67.82%/18.04%, which was slightly lower than that obtained
using only EEG signals (70.33%/14.45%). For modality
fusion, we compare two approaches: 1) feature-level fusion
and 2) multimodal deep learning. For feature-level fusion,
the feature vectors of EEG and eye movements are directly
concatenated into a larger feature vector as the inputs of
SVMs. Table III shows the performance of each single modal-
ity (eye movements and EEG) and of the two modality fusion
approaches, and Fig. 9 presents the box plot of the accura-
cies using different modalities. The average accuracies and
standard deviations of the feature-level fusion and multimodal
deep learning were 75.88%/16.44% and 85.11%/11.79%,

TABLE II
MEAN ACCURACY RATES (%) OF DIFFERENT SETUPS (TWO

ELECTRODES: T7 AND T8; FOUR ELECTRODES: FT7, FT8, T7, AND T8;
SIX ELECTRODES: FT7, FT8, T7, T8, TP7, AND TP8; AND 62

ELECTRODES) FOR THE TWO DIFFERENT FEATURES OBTAINED FROM

THE SEPARATE AND TOTAL FREQUENCY BANDS. HERE, SVMS WITH

LINEAR KERNELS WERE USED AS CLASSIFIERS

respectively, for all the experiments. We used one-way analysis
of variance (ANOVA) to determine the statistical significance.
The performance with modality fusion is significantly greater
than that with only a single modality (p < 0.01), which indi-
cates that modality fusion with multimodal deep learning can
combine the complementary information in each single modal-
ity and effectively enhance the performance. These results
demonstrate the efficiency of EmotionMeter combining EEG
and eye movements for emotion recognition.

In comparison with the feature-level fusion, multimodal
deep learning can learn the high-level shared representations
between two modalities. Through the processing of multiple
layers in deep neural networks, the effective shared represen-
tations are automatically extracted. In the feature-level fusion,
it is very difficult to relate the original features in one modality
to features in other modality and this method usually learns
unimodal features [58]. Moreover, the relations across vari-
ous modalities are deep instead of shallow. Multimodal deep
learning can capture these relations across various modalities
with deep architectures and improve the performance.

To further investigate the complementary characteristics of
EEG and eye movements, we analyzed the confusion matrices
of each modality, which reveals the strength and weakness
of each modality. Figs. 10 and 11 present the confusion
graph and the confusion matrices of eye movements and
EEG, respectively. As indicated by these results, EEG and
eye movements have important complementary characteris-
tics. We observe that EEG has the advantage of classifying
happy emotion (80%) compared to eye movements (67%),
whereas eye movements outperform EEG in recognizing fear
emotion (67% versus 65%). It is difficult to recognize fear
emotion using only EEG and happy emotion using only eye
movements. Sad emotion has the lowest classification accu-
racies for both modalities. However, the misclassifications of
these two modalities are different. EEG misclassifies more sad
emotion as neutral emotion (23%), whereas eye movements
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Fig. 9. Box plot of the accuracies with each single modality (eye movements
and EEG) and the two modality fusion approaches. The performance with
modality fusion is significantly greater than that with only a single modality
(p < 0.01, ANOVA). The red lines indicate the median accuracies.

TABLE III
PERFORMANCE OF EACH SINGLE MODALITY (EYE MOVEMENTS AND

EEG) AND THE TWO MODALITY FUSION APPROACHES

misclassify more sad emotion as fear emotion (23%). Both
EEG and eye movements can achieve relatively high accura-
cies of 78% and 80% for neutral emotion, respectively. These
results indicate that EEG and eye movements have different
discriminative powers for emotion recognition. Combining the
complementary information of these two modalities, modality
fusion can significantly improve the classification accuracies
(85.11%).

As shown by the confusion matrices of the multimodal
fusion methods presented in Fig. 10, the feature fusion method
can significantly enhance the performance of classifying sad
and fear emotions with 6% and 12% improvements in accura-
cies, respectively. Moreover, multimodal DNN provides even
better improvements for sad, fear, and neutral emotions with
increases in accuracies of 22%, 20%, and 12%, respectively,
in comparison with a single modality, particularly for sad
emotion. The single EEG modality provides a relatively high
classification accuracy for happy emotion. Both fusion meth-
ods do not improve the classification accuracy of happy
emotion compared to the single EEG modality. These experi-
mental results reveal why the combination of both modalities
can enhance the performance of emotion recognition. The
fusion method integrates the advantages of EEG for recog-
nizing happy emotion and the advantages of eye movements
for recognizing fear emotion while simultaneously improv-
ing the classification accuracies of sad emotion. Moreover, the
performance of classifying neutral emotion is also improved.

Humans convey and interpret emotional states through sev-
eral modalities jointly, including audio-visual (facial expres-
sion, voice, and so on), physiological (respiration, skin

TABLE IV
AVERAGE ACCURACIES AND STANDARD DEVIATIONS (%) OF EEG WITH

DIFFERENT NUMBERS OF ELECTRODES AND EYE MOVEMENTS ACROSS

SESSIONS. (“1ST,” “2ND,” AND “3RD”’ DENOTE THE DATA OBTAINED

FROM THE FIRST, SECOND, AND THIRD EXPERIMENTS WITH ONE

PARTICIPANT, RESPECTIVELY)

temperature, and so forth), and contextual information (envi-
ronment, social situation, and so on) [72]. Researchers have
reached a consensus for constructing multimodal emotion
recognition while concerning the fusion architecture of these
multimodal information. However, most studies simply feed
all multiple modalities into the machine learning models and
do not investigate or interpret the underlying mechanisms
of the improvement, even for the popular audio and visual
modalities. In this paper, we utilize the attractive modal-
ities six-channel EEG and eye movements and study the
interactions between both modalities for multimodal emo-
tion recognition. Eye tracking using wearable techniques
has received considerable attention in recent years due to
its natural observations and informative features of users’
nonverbal behaviors [38], [73], [74]. The previous study of
Ding et al. [75] showed that eye contact contained reliable
information for speaker identification in three-party conversa-
tions. Through eye tracking, more qualitative indices could
be included to enhance HCIs. Compared to other modali-
ties, eye tracking has the advantage of providing contextual
information.

C. Analysis of Stability Across Sessions

The systematic evaluation of a robust emotion recognition
system involves not only the accuracy but also the stability
over time. The novelty of our dataset compared with other
datasets is that it consists of three sessions for each participant
to investigate the stability of EmotionMeter across sessions.

We select the DE features of the total frequency bands and
eye movement features from different sessions with the same
participants as the training and test datasets. The average accu-
racies and standard deviations for two, four, and six electrodes
are shown in Table IV. A mean classification accuracy of
72.39% was achieved across sessions with the six-electrode
EEG and eye movement features using multimodal deep learn-
ing, whereas for feature-level fusion with SVM, the mean
accuracy was 59.52%. The multimodal deep learning approach
achieves significantly better performance than feature-level
fusion. An interesting finding is that the performance was
better with training and test data obtained from sessions
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(a) (b) (c) (d)

Fig. 10. Confusion matrices of single modality and multimodal fusion methods: feature-level fusion and multimodal deep neural networks. Each row of the
confusion matrices represents the target class and each column represents the predicted class. The element (i, j) is the percentage of samples in class i that is
classified as class j. (a) Eye. (b) EEG. (c) Feature Fusion. (d) DNN.

Fig. 11. Confusion graph of EEG and eye movements, which shows their
complementary characteristics for emotion recognition. [The numbers denote
the percentage values of samples in the class (arrow tail) classified as the
class (arrow head). Bolder lines indicate higher values.]

performed in nearer time. These results demonstrate the com-
parative stability of our proposed EmotionMeter framework.

For real-world applications, the intuitive approach of the
training and calibration phase is to use the past labeled data
as the training data and make inferences on the new data.
However, there are some differences in feature distributions
across sessions, and these differences may be due to the non-
stationary characteristics of EEG and changing environments
such as noise, impedance variability, and the relative posi-
tion of the electrodes. As time passes, the performance of the
emotion recognition system may deteriorate. Therefore, adapt-
ing emotion recognition models should be further studied in
the future [76]–[80]. To overcome the across-day variability
in neural recording conditions and make the brain-machine
interfaces robust to future neural variability, Sussillo et al. [81]
exploited the previously collected data to construct a robust
decoder using a multiplicative recurrent neural network.

VI. CONCLUSION

Emotions are manifested via internal physiological
responses and external behaviors. Signals from different
modalities provide different aspects of emotions, and com-
plementary information from different modalities can be
integrated to construct a more robust emotion recognition
system compared to unimodal approaches. In this paper,
we have presented EmotionMeter, which is a multimodal
framework to recognize human emotions with EEG and
eye movements. Considering its wearability and feasibility,
we have designed a six-electrode placement above the ears,
which is suitable for attachment in a wearable headset
or headband. We have demonstrated that modality fusion
combining EEG and eye movements with multimodal deep
learning can significantly enhance the emotion recognition
accuracy (85.11%) compared with a single modality (eye
movements: 67.82% and EEG: 70.33%). Moreover, we have
also investigated the complementary characteristics of EEG
and eye movements for emotion recognition and evaluated
the stability of our proposed framework across sessions. The
quantitative evaluation results have indicated the effectiveness
of our proposed EmotionMeter framework.

In the future, we plan to improve the accuracy of our emo-
tion recognition system with the adaptation over time and the
integration of user-specific profiles. We are also working on
implementing wearable prototypes with hardware and software
in more real social interaction environments.
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