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ABSTRACT

Emotion recognition is a primary and complex task in
emotional intelligence. Due to the complexity of human emo-
tions, utilizing multimodal fusion methods can enhance the
performance by leveraging the complementary properties of
different modalities. In this paper, we propose a Multimodal
Multi-view Spectral-Spatial-Temporal Masked Autoencoder
(Multimodal MV-SSTMA) with self-supervised learning to
investigate multimodal emotion recognition based on elec-
troencephalogram (EEG) and eye movement signals. Our
experimental process comprises three stages: 1) In the pre-
training stage, we employ MV-SSTMA to train feature ex-
tractors for EEG and eye movement signals; 2) In the fine-
tuning stage, the labeled data are input to the feature extrac-
tors to fuse and fine-tune the features; 3) In the testing stage,
our model is applied to recognize emotions with test data to
calculate the accuracies of different methods. Our experimen-
tal results demonstrate that the multimodal fusion model out-
performs the unimodal model on both SEED-IV and SEED-
V datasets. In addition, the proposed model can still effec-
tively recognize emotions with various ratios of missing data.
These results underscore the efficiency of multimodal self-
supervised learning and data fusion in emotion recognition.

Index Terms— Emotion Recognition, Self-supervised
Learning, EEG, Eye Movement, Multimodal Fusion

1. INTRODUCTION

Emotion recognition is a hot topic in current affective com-
puting research. Traditional emotion recognition relies on
non-physiological signals, such as facial expressions, body
movements, and voice [1, 2]. However, these signals can be
influenced by subjective factors among different individuals.
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In contrast, physiological signals like electroencephalogram
(EEG) and eye movement (EYE) signals offer a more objec-
tive and precise depiction of emotions, providing a substantial
advantage [3, 4, 5].

Since the scale of unlabeled physiological signals col-
lected in the future is anticipated to expand progressively,
and meanwhile, physiological signals are susceptible to noise
interference in practical settings, it is neccessary to apply
self-supervised learning, which aims to train models from
data without explicit annotations or labels. Traditionally,
most EEG-based self-supervised learning focused on con-
trastive methods. For instance, van den Oord et al. came up
with Contrastive Predictive Coding (CPC) to use the temporal
structure of sequential data to learn representations [6]. Chen
et al. proposed SimCLR (Simple Framework for Contrastive
Learning of Visual Representations), which learns repre-
sentations by maximizing consistency between differently
enhanced views of the same image [7]. For EEG data, Kostas
et al. used contrastive self-supervised DNNs for pre-training
and downstream fine-tuning tasks to learn the features of
EEG signals [8]. Banville er al. employed self-supervised
learning to learn representations of EEG signals based on
temporal context prediction and contrastive predictive coding
[9]. Moreover, Li et al. proposed a Multi-view Spectral-
Spatial-Temporal Masked Autoencoder (MV-SSTMA) based
on MAE [10]. MV-SSTMA incorporates a hybrid block struc-
ture of CNN and Transformer in its encoder and decoder.

Multimodal fusion integrates information from diverse
sources to enhance model performance. In the past, early
fusion techniques mainly relied on straightforward concate-
nation or weighting schemes. However, recent advancements
in deep learning have explored more approaches to effectively
combining various modalities. Deep learning models can ex-
tract high-level representations from raw data and capture
complex intermodal relationships, yielding remarkable out-
comes across various domains, including emotion recognition
[11,12,13].

This paper makes the following contributions: (1) We
propose a Multimodal Multi-view Spectral-Spatial-Temporal
Masked Autoencoder (MMV-SSTMA) with self-supervised
learning to learn robust EEG and eye movement representa-
tions. Through self-supervised learning, we avoid the large-
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scale labeling task. This approach maximizes the utilization
of unlabeled data, which provides a practical method for
scaling up multimodal emotion recognition training. (2) We
generalize the proposed method from unimodal to multimodal
settings. It not only validates the feasibility and rationality
of emotion recognition using both EEG and eye movement
signals, but also explores the complementary nature of both
two modalities. (3) Extensive experiments on two public
emotion datasets demonstrate the efficiency of the proposed
model with multimodal pre-training even with missing data
and only few labeled samples to calibrate.

2. METHODOLOGY

2.1. Base Model

Multi-view Spectral-Spatial-Temporal Masked Autoencoder
(MV-SSTMA) is introduced as a solution to the challenges
of decoding emotions from a limited set of labeled and dam-
aged EEG data. MV-SSTMA comprises several components,
including a spectral embedding layer, a spatial positional en-
coding layer, L hybrid encoders, and L symmetric hybrid de-
coders. The function of the encoders is to extract relevant
features from the original EEG signals, while the decoders
are designed to reconstruct the masked EEG data based on
these extracted features.

Let the differential entropy (DE) feature of the original
EEG signals be X = (21,72, - ,2,) € RVXCXF where
N,C, F denote the number of samples in time series, the
number of EEG channels and the set of frequency bands,
respectively. By an overlapping window of 7' seconds, X
is transformed into X = (Zy, &g, ,&,) € RNXOXTXFE,
Subsequently, in the spectral embedding layer, each sample
Z; is projected into a D-dimensional space via a linear layer.

In the spatial positional encoding layer, embedded sample
is divided into patches in the dimension C, where each patch
corresponds to one EEG channel. Sine-cosine positional en-
coding is added across the C' dimension to retain position
information. Meanwhile, random masking is applied to the
data, allowing only a visible subset 7¥ € R *T*D (o be
utilized as input for training.

The MV-SSTMA architecture incorporates L hybrid en-
coders, each consisting of a temporal multi-scale causal con-
volution layer and a spatial multi-head self-attention layer.
In the temporal multi-scale causal convolution layer, three
branches of causal convolution layers with long (k; x 1),
medium (k,, x 1) and short (ks x 1) kernel sizes are im-
plemented to capture data characteristics in the temporal
dimension. Subsequently, the output from the convolutional
layer is fed into the multi-head self-attention layer. Assuming
the input of this layer is B;,, € R€*T*P  the formulations
for the convolutional layer and self-attention layer results are
as follows:

B! = Attention (BN (CausalConvT (B;,, (k;,1)))), (1)

B! = Attention (BN (CausalConvT (B;y, (km,1)))), (2)
B: = Attention (BN (CausalConvT (B;y, (ks,1)))), (3)

where BN is the batch normalization operation, Attention is
the Multi-head self-Attention operation, and B., B™ and B
all have the same shape of C, x T' x D as By,.

The spatial brain summary B(€%) is the sum of them:

B“) = BL + B + B:. 4)

Following the spatial attention layer, B(C*) is input to the nor-
malization layer and the feed-forward network to obtain the
data that are reconstructed in the decoder.

During the pre-training process, the symmetric decoder
for EEG signals reconstruction is added, which comprises L
CNN-Transformer hybrid blocks and a linear layer. It predicts
values for each masked EEG channel.

In the testing process, we employ the feature extractor
to extract features from EEG signals, input them into the clas-
sifier, fine-tune it with a subset of labeled data, and evaluate
its effectiveness on the test dataset.

2.2. Multimodal Model

Based on MV-SSTMA, our objective is to utilize multimodal
fusion techniques to integrate EEG and eye movement data in
order to enhance the performance of the original MV-SSTMA
model. The experimental procedure is depicted in Fig. 1.
Pre-training In the pre-training stage, we leverage the struc-
tural and parametric similarities between EEG and eye move-
ment signals. Two feature extractors are trained for these two
signals, separately, utilizing nearly identical parameters and
architectures. However, in the embedding layer, eye move-
ment signals are mapped to the same dimensional space as
EEG signals to maintain consistency in feature dimensions.
Fine-tuning With the learned encoder, we extract features
from EEG and eye movement signals, respectively. Suppose

the two feature vectors are denotedas X' = [z}, 23, -+ ,z}] €
R"™ and X? = [2},23,--- ,22] € R™, we can fuse them
using Concatenation Fusion [14]:

X fusion = Concat ([Xl, Xz]) , (®)]

or Attention Mechanism Fusion [15]:

F = Concat (Xl7 X2) , (6)
o = softmaz (w” tanh (F)), @)
X fusion = FaT, ®)

where w is the linear layer parameter and « denotes the atten-
tion weight matrix. Meanwhile, Deep Canonical Correlation
Analysis (DCCA) is employed to align the features and im-
prove the correlation between different modalities [16]. Even-
tually, the fused features are input to a linear layer for classifi-
cation, and then the classification loss and the correlation loss
of DCCA are utilized together for optimization. This process

1927

Authorized licensed use limited to: Shanghai Jiaotong University. Downloaded on April 21,2024 at 02:46:38 UTC from IEEE Xplore. Restrictions apply.



L x

\\

{ Coan-LH

Attention

an
o § Casual Spatial 5
Stage 1: = & ConvT-S | | Attention 2| (g g
Pre-training Masked 38 'g - gl S ~ Reconstructed
o EEG or EYE [ & [ & [ CCESI"?IIVI Astfﬁ;fln Sille 2 EEG or EYE
8:8 signals = 2 oS SIIY 2= 5 signals
3 = Casual Spatial 2] < E
o < >~
92 = %)
<
_J =3 .
wn

-

-

Extractor

- Label !
Stage 2: EEG FESt(u}re A“%I;UOH | Stage 3: ©
Fine-tuning | signals Extractor Concat 1 Testing | Fused Emotion
Q EYE : Q Predictor
(a8 Feature DCCA M O @
1
1

Emotion Predictoy

Fig. 1. The overall process of Multimodal Multi-view Spectral-Spatial-Temporal Masked Autoencoder.

is carried out using a few labeled data, which can either en-
compass the entirety or a subset of the data, aiming to derive
a distinct classifier £ for each subject 4.

Testing The classifier £ is utilized to test subject i and calcu-
late the accuracy for each i € {1,2,--- , H}, and the average
accuracy and standard deviation of all subjects are computed.
These statistical measures are used to assess and compare the
training effectiveness of different models.

3. EXPERIMENTAL SETTINGS

3.1. Datasets

In our experiment, we utilize two public emotion datasets.
SEED-IV dataset The SEED-IV dataset contains EEG and
eye movement signals of 15 subjects (7 male and 8 female)
of four different emotion states: happy, sad, fear and neutral
emotions [17]. The 15 subjects participated in three sessions
on different days with 24 trials each. For each session, the
first 16 trials are set to be training data and the remaining 8
trials are set to be test data.

SEED-V dataset The SEED-V dataset contains EEG and eye
movement signals for five emotion states: happy, sad, neutral,
fear and disgust [18]. In one session, 6 male and 10 female
subjects watched 15 movie clips (3 clips for each emotion)
and each subject participated in the experiment for three ses-
sions. The first 9 trials are used as training data and the re-
maining 6 trials are used as test data for each session.

3.2. Parameter Settings

To address the large numerical differences between EEG and
eye movement features in the original datasets, we normalize
the values of eye movement features into the range of 10 to
100 before we input them to the encoder, as part of the imple-
mentation of mixed-precision training.

Table 1. The average accuracy (%) and standard deviation
(%) of EEG and eye movement signals with and without pre-
training parameters on SEED-IV and SEED-V datasets.

. Pre-training Dataset
Signal Parameters SEED-IV SEED-V
Avg. Std. Avg. Std.
EEG w/o 5697 956 | 71.29 10.76
w 8540 525 | 7947 9.50
EYE w/o 6498 14.60 | 53.88  6.84
w 78.16 826 | 64.19 6.44

In our experiment, the number of EEG channels C' = 62,
the set of frequency bands F' = 5 (§: 1-4 Hz, 0: 4-8 Hz, a:
8-14 Hz, 5: 14-31 Hz, : 31-50 Hz), the size of the overlap-
ping window T = 10, the spectral embedding size D = 16,
the number of the hybrid block L = 6, and the multi-head
dimension H = 6. The mask ratio in the spatial positional
encoding layer is set to 30% by default. The learning rate is
equal to 1.5e~* in the pre-training stage and 0.001 in other
stages. The hyperparameter of DCCA loss is 0.1.

4. EXPERIMENTAL RESULTS

4.1. Results for Pre-training

We compare the average accuracies and standard deviations
under two conditions: with and without loading the pre-
training parameters. The results are presented in Table 1.
Table 1 demonstrates that using pre-training parameters re-
sults in significantly improved performance for both EEG and
eye movement signals compared to training without them.
The higher average accuracy validates the effectiveness of
pre-training parameters, while the lower standard deviation
suggests improved model stability.
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Table 2. The average accuracy (%) and standard deviation
(%) of different models using all labeled data to fine-tune on
SEED-IV and SEED-V datasets.

Dataset

Model SEED-1V SEED-V
Avg. Std. Avg. Std.
MV-SSTMA-EEG 8778 690 | 8041 10.51
MAX 60.00 17.10 | 73.20 9.30
Fuzzy Integral 73.60 16.70 | 73.20  8.70
BDAE 85.10 11.80 | 79.70  4.80
MMV-SSTMA-Concat | 89.56 6.19 | 81.03 9.31
MMV-SSTMA-Att 90.16 544 | 81.38 8.76

Table 3. The average accuracy (%) and standard deviation
(%) of different models using partial labeled data to fine-tune
on SEED-IV and SEED-V datasets.

Dataset
Model SEED-IV SEED-V
Avg.  Std. | Avg. Std.
MV-SSTMA-EEG 87.03 5.88 | 79.07 10.95
MMV-SSTMA-Concat | 88.64 6.71 | 79.13 8.72
MMV-SSTMA-Att 88.04 6.57 | 79.20 8.49

4.2. Results for Fine-tuning

Table 2 presents an overview of the outcomes during the fine-
tuning stage when all labeled data are employed. In Table 2,
MV-SSTMA-EEG is the model that only utilizes EEG sig-
nals, MAX, Fuzzy Integral and BDAE are the models com-
ing from [19], MM V-SSTMA-Concat denotes the multimodal
MV-SSTMA model that fuses EEG and eye movement fea-
tures by concatenation, and MM V-SSTMA-ALtt represents the
multimodal MV-SSTMA model that leverages an attention
mechanism for the fusion of the two modalities. As demon-
strated in Table 2, the models employing multimodal fusion
methods exhibit higher average accuracies and lower standard
deviations compared to the models utilizing EEG signals on
both SEED-IV and SEED-V datasets, showing the potential
of multimodal fusion to enhance emotion recognition perfor-
mance and stability.

In particular, MM V-SSTMA-ALtt achieves the highest av-
erage accuracy of 90.16% on SEED-IV dataset and 81.38%
on SEED-V dataset. This superiority may be attributed to
the attention mechanism fusion, which offers a more ratio-
nal integration of features across different modalities, assign-
ing varying weights to different modal features to identify the
valuable ones.

Furthermore, partial labeled training data are utilized to
fine-tune the model. In this paper, 10 labeled data from the
beginning of the training dataset are used for calibration. The
results are presented in Table 3. Notably, the two models em-
ploying multimodal fusion methods consistently outperform
the baseline. On SEED-IV dataset, MMV-SSTMA-Concat

Table 4. The average accuracy (%) of different models using
partial data with different mask ratios to fine-tune on SEED-
IV and SEED-V datasets.

Dataset

Model SEED-IV SEED-V

30% 50% 70% | 30% 50% 70%

MV-SSTMA-EEG | 87.03 86.84 84.25|79.07 78.44 75.59
MMV-SSTMA-Concat | 88.64 86.60 85.00 | 79.13 84.15 77.81
MMV-SSTMA-Att | 88.04 89.95 86.74|79.20 81.06 78.29

achieves the highest average accuracy of 88.64% and MV-
SSTMA-EEG obtains the lowest standard deviation of 5.88%.
Conversely, on the SEED-V dataset, MM V-SSTMA-ALtt ob-
tains the highest average accuracy of 79.20% and the lowest
standard deviation of 8.49%.

Compared with the results in Table 2, Table 3 reflects that
the reduction in the amount of data leads to a decrease in the
performance of each model. However, the multimodal fusion
models with self-supervised learning consistently outperform
the baseline, which demonstrates their potential to reduce the
need for labeled data in various real-world applications.

4.3. Results for different mask ratios

We present the results of various mask ratios applied with par-
tial labeled data on SEED-IV and SEED-V datasets in Table
4. The training data and the test data are masked using the
same mask ratios. The findings indicate that for MV-SSTMA-
EEG, the optimal mask ratio is 30%, resulting in the highest
average accuracy (87.03% on SEED-1V, 79.07% on SEED-V)
and for MM V-SSTMA-Concat, it is best to set the mask ratio
to 30% on SEED-IV (88.64% average accuracy) and 50% on
SEED-V (84.15% average accuracy). Conversely, for MM V-
SSTMA-ALt, setting the mask ratio to 50% yields the best
performance with the highest average accuracy (89.95% on
SEED-1V, 81.06% on SEED-V). Furthermore, it’s worth not-
ing that the multimodal models still outperform the baseline
across different mask ratios.

5. CONCLUSIONS

In this paper, we develop the multimodal MV-SSTMA model
to efficiently learn representations from EEG and eye move-
ment signals with masked autoencoders as self-supervised
learning. By employing fusion techniques based on concate-
nation and attention mechanism, we perform the modality
fusion and model fine-tuning with a few labeled data. This
approach yields better results than baseline models, demon-
strating the feasibility of pre-training and multimodal fusion
strategies, highlighting the complementary nature of EEG
and eye movement signals. By using self-supervised learning
and limited data fine-tuning, we reduce the dependence on
labeled data and leverage unlabeled data.
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