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Inverting Feedforward Neural Networks Using
Linear and Nonlinear Programming

Bao-Liang Lu,Member, IEEE,Hajime Kita, and Yoshikazu Nishikawa

Abstract—The problem of inverting trained feedforward neu- where z = [z, ---, xn]T € X C R" andy = [y,
ral networks is to find the inputs which yield a given output. ... 4 17 ¢ Y C R™ represent the input and output of
In general, this problem is an ill-posed problem because the the network, respectivelyV’ denotes the fixed weights, and

mapping from the output space to the input space is a one-to- ) . -
many mapping. In this paper, we present a method for dealing F(W;x) denotes the forward mapping determined by the

with the inverse problem by using mathematical programming architecture of the network. For a given input it is easy
techniques. The principal idea behind the method is to formulate to calculate the corresponding outpufrom (1).

the inverse problem as a nonlinear programming (NLP) problem, |n contrast, the problem of inverting a trained feedforward

a separable programming (SP) problem, or a linear programming : o ; : ;
(LP) problem according to the architectures of networks to be neural network is to find inputs which yield a given output

inverted or the types of network inversions to be computed. An 9+ Such inputs are called theetwork inversionsor simply
important advantage of the method over the existing iterative in- inversions The mapping from the output space to the input
version algorithm is that various designated network inversions of space is referred to as thaverse mapping The inverse

neural networks can be obtained by solving the corresponding SP

problems, which can be solved by a modified simplex method, a 1
well-developed and efficient method for solving LP problems. We FY—-X )
present several examples to demonstrate the proposed method
and the applications of network inversions to examining and is usually a one-to-many mapping. In general, the inverse
improving the generalization performance of trained networks. problem is locally ill-posed in the sense that it has no unique
The resilts show the effectiveness of the proposed method. solution and globally ill-posed because there are multiple so-
Index Terms—Boundary training data, feedforward neural |ution branches [7]. Hence, there is no closed form expression
netwgrks, generalization, !nverse problem, itgrativg inversion  for the inverse mapping.
algorithm, linear programming, neural-network inversions, non- It is necessary to invert trained feedforward neural net-
linear programming, separable programming. . ) . i
works in order to examine and improve the generalization
performance of trained networks and apply feedforward neural
. INTRODUCTION networks to solving the inverse problems encountered in many
HE problem of training a feedforward neural networlengineering and science fields [10], [6], [20]. In the last
is to determine a number of adjustable parameters f@w years, several algorithms for inverting feedforward neural
connection weights, which are denoted By, on the basis networks have been developed. A survey on this issue can be
of a set of training data. A trained feedforward neural netwoifeund in [27].
can be regarded as a nonlinear mapping from the input spacén iterative algorithm for inverting feedforward neural net-
to the output space. Once a feedforward neural network haerks is first introduced by Williams [44], and independently
been trained on a set of training data, all the weights are fixg¢géidiscovered also by Linden and Kindermann [26]. In this
Thus the mapping from the input space to the output spaiterative inversion algorithm, the inverse problem is formulated
is determined. This mapping is referred to as fbeward as an unconstrained optimization problem and solved by
mapping In general, the forward mapping is a many-toa gradient descent method similar to the backpropagation
one mapping because each of the desired outputs usualgorithm [41].
corresponds to several different training inputs in the training Jordan and Rumelhart [16] have proposed an approach

set. We express the forward mapping as follows: to inverting feedforward neural networks in order to solve
inverse kinematics problems for redundant manipulators. Their
y=FW;z) (1) approach is a two-phase procedure. In the first phase, a
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bination of local update rule using the Lyapunov function and We can write anL-layer MLP in the form

the relocation rule using the predefined or known information

on the forward mapping, or the probabilistic description of the y2 = Fo(Wax + 62) = F5(bs)

possible location of an inverse solution. yz = F3(Waya + 603) = F3(bs)
The method of learning an inverse mapping directly by use

of feedforward neural networks had been used to solve the

inverse kinematics problems in robotics community [36], [22]. yr =Fr(Wryr—1 +6r) = Fr.(br) (3

This method is called thdirect method Bishop analyzed the - N )

problem encountered by the direct method when a sum-§fheree = [e1, - oy | € R, @i 1S the kth element of
squares error function is used to learn a one-to-many invef8€ '“PUL L _:_[?Jkl! syt € R, g s the ogtput
mapping, and he proposed a new direct method based Y ‘thf]\}th unit in the layerk, Wy = [wi1, -+ win]” €

conditional density estimation [3]. R wgy = [wigy, o wign ] for g =1, - Ny,

Beheraet al. [2] have developed an inversion algorithm forVk 1S the number of units in the layér(1l < k < L, wy;i is
inverting radial basis function (RBF) networks, which is basefl€ Weight connecting théh unit in the Iaxfer k _Nl) to the
on an extended Kalman filter [14], [42]. They have applieﬂt]r\?, unit in the layerk, by = [be1, -~ ben " € R7, bpi =
their algorithm to implementing trajectory tracking control of=j—1  Wkij¥k—1,; + 6 is the total net input to théth unit
a two-link manipulator. in the layerk, Fy, = [f, ---, f]* is a vector withk elements,

In this paper we present a new method for inverting pré<-) is the activation functionds, = [6x1, - - -, b, |7 € R,
viously trained feedforward neural networks by using math@ndfy; is the bias of theth unit in the layerk for k = 2, - -,
matical programming techniques. The idea is to formulate the Without loss of generality and for simplicity of description,
inverse problem as an NLP problem, a separable programmitig assume that the same activation functjtfn) is used in
(SP) problem or a linear programming (LP) problem accordirgfch of the hidden and output units.
to the architectures of networks to be inverted or the typesOnce anL-layer MLP has been trained on a set of training
of the network inversions to be computed. An importarffata completely, its weightd’;, and biases) for k = 2, 3, -+,
advantage of the method over the existing iterative inversidnare fixed. The problem of inverting a trainddlayer MLP
algorithm is that various network inversions for multilayeis to find the inputse which would yield a given outpuy,..
perceptrons (MLP’s) and RBF neural networks can be obtainByl using the inverse of the activation function, we can obtain
by solving the corresponding SP problems, which can e following simultaneous constrained equations from (3):
solved by a modified simplex method, a well-developed and by — -l (m
efficient method for solving LP problems. n=Fp @)

The structure of this paper is as follows. In Section Il, the Wiyr—1+60r =br
inverse problem for MLP’s is described and the characteristics
of the inverse problem are discussed. In Section Ill, the

. . . —1
problem of inverting feedforward networks is formulated as by =F5(y3)
an NLP problem, an inversion algorithm based on NLP Ways + 603 =b3
techniques is presented, and comparisons between the NLP- by = Fy Y (ya)

based inversion algorithm and the iterative inversion algo- Wo + 6y —b
rithm are discussed. In Section 1V, the problems of inverting 2O =02
MLP’s and RBF networks are formulated as SP problems, pr <y 4)
the approximation of the SP problems is described, and a _ _ _ IR

Pp P WﬂereFk Yaow) = [f HNawa), o f Haen )Y fH() isthe

inversion algorithm based on SP techniques is present}env.erse of the activation functiofi(-) for & = 2, ---, L, and

In addition, an LP-based inversion method for inverting a .

class of specific MLP’s is also presented. Several iIlustrativpe"’md’y der_lote the constant vectors representing the range of
examples that demonstrate the proposed inversion :;1Igorith'r'ﬁteres.teci Inputs. L : : .
are given in Section V. Applications of the network inversions he importance of (4) lies in the fact that it provides us with

- : . - an analytical formula for expressing tirverse mappindgrom
to examining and improving the generalization performance . :
the output space to the input space. From (4), we can recognize

trained networks are presented in Section VI. Conclusions are e X X X
outlined in Section VIL. some characterls_tlcs of the Jinverse mapping. .For a given
output,, a solutionz to (4) is called anetwork inversion
Unfortunately, it is difficult to find network inversions directly
Il. STATEMENT OF INVERSE PROBLEM from (4) because there is no efficient computational method

i , i i . for solving the above simultaneous constrained equations.
In this section, we consider the problem of inverting a

trained L-layer (L > 1) MLP. The network consists of the

input layer, the output layer and tde— 2 hidden layers. The lIl. COMPUTING INVERSIONS BY NLP TECHNIQUES

units in the input layer serve only as distribution points. Each In general, there exist an infinite number of solutians
unit in the hidden layek, 1 < k < L, receives its input only to (4) for a given outputy;, that is, there are an infinite
from the previous layer, layerk(— 1), and sends its output number of inversions corresponding to a given output. Since
only to the succeeding layer, layet ¢ 1). there is no closed expression for inverse mapping, to find all
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of these inversions by numerical computing methods is timtiem on the NLP problem. For example, if the inversions

consuming or impossible in actual computation, especially fassociated with a given output interval, instead associated with

high dimension of input space. A practical strategy is to restriatsingle given output, are required, the inverse problem can

ourselves to finding some specified ones. In this section, Wwe formulated as the following NLP problem:

discuss how to obtain various designated network inversions Minimize ()

by using NLP techniques [1]. p
Subject to y < FW;x) <7y

A. NLP Problem p< <y 7)

An NLP problem can be stated as follows: where bothy and7’ are the given outputs. In the rest of the

Minizmize p(2) paper, we focus only on the formulation of (6). The results

subject to g;(z) > 0 i=1 .. can be easily e_xtended t_o other formulations such as (7_).
) 9:i(2) 2 0, L’ nm The formulation of (6) is general and can be used to invert
hi(z) =0, i=1--1 () any feedforward neural networks if their forward mappings

where~ is a real vector of, components;, - - -, z, called the can be expressed in a closed form as (1), for example, MLP’s,
decision variablesp(z) is the objective functiong;(z) > 0 RBF networks, mixtures of experts [15], hierarchical mixtures

and h;(z) = 0 are theinequalityand theequality constraints, Of experts [17], and high-order feedforward networks [9], [30].

respectively. However, on the other hand, the NLP problem defined by (6)
A vector z satisfying all the constraints in (5) is called 4S a nonconvex problem since it contains nonlinear equality

feasiblesolution to the NLP problem. The NLP problem is tgeonstraints. In general, several local optimal solutions to a

find a feasible poink such thatp(z) < p(z) for any feasible nonconvex problem may exist and the corresponding objective

point ~. Such a pointz is called anoptimal solution, or a function values may different substantially.

global optimalsolution to the NLP problem. I is feasible

and if there exists ar-neighborhoodNV.(z) aroundz such C. Objective Functions for Network Inversions

thatp(z) < p(z) for any »z € N.(2), thenz is called alocal ~ when a given outpui and the range of inputfp,+] are

optimal solution to the NLP problem. determined, all the constraints in (6) are fixed. Then, what
kind of inversions to be calculated mainly depends on the

B. Formulation of Inverse Problem as NLP Problem objective functions. For a given output, we can obtain various

Consider the problem of inverting a trained feedforwargpversions by using different objective functions. _
neural network for a given output, that is, to find the network Let us introduce three kinds of simple objective functions
inversionsz which yield a given outputj. Suppose that eachas follows:

element of t.he given outpgtdoes not exceeq the range of the ple) =+, i=1,--- N, ®)
corresponding actual output, that is, the given outpig an N,
actual output that can be produced by the trained network. ple) = izam ©)

In general, there exist an infinite number of inversions
for a given outputy. To find various designated inversions
for a given output, we formulate the inverse problem as tﬁé‘

following NLP problem: p(z) = ||z — | (10)
Minig]ize p(x) whereaq; is constant, and = [c;, - - -, cn,]7 is a given point
Subject to F(W;z) -5 =0 in the input space, which is called theference point
p<z <~ (6) If we use the objective functiop(z) = x; or p(x) = —x;,

for a given outputy. The feature of the inversion® is that
wherey is the given outputp and~ are the constant vectorsthe value of itsth element is the smallest one among all of the
representing the range of inputs, ad is the weights,z is inversions corresponding to the given outgutSo thatz**
the input vector. We see that the equality constraints in (6) dsecalled theinversion with minimal single elemetMIN).
precisely the forward mapping formed by the network. Th8imilarly, we see that the value of théh element ofz***
introduction of inequality constraint < « < ~ into (6) is to is the largest one among all of the inversions corresponding
limit the values of obtained inversions within a meaningfuio the given outpufy. So thatz}*** is called theinversion
range of the network inputs. The purpose of the objectiweith maximal single elemerfMAX). IMIN’s and IMAX's
function p(x) is to express what kind of inversions are tare useful for determining the range of the inverse image for a
be computed. When an optimal solutioh to (6) is obtained, given output. Equation (9) is an extension of (8) to the general
this means that* is a reasonable input vector that gives riseveighted sum of the inputs.
to the given outpug. Obviously, this input vector™* is just If we use the objective functiop(x) = ||x — ¢||?, we can
the inversion corresponding @. obtain an inversionr,.,,, Which is nearest to the reference
The merit of formulating the inverse problem as an NLPBoint ¢. So that, z,.,: iS called theinversion nearest the
problem is that the user can explicitly express various funeference point(INRP). Fig. 2 illustrates IMIN’s, IMAX's,
tional and (or) side constraints on inversions and easily impasderence points, and INRP’s in two-dimensional input space.
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D. Inversion Algorithm Based on NLP Techniques point of view, the random inversions obtained by the iterative

For a trained feedforward network and a given OutIOli}gversion algorithm are merely the feasible solutions to (6).
7, various network inversions can be found by using tHaccording to the formulation of (6), the NLP-based inversion
following NLP-based inversion algorithm. algorithm can also obtain random inversions by using the

Step 1) Set the values of and -, i.e., the range for objective function||z — ¢|| and selecting: as a random point.

P computing inversions T B 9 In comparison with the iterative inversion algorithm, the NLP-
Step 2) Selgct ag objective f.unctiqaﬁa:) based inversion algorithm is more manageable since the user
Step 3) Set an initial valug if a solver 'Of NLP problems can easily obtain various designated inversions by explicitly

requires it 0 defining objective functions and imposing constraints on the
Step 4) Solve the NLP problem defined by (6). If agorrespondmg NLP problem. . L . .
optimal or local optimal solution* is obtainedz* Some attempts to make the iterative inversion algorithm
is the network inversion associated with the giveﬁnd INRP’s have been done by using the following extended
outputy and go to Step 5). Otherwise, go to Sterc)) bjective function [26], [19]:
3).

Step 5) If multiple network inversions are required, go to
Step 2) to change the objective function. Otherwise,
stop. wherep > 0 is the penalty parameter whose value determines

The advantage of the above NLP-based inversion algorittifi¢ effect of the constraipt on the inyersions to be computed,
is that it is quite general and can be used to invert almost atdz andy are the given input and given output, respectively.
the existing feedforward neural networks. However, it is not Unfortunately, the formulation defined by (12) is question-
guaranteed that the NLP problem (6) can be solved by table from network inversion’s point of view. According to

available algorithms or software packages efficiently. NLP theory [1], if >0 is a large number, the unconstrained
problem of (12) is equivalent to the following constrained

problem:

Minimize | — y(2)|[* + pl[Z — =[] (12)

E. Comparison with Iterative Inversion Algorithm

In this section, we compare the NLP-based inversion algo-
rithm with the iterative inversion algorithm and discuss the
merits and demerits of each of the algorithms. subject to ||7 — || = 0. (13)

1) lterative Inversion Algorithm:In the iterative inversion
algorithm [44], [26], the inverse problem is formulated as thstrictly speaking, no accurate solutions to the above con-

Minimize |7 — y(z)||?

following unconstrained minimization problem: strained problem can be found if the given inpitis not
. _ ) an inversion for the given outpuf. Usually, it is hard for
Minimize [[g — y(x)| (11)  the user to select an accurate or an approximate inversion as a

given input. Therefore, the formulation of (12) is unreasonable
wherez andy(x) represent the input and actual output of thgr incorrect. In the following, we present a counterexample to
network, andy is the given output. illustrate the above analysis.
The central idea Underlying the iterative inversion algorithm Counterexamp|e:|:or Comparison, we use the same pa-
is to solve the above unconstrained minimization problem pymeters of the trained network for the=2 problem” [19].
using the gradient descent method. The iterative inversighe network has six input, two hidden and one output units.

algorithm  consists of two passes of computation, i.e., th®yr reader's convenience, we rewrite the network parameters
forward pass and backward pass, which are similar to the follows:

backpropagation algorithm [41]. In the forward pass, the error
signal between the given output and actual output is computed —5.15,-5.16, —5.15, —5.16, —5.15, —5.15
according to the forward mapping formed by the network. In 271242, -2.43,-2.43,-2.43, —2.44, —2.43
the backward pass, the error signal is backpropagated to the Wy = [8.67, —9.13]
input layer through the network, layer by layer, and the input ' -
is adjusted to decrease the output error. 0y =[-1.73, -3.12]

2) Generality: The generality of an inversion algorithm 83 =[—3.37].
refers to the variety of network inversions that the algorithm
can obtain. By choosing different objective functions anth the simulations, the starting point is selected as [0.074,
imposing functional and (or) side constraints on the NLP0.049, 0.010,—0.076, 0.034, 0.058], which is the same as
problem of (6), various network inversions for a given outpyiresented in [19]. The learning rate and momentum are set to
such as IMIN’s, IMAX's, and INRP’s can be obtained by0.02 and 0.9, respectively. The iterative inversion algorithm is
the NLP-based inversion algorithm. However, the iterativeopped when 10000 iterations are reached.
inversion algorithm can only findandominversions. We call  Tables VI shows the inversions for the given output 0.5,
them the random inversions because they mainly dependwehich are obtained by solving the unconstrained optimization
the starting points which are usually given randomly, anmgroblem (12) by the gradient method. Here, the given input

cannot controlled by the user sufficiently. From optimizations selected a$:, —3, 1, —%, 3, —1]. From Table VI, we
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can see that the iterative inversion algorithm cannot converge V. COMPUTING INVERSIONS BY SP TECHNIQUES
even with small.. The reason is that the given input was not \ p problems can be classified as separable and nonsepa-

selected as an approximate or an accurate inversion for fagje programming problems based on the separability of the
given output. _ _ __ objective and constraint functions [1], [40]. For SP problems,
Even though some inversions that are nearer the given inR{ine variation of thsimplexmethod [43], a well-developed
than the random inversions may be obtained by solving tB@q efficient algorithm for solving LP problems, can be used as
unconstrained problem of (12) with a smalithese inversions g gnnroximate solution procedure. In this section we focus on
are usually notrue INRP’s since the convergence criterion igpe problems of inverting MLP’s and RBF networks. We show

mainly determined by the first term of the extended objectiVRat the corresponding inverse problems for those kinds of the

function. - _ . networks can be formulated as SP problems, and propose an
' In addition, any F:onstralnts on the mpu't range can be easi\ersion algorithm based on SP techniques [35], [1].
imposed by selecting the values @pfind~ in the NLP-based
inversion algorithm. For example, if st = 0.1 and~; =
0.3, then thge inversions Whosee valueeof thb elemgnt is A. SP Problem
limited to the interval [0.1, 0.3] are obtained. However, the A function g(~) is said to beseparablef it can be expressed
iterative inversion algorithm can only find the inversions th&s the sum of single-variable functions as follows:
are restricted to certain specific intervals. For example, if the
sigmoidal activation functionf(z) = 1/(1 + exp(z)) — % N
is l_Jsed for eac_h of the mp_ut units, then only the |{1ver5|ons 9(z) = Zgi(zi) (14)
which are restricted to the intervaht, ¢] for 0 < ¢ < 5 can P
be obtained [19].

3) Sensitivity to Starting Point$-or the iterative inversion
algorithm, the user must set initial values for certain pa&n SP problem refers to an NLP problem whose objective and
rameters such as the starting point, the learning rate agrhstraint functions can be expressed as separable functions,
the momentum. Once the learning rate and momentum has can be expressed as follows:
been fixed, the inversions obtained by the iterative inversion
algorithm are mainly determined by the starting points. In other N
words, tr_]e iter{:\tive inversion algorith.m is quite sensitive to Minimize Zp(zf,)
the starting points [27]. The reason is that the convergence 2
criterion in the iterative inversion algorithm is only determined

=1

by the error between the given output and actual output and  subject to Zgii("i) >0, j=1,---,m
no any constraints, except for the range of input, are imposed i=1
on the inversions. n
Although the user may need to set a starting point for Zhw’(zi) =0, j=1,--,l. (19
=1

the NLP-based inversion algorithm, the NLP-based inversion

algorithm is more insensitive to the starting points than the

iterative inversion algorith_m because the inversions obtgin d Formulation of Inverse Problem as SP Problem

by the NLP-based algorithm are global or local optimal i

solutions to (6), instead of feasible solutions to (6). From (3) and (4), we can reformulate the inverse problem
4) Computational Effort: According to optimization the- for MLP’s as an NLP problem as follows:

ory, the unconstrained problem (11) solved by the iterative

inversion algorithm is simpler than the constrained problem .

(6) solved by the NLP-based inversion algorithm since many M|rg10|7rbr]|ze p()

_NI__P algorithms solve a constrgined problem b_y convertir_lg Subject to by, — Wi Fr_1(br—_1) = 61

it into a sequence of unconstrained problems via Lagrangian

multipliers, or via penalty and barrier functions [1]. In com- br—1 = Wr1Fp2(br—2) = 01

parison with the iterative inversion algorithm, the NLP-based

inversion algorithm requires more computer memories and

time. If suitable starting points, learning rate, and momentum by — Wl (ba) = 5

are selected, the iterative inversion algorithm is faster than by — Waz = 0>
the NLP-based inversion algorithm for computing random p<ar<y (16)
inversions.
In summary, the iterative inversion algorithm can be consid-
ered as a special case of the NLP-based inversion algoritheherex andb; for ¢« = 2, ---. L —1 are unknown vectors,

The advantage of the iterative inversion algorithm over thg, = F'—1(7;), p and~ are given vectors, and; for i = 2,
NLP-based inversion algorithm is that it is simple. But, its--, L is known weight matrix.

disadvantages are that it is quite sensitive to starting pointdf we use the objective function as defined by (8)—(10), we
and cannot obtain various designated inversions. can represent the above NLP problem in nonmatrix notation
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as follows:
]\rl
Minimize iz
b Z_:pj( J)
j=1
ATT,—]

Subject to ZLi — Z wLijf(bL—l,j) =05

j=1
i=1- Np
Np_2
br1,— Z wr—1,i;f(br—2;) =01,
j=1
1= 1,' ',NL_1

Ny
bs; — Z wai; f(ba;) = O34,

i=1

i=1,---,Ns

N
ba; — E wai; T = b, t=1,---,Ny
=1
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wherey,, for ¢ = 1. .-, N3 is the given outputg; for ¢ =1,
---, Ny is variable, anda; for ¢ = 1, ---, Ns is auxiliary
variable.

From (17) and (21), we see that the constraint functions are
separable functions for both MLP’s and RBF networks. If non-
separable objective functions are required, we can transform
them into separable ones by using MLP’s [34]. Consequently,
the problems of inverting MLP’s and RBF networks can
always be formulated as SP problems.

C. Approximation of SP Problems

In this section, we discuss how to approximate the SP prob-
lems by replacing each of the separable nonlinear functions
with their approximation using piecewise linear functions.

Suppose that we are interested in the values of a separable
nonlinear functiong over the intervalfr,,r;], and we wish
to define a piecewise linear functighthat approximateg.

The interval [r,, 7] is partitioned into several subintervals,
via the grid pointsr, = p1, po, + -+, s = 7. The nonlinear
function g can be approximated over the interyal,r;] via
the grid pointsuy, ue, - - -, s by the piecewise linear function

where f(-) denotes the following sigmoidal activation func gefined by

tion:
1 5
)= ——————. 18 g(p) = Aig(pui
1) = T e (18) ) ; 9(p:)
According to the definition of the SP problem defined by (15), s
we see that the NLP problem of (17) is an SP problem. Z)\i =1
Following the similar idea mentioned above, let us formulate i=1 .
the inverse problem for RBF networks. In general, only three- Ai 20, fori=1,2,---s (22)

layer RBF networks with a single hidden layer are considere
in neural network literature [13], [3]. The forward mapping o

a RBF network can be expressed as follows:

Ny
Ysi = Z wij¢;(x) +6; (19)
=1

qwere,at most, two adjacenh;’s are positive For example,
he sigmoidal activation function can be approximated over
the interval[r,, ] = [-16, 16] via 14 grid pointst16, £8,
45, +4, 43, £2, and+1, as shown in Fig. 3(a).

Suppose the objective function of (8) is used. Replacing
each of the separable nonlinear functions in (17) with the cor-

wherew;; is the weight connecting thgth unit in the hidden responding piecewise linear functions as defined by (22), we

layer to theith unit in the output layer; is the bias of theth

obtain an approximating problem to the original SP problem

unit in the output layerg; denotes the radial basis functionof (17) as follows:

For the case of Gaussian basis function we have

¢i(x) = exp <_M>

552 (20)

where o; is the width parameter of;, and¢; is the vector

determining the center op;.

From (19) and (20), we can formulate the inverse problem

for RBF networks as an SP problem as follows:
Ny
Minimize Zpi(a:i)

Ti,a;

i=1
Na
j=1
Ny 9
(zj —tij)
Ina;, — Z T =0
j=1 Z
i=1,---,No
Pi <X < i i=1,---,N; (21)

Minimize z;

Ti,Aijk
Np-1 Sr_1.5

Subject to ELi_ Z Wiz Z )‘Lfl,jk
j=1 k=1

'f(IJL—ij) =9L7‘,, t=1,--- Ny
Sr_1,: Np 2 Sp_2jk
E )\L—l,ikﬂh—l,v‘,k - E Wr,—1,ij E
k=1 j=1 k=1

“Ap—2 e f(pr—24k) = O0r—1,
1= 1a"'aNL—1

Sz No Sz;

E )\3ikﬂ3ik_2 w3ij§ A2k
k=1 =1 k=1

 fp2jr) = 03
i=1,-,Ng
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Szi

nonlinear functions involving:; andx; as variables in (21),
Z A2ik2ik — Z WaijTj = B2 respectively.
1= 1a aNQ .
. D. Solving ALP Problems
piszi <y, i=1--MN
It has been shown that the ALP problems can be solved
Z Ak = 1, j=1,---,N; and by use of thesimplex methoq with res_trlcted basis entry ru_le
[35]. For example, the restricted basis entry rule for solving
i=2---,L—1 the ALP problem of (23) can be described as follows:

Nt >0 E=1,---,5; * If no element ofA;; is in the basis, then all elements of
! L 1 N and J _ I_1 A;; will be allowed to be introduced into the basis, where
J=5 e b=4 A;; denotes the se{A\ x|k =1, ---, S;;}forj=1, -,

(23) N andi =2, .-, L — 1.
_ ) ) _+ If one element of\;; is contained in the basis, then only
where uiji, -+, pijs,;, are the grid points which are used in  the variables adjacent to it are allowed to be introduced

the piecewise linear approximation of the separable nonlinear g the basis.

functions involvingd;; as variable, ands;; is the number of . i two variables fromA,; are contained in the basis, then
grid points. Further, we impose the constraints that for gach 15 others fromA;; are allowed to be introduced into the
andj no more than twao\;;;, can be positive and only adjacent  pgis.

Aiji can be positive. With the exception of the requirement | o heen shown that if the objective function is strictly

on the number and the way in which the;, can be positive, convex and all the constraint functions are convex, the solution
the problem of (23) is an linear programming problem. Thg

bl ¢ (23 lied th LRALP bl btained from the ALP problems is sufficiently close to
problem o (. .) is called thapproximating LR ) problem the global optimal solution of the original SP problems by
[1] to the original SP problem of (17).

i X ) choosing a grid of sufficiently short intervals. Unfortunately,
Following the same line as above and using the formulati gag y y

. fle ALP problems of (23) and (24) are nonconvex since
of (21), we can state the problem of computing INRP for RB he original SP problems have nonlinear equality constraints.
networks as an ALP problem as follows:

Nevertheless, empirical evidence suggests that “even though
. optimality of the solution can not be claimed with the restricted
Minimize ZZﬁjk(l’jk _ cj)2 basis rule, good solutions are produced” [1].

Siks Ak j—l 1

E. Inversion Algorithm Based on SP Techniques

Using the formulations of (17) and (21), we present an
SP-based inversion algorithm for inverting MLP’s and RBF
networks. The algorithm can be described as follows.

Subject to ZwZJZAJkqu+9 =7
j=1

L—].' N3

Air In SEk Step 1) Set the values gfand~ in (17) or (21).
Z (i) =33 Step 2) Select an objective function.
’2:1 b=t Step 3) Select the number of grid points and the values of
gjkw =0, i=1,---, N, the grid points.
20; Step 4) Solve the ALP problems by use of the simplex
method with the restricted basis entry rule. If an
pi S ng kS Vi t=1 N optimal solutionz* is found. z* is the network

inversion corresponding to the given output, and
go to Step 5). Otherwise, go to Step 3) to change
the piecewise linear approximation.

Step 5) If multiple network inversions are required, go to

25%21, 1=1,---,N;

i A = 1 i1 N Step 2) to change the objective function. Otherwise,
1k — t=1, 3 4V2 StOp.
£ >0 k=1---.T;, and From optimization’s point of view, the SP-based inversion

. algorithm is more efficient than the NLP-based inversion
i=1,---,N; . ; e
algorithm since there are sophisticated computer programs that
Aiw 20, k=1,---,5 and solve LP problems of very large size. The SP-based inversion
i=1,---, Ny (24) algorithm keeps up the same generality as the NLP-based
inversion algorithm, except for the restriction that both the
where, at most, two adjacent;’s and two adjacen;;’s are objective and constraint functions should be separable.
positive, i1, - - -, piis, @andu;y, -+ -, v, are the grid points for ~ Now let us analyze the complexity of the ALP problems
a; andz;, respectively, and; andZ; are the number of grid included in the SP-based inversion algorithm. Suppose that
points which are used for piecewise linear approximation dfe L-layer MLP hasN;, output units, andV; input units,
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TABLE |
NUMBER OF CONSTRAINTS AND VARIABLES IN ALP PROBLEMS FOR INVERTING MLPs

ODj. function | No. of variables No. of constraints

Equality Inequality

L-1 N, L-1 L—1 N; L-1 N;

N - i
T; ()I‘Z(xiflfi N1+ZZS,] ZN’+ZZSl7+NL 2N1+ZZS”
=1

1=2 j=1 1=2 =2 y=1 i=2 j=1

N L-1 M Ny -1 L—1 N, N L—1 N,
o=l | T DSy | LA Nt Dt N[22 T DS,
i=1 1=2 j=1 =1 =2 =2 j=1 =1 =2 j=1
TABLE I
NuUMBER OF CONSTRAINTS AND VARIABLES IN ALP PROBLEMS FOR INVERTING RBF NETWORKS
Objective function | No. of variables No. of constraints
IEquality Inequality
N, Ny No Ny
ZI; or Z oG L/\Il + Z Si 17\172 + JV_'; + Z S,‘ 21’\/1 -+ Z Si
i=1 i=1 i=1 i=1
Ny Ny Ny Ny, Ny Ng
i — c]f? Y S [Nt Nat N4> S |2 T+ 8
i=1 i=1 i=1 i=1 i=1 i=1

and the number of units in the hidden layerfor £ = 2,3, but also provide relationships between the inversions and the
---, L — 1 is N;. Also suppose, for each variablg and network parameters. Almost all existing inversion algorithms
bmi, 1; and P,,,; grid points are used. Then the numbers cduch as the iterative inversion algorithm, however, seem to
constraints and variables in the ALP problems formulated ftack abilities to satisfy the latter requirement. In this section,
inverting MLP’s are shown in Table I. we show that the proposed inversion algorithm for MLP’s as

Similarly, suppose that a RBF network hag input, N2 mentioned above makes a step to overcome this deficiency.
hidden, andVs output units. Also, suppose, for each variable From (16) we see that once an optimal solution to the NLP
z; anda;, T; and S; grid points are used. Thus the number oproblem had been found, we not only get a network inversion
constraint and variables in the ALP problems formulated far* but also obtainL —1 total net input vectors, i.el; |,
inverting RBF networks are shown in Table Il. From Tables.I..  #%. Using theseL —1 total net input vectors, we can
and Il, we see that there exists a tradeoff between the accuragyablish the relationship between the network inversitn
of the approximation of SP problems (i.e., number of grignd the network parameters.
points) and the complexity of the ALP problems. For real-world application problems, the dimension of the

input space is usually larger than that of the output space.
Consequently, the number of input units in MLP’s is often

F. Relations Between Inversions and Network Parameters larger than that of the output units, i.&V; > N;. Consider

In order to sketch out the inverse mapping from the rdhree-layer perceptrons, and suppose the inverse mappings
lationships between the given outputs and the correspondfiogmed by the networks are one-to-many mappingsv{f >
inversions, an ideal inversion algorithm should not only obtaiN3, all of the possible three-layer perceptrons can be classified
various inversions for a given output as many as possiblato three types, and the parameters of each of them should
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TABLE 11l
NETWORK INVERSIONS OF THERBF NeTwWORK FOR THE XOR PROBLEM
Objective Funetion Inversion Initial Input Actual Output
R L2 R T] 420 /3]
x| 0.000000  0.883252 | 0.100000  0.800000 0.699999
—ux; | 1.000000 0.116748 | 0.600000 0.300000 0.699999
ry | 0.883252  0.000000 | 0.600000 0.300000 0.699999
—uxy | 0.116748  1.000000 | 0.400000 0.600000 0.699999
(7 —0.2)2 + (25 — 0.8)2 | 0.058365  0.941635 | 0.400000 0.600000 0.700000
\/((1'1 —0.6)2 4 (w5 — 0.4)2 | 0.911635  0.058365 | 0.800000  0.200000 0.700000
satisfy one of the following relations: w1

I: (rankW3) = rank(Bs) = N3)
A (Vo (rank Ws) = rankBs) < N1)) (25)
II: (rankW3) = rank Bs) < N») o
A (Tba(rankWy) = rankBs) < Np))  (26)
: (rankW3) = rankBs) < N»)
A (Fbe(rankWs) = rank(Bs) = Ny)) (27)
whereB,. = [W,., b.] € RN~*Nr—1+L W, is the weight matrix,
b, is known total net input vector, and= 2, 3.

In the cases of (25) and (26), we see that there exist an
infinite number of inversions corresponding & for Type 0
I and Il networks. These inversions are determined by the
constrained hyper-plane as follows:

Wox 46 =b} x

p<x<n. (28) Fig. 1. The mapping fronGz1, x2) to y31 formed by the RBF network for
- . ) the XOR problem.
From (28) we can further compute network inversions by

solving the following linear programming problem:

Y31

RS AS>
=

NNt
ORI
R
N

N

o

R

n network in a similar way as presented in [13]. The training data
Minimize Zaﬂfj are organized as follows: If the training input is (0, 0) or (1,
I j=1 1), the corresponding desired output should be zero, and if
N, the training input is (0, 1) or (1, 0), the corresponding desired
Subject to Zw%jxj + 60 = by, i=1,-,N2 output should be one. The input—output mapping formed by
J=1 the trained RBF network is plotted in Fig. 1.
pi < x < v, i=1--, N (29)  For a given outputy;; = 0.7, we state the problem of

wherea;, bs;, wa;;, pi, andry; are constants, and is variable. computing IMIN's as the following NLP problem:
For Type 1l networks, there exists only one network inver-  Minimize z;

sion for 65. Consequently, no inversions can be further find s
from (28). Subject to —2.316(exp(—[(x1 —1)* + (z2 — 1)*])
V. ILLUSTRATIVE EXAMPLES + exp(—[ai + 23])) +2.602 = 0.7
0<z: <1

In this section, we present three simple examples to demon-
strate the proposed inversion algorithms. For simplicity of Osz2sl (30)
illustration, the problems of inverting the RBF network and Solving the NLP problem by use of the modified Pow-
three-layer MLP which are used to learn the XOR problem ael's method [39], we obtain an IMIN as shown in the
discussed. In the examples except for Example 1, the sigmoifiedt row of Table Ill. Replacing the objective function of
activation function defined by (18) is used. (30) with —z1, z2, —x2, /(21 — 0.2)2 + (22 — 0.8)2, and
V/(#1 — 0.6)2 + (x> — 0.4)2, and solving the corresponding
NLP problems, we obtain the related five inversions as shown

In this example, we demonstrate how to invert RBF ne&dso in Table lll. All the inversions and the corresponding two
works by the NLP-based inversion algorithm. We create a RBEference points are illustrated in Fig. 2.

A. Example 1
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1 / .
0.8
0.8 o)
0.6
0.6 s
X2 0.4
0.4 o,
N 0.2
0.2 AN
. 0
y -15 -10 -5 0 5 10 15
O zZ
0 0.2 0.4 0.6 0.8 1 @
X1
. . . . . 0.015
Fig. 2. The network inversions corresponding to the given ougyt= 0.7
of the RBF network for the XOR problem. Solid lines denote all the accurate
network inversions associated wity; = 0.7, squares denote IMIN’s and 0.01
IMAX’s, circles denote reference points, dots denote INRP’s, and dashed
lines denote the distance from the reference points to the INRP’s. 0.005
E 0
B. Example 2
. . . -0.005
A three-layer MLP with two input, two hidden, and one
output units is used to learn the XOR problem. The training _q 41
input and the desired output sets are {(0.01, 0.01), (0.01,

0.99), (0.99, 0.01), (0.99, 0.99)} and {(0.01), (0.99), (0.99),

; : X 15 -10 -5 0 5 10 15
(0.01)}, respectively. The network is trained by the standard z
backpropagation algorithm [41]. The parameters of the trained (b)
XOR network are as follows: Fig. 3. (a) Piecewise linear approximation of the sigmoidal activation func-
tion over the interval 16, 16] via 14 grid pointst16, £8, +5, +4, £3,
Wy — 5.666465,  5.699533 +2, and+1. (b) the errors between the original sigmoidal activation function
2 3.412971, 3.419078 and its approximation as shown in (a).

Wy =[6.828 311, —7.445 465)

_[_ = = =717
b2 =[-2.358703, —5.187157] corresponding ALP problem. Solving the ALP problem by
05 =[—3.033736]. use of the simplex method with the restricted basis entry
rule, we obtain an IMIN and relateth as shown in the first

Let us compute IMIN’s and IMAX’s for the given output . o S
7. — 0.9 by the SP-based inversion algorithm. Using tHOW of Table IV. Replacing the objective function in the ALP

formulation of (17) and the parameters of the XOR netwo roblem with—zy, z;, and—z, and solving the corresponding
LP problems, we obtain other three network inversions as

gﬁg\:\ghed above, we can state the inversion problem &own also in Table IV. From Table 1V, we see that there exist
' some errors between the given output and the actual outputs
Minimize =z, produced by the obtained inversions. The reason for these
@122 errors is the piecewise linear approximation of the sigmoidal
Subject to 2.197224 — 6.828 311 f(ba1) — 7.445465f(bae)  activation functions. It has been shown that these errors can
— _3.033736 be reduced by increasing the number of grid points used to

approximate the sigmoidal activation functions [34].
byt — 5.666 46521 + 5.699 533z, = —2.358703 PP g [34]

bao — 3.41297121 + 3.419078x = —5.187 157

0.000001 < z; < 0.999999 C. Example 3
0.000001 < z2 < 0.999999 (31) In this example, we demonstrate how to further compute
inversions associated with a giveéh by using linear program-
whereb,;, b2, andz; andz, are variables, and the range oiming techniques. We use the computing results obtained in
inputs are set to [0.000001, 0.999999]. Example 2. From Table IV, we get the relationship between
Approximating the sigmoidal activation function over thehe given outputys;; = 0.908994 andb, = [1.712502,
interval [-16, 16] via the grid points+16, +8, +5, +4, —2.7448937. Now let us compute the network inversions
£3, £2, and £1, as shown in Fig. 3(a), we obtain therelated toy;; = 0.908 994 by solving the following linear
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TABLE IV
NETWORK INVERSIONS AND RELATED TOTAL NET INPUTS OF THEMLP FOR THE XOR PROBLEM
Objective Funetion Inversion Total net input Actual Output
R ) by bya Y
| 0.000001  0.714304 | 1.712502  —2.744893 0.908991
—ry | 0.719801T  0.000001 | 1.720030 —2.730194 0.908037
ry | 0.719801  0.000001 | 1.720030 —2.730494 0.909037
—xry | 0.000001  0.714304 | 1.712502 —2.744893 0.908991
TABLE V
CoMPUTING RANGES AND RELATED NETWORK INVERSIONS
Objective Function | Computing Range [nversion Actual Output
r A R ) /R
ap | 0.000007  0.999999 | 0.000001 0.711305 0.908991
1 | 0.100000  0.900000 | 0.100000 0.611183 0.908826
2y | 0.200000  0.800000 | 0.200000 0.511662 0.908658
1 | 0.300000 0.700000 | 0.300000 0.414841 0.908189
zy | 0.400000  0.600000 | 0.400000 0.315019 0.908320
TABLE VI
RELATIONS BETWEEN DIFFERENT 11 AND THE CONVERGENCE OF THEITERATIVE INVERSION ALGORITHM
T Inversion Actual Output | Error
£ £y €y 2y £y g yly—y
0 -0.123  -0.148  -0.110 -0.151 -0.118 -0.120 0.135 | 0.065
0.002 | 0.231 -0438 0.232 -0.438 0.232 -0.437 0.116 | 0.084
0.02 0.330 -0.490 0.330 -0.490  0.330 -0.490 0.331 | 0.166
0.2 0.391 -0193  0.391 -0.498  0.394 -0.498 0.044 | 0455
2 0.495 -0.498 0495 -0498 0195 -0198 -0.397 | 0.897
20 0.500 -0.500  0.500 -0.500  0.500 -0.500 -0.104 1 0.904
programming problem: VI. APPLICATIONS OF NETWORK INVERSIONS
o Network inversions have been applied to various prob-
M'Ql'g‘z'ze z1 lems such as examining and improving the generalization
Subject to 5.666 465z, + 5.699 533z, = 4.071205 performance of trained networks [26], [28], [12], adaptive

control [11] solving inverse kinematics problems for redundant
manipulators [18], [16], [7], [33], [2], and speech recognition
p< i <A [38]. In this section we present four examples to illustrate the
p<x2 <A (32) applications of network inversions obtained by the proposed
SP-based inversion algorithm. The first three ones are to

wherez; andz, are variablesp and X are constants whoselillustrate the use of network inversions for examining the
values are shown in Table V. generalization performance of trained networks and demon-
Solving the linear programming problem of (32) undestrate the performance of the proposed inversion algorithm
different inequality constraints, we obtain several networlor computing various designated inversions. The last one
inversions as shown in Table V. is presented to show a way of generating boundary training

3.412971x; + 3.419078x, = 2.442264
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data for improving the generalization performance of trained

networks. 0 )
A. Generating Test Data ;
Generalization is one of the most important issues in learn-
ing of neural networks and refers to a trained network gen- o
erating reasonable outputs for novel inputs that did not occur -2 2 n
during training. In more detail, it can be explained as two o .
different behaviors for dealing with novel inputs, which are SR
commonly known asnterpolation and extrapolation respec- -3 ;%g;} R
tively. For existing neural-network models, to achieve a good " Setosa I L
extrapolation capability is generally much more difficult than ~ Versicolor Ao
to obtain a good interpolation behavior, since a trained network ~ ~4 O :/"gm'_ca . e@@ 0%
may produce an arbitrary response for a novel input from nversion T
regions where no training input data have occurred. In practical Y
applications of neural networks, some need networks to have 2 4 6 8 10

good interpolation capab|l|ty only, and some require tha_‘t tm?g. 4. Fisher’s iris data and the 240 inversions corresponding to the outputs
networks should both interpolate and extrapolate novel inpuiSsetosa, which are represented by their two principal components.
properly.

A popular method for examining the generalization perfor-
mance of trained networks is to measure the performance of @%%mwﬁﬁﬁﬁﬁ
the networks on test data that did not presented during training,
i.e., the generalization performance of trained networks ,§g 5. Ten standard printed digit images.
judged by the correct recognition rates on the test data. In
order to examine generalization performance completely, it
is necessary to generate a sufficient number of test digfause the test data are distributed in the same areas as the
that are distributed in the whole input space. There are tW@ining data.
conventional methods for obtaining test data. One is to gatherSecond, the trained network is examined by network inver-
test data from the problem domain, and the other is to generakens. For simplicity, we consider the IMIN’s and IMAX'’s cor-
test data randomly. For most of application problems, it f&sponding to the actual outputs of 30 test data for the setosa.
difficult to obtain a sufficient number of test data by means &Y using the SP-based inversion algorithm, 240 inversions are
the first method because the model of the object to be learr@mputed, where the sigmoid function is approximated over
is partially unknown. A difficulty of using random test data ighe interval [-16, 16] with 14 grid points shown in Fig. 3. The
that it is hard to outline the actual decision boundaries forméelationships among the 240 inversions and the 150 iris data
by the networks especially when the dimension of the inpéte also depicted in Fig. 4. From this figure, we can see that the
space is high. Our previous work on network inversions hagléstribution area of the 240 inversions are much wider than that
shown that network inversions can be used as a particular kipidthe training and test data for the setosa. Checking the values
of test data for detecting generalization errors more completélf/the 240 inversions, we see that, at least, one component of
[28], [31]. In the following three examples, we demonstrateach of the inversions is near zero. Therefore, all the 240
how to generate particular test data by the SP-based inversigversions should be judged as unreasonable data according to
algorithm. the physical meaning of the features of the iris. However, the

1) Fisher’s Iris Classification Problemin this example, network classifies all the 240 inversions as proper setosa. That
the Fisher's iris classification problem [8] is treated. lis, the network extrapolates all the 240 inversions incorrectly.
is well known that the iris data set is composed of 15Brom this example, we can see that 1) it is difficult to detect
four-dimensional vectors that measure four features of thregtrapolation errors by ordinary test data if their distribution
varieties of the iris. These data are presented on Fig. 4 isythe same with that of the training data and 2) the network
their first and second principal components. The data setiriversions are useful for detecting extrapolation errors.
partitioned into a subset with 60 data for training and a subset2) Printed Digits Recognition ProblemWWe consider the
with 90 data for testing, randomly. A three-layer MLP witithree-layer MLP used for printed digit recognition. Ten
four input, three hidden, and two output units are trained Isgandard printed digit images used as training inputs are
the backpropagation algorithm [41]. shown in Fig. 5. Each image corresponds to a veeter R

First, the trained network is examined by the ordinary 9@ith each component value varying from zero (white) to one
test data. The correct recognition rates are 100% for tfldlack) determined by the gray level in the corresponding
setosa, 93.3% for the versicolor, and 96.7% for the virginicpixel. Four output units are used to represent ten classes of
respectively. From the above test results, it seems that theputs according to the binary coding method. A three-layer
network has a nice interpolation performance. However, ikdLP with 35 input units, 12 hidden units, and four output
extrapolation behavior cannot be judged on these test resuitsts is used to learn this pattern recognition task.
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CEEBRRANGOA

Fig. 6. Random test input images for digit “0.” All them are recognized asig. 7. The five IMIN’s and five IMAX's corresponding to the actual output
the proper digit “0,” except one marked by open gray box. The images froofi standard digit “0.” The ten images from left to right are arranged as the

left to right are numbered from 1 to 10. following: the (2 — 1)th image (in odd column) is the IMIN obtained by
minimize z;, and the (2)th image (in even column) is the IMAX obtained by
maximizex; for i = 6, -- -, 10. The pixels to be optimized as the objective

The training data set consists of ten standard trainiﬁ;ﬁj“’“."” are marked by small open gray boxes. If the'given Ievel_ in a pixel
. .. . . iswhite (black), the value of the related component is 0 (1). This notation

patterns and 540 noised training patterns. The noised trainj@ be aiso used in Figs. 8-14.
inputs are generated by performing logic XOR operation
between the ten standard training inputs and the 540 noise
patterns. The noise patterns for generating noised training
inputs are created by randomly putting three black pixels in
the 35 white pixels according to a uniform distribution. In the
following, the noise pattern which is generated by randomly
putting £ (1 < k£ < 35) blank pixels in the 35 white pixels
is called thek-random-dots pattern. According to combination
theory, the total number of different noise patterns (binary - .
value) is 25, (b)

-t
o |
B"El B=. |55 "7]. .2
BEBjE ER BB am
Random Test Datain order to compare the test datg.,

. . . ) . aF . 8. The inversions (upper ten images) obtained by minimizing the sum
obtained by the SP-based inversion algorithm with the test datahe values of the pixels in the upper center area, (isg: . s + o + 212

generated randomly, we first discuss the characteristics of the:s +x14), and the inversions (lower ten images) obtained by maximizing
random test data. For simplicity of description, we considd}® Same objective function.

the random test input images for digit “0.” Ten random test
input images are generated by doing the logical XOR operation
between the standard training inputs of “0” and ten five-
random-dots patterns. Fig. 6 illustrates these random test input
images.

Presenting these random test input images to the trained
network and checking the corresponding outputs, we see that
all the ten random test input images, except one image, gie 9 The invgrsiog§ (upper ten images_) obtained by minimizing the_ sum

. - . of all the pixels, i.e.X;2, x;, and the inversions (lower ten images) obtained
classified as digit “0” by the network. Comparing the standaig maximizing the same objective function.
digit images in Fig. 5 with the random test images in Fig. 6,
we can see that the network produces several generalization
errors. For example, the second random test input imageirin Figs. 7-9. The central processing unit (CPU) time for
Fig. 6 is recognized as the digit “0” by the network. Howevegomputing each of these inversions is about 8 s at a SUN
one may answer that it is not digit “0” from the viewpointUltra workstation. Here, the sigmoidal activation functions is
of human recognition. From this example, we see that tlapproximated over the interval-[L6, 16] with 26 grid points.
network may assign some poor novel input images to oneChoosing the objective function asz; for z = 6,---, 10,
of the known digits. For some practical applications, fowe obtain five IMIN's and five IMAX'’s for the actual output
instance fault diagnosis systems [21], [23], it is necessary @b the standard digit “0.” Fig. 7 shows five IMIN's and five
remove this kind of generalization errors since fault inputd1AX'’s. From these inversions, we know that the actual range
may be classified as the normal states or normal inputs mafythe ith (for< = 6, - - -, 10) component of the inverse image
be classified as the fault states by the network if this kirid between zero and one. Presenting the ten inversions to the
of incorrect generalizations exist. To remove this kind afetwork and checking the corresponding outputs, we see that
generalization errors completely, we should outline the actual the inversions are recognized as the standard digit “0” by
inverse images of given outputs. However, it is very difficult tthe network. Clearly, these generalizations are incorrect from
achieve this objective by using random test data, especially tbe viewpoint of human decision.
high-dimensional input space. The reason is that to generaté&urthermore, selecting the objective functionstgs7 + xg
all random test inputs which will give rise to a given outpus- g + z12 + x13 + x14) and and+%2%, z;, we obtain 40
needs to checkn™ random test input images, wheneis the inversions as illustrated in Figs. 8 and 9 by using the SP-
number of input units angh is the number of values which canbased inversion algorithm. Here, the given outputs are set to
be taken from each pixel. For example, we need to examitie actual outputs of the ten standard digits shown in Fig. 5.
2% test input images for the printed digit recognition problerhooking at the 40 images in Figs. 8 and 9, we may indistinctly
even if considering only binary value patterns. recognize a few images among them as the digit “7” and “9”
Network Inversions as Test DatéBelecting the objective in a usual way. Checking the actual outputs of the inversions,
functions as+>:32, a;x; and solving the corresponding ALPhowever, we see that all the inversions are recognized as the
problems, we obtain various network inversions as illustratastandard digits by the network.
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Fig. 10. Ten random inversions for digit “0” obtained by the iterative
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Fig. 11. Digits that were segmented from handwritten ZIP codes.

Fig. 14. Thirty particular images derived from the 300 inversions. All these
images are also recognized as proper handwritten digits by the network.

by the proposed inversion algorithm. 2) These inversions are
Fig. 12. lllustrations of 15 different objective functions which are definehlsefl’|| for rothly outlining the actual inverse image ofa given
as the sums of the elements in the shadow areas, for example, the upperaeiput, and therefore the extrapolation behavior of trained
frame represents the objective function;>, X7%, z16:4;. The 15 frames networks can be examined more systematically.

from left to right and from top to bottom are numbered from 1 to 15. 3) Handwritten ZIP Code Recognition Probleritve deal
with the handwritten ZIP code recognition problem [25], one
of typical applications of feedforward neural networks to
real-world pattern recognition problems. The aims to solve
this problem are to show the effectiveness of the SP-based
inversion algorithm for inverting large-scale neural networks
and to demonstrate the usefulness of network inversions
for detecting particular extrapolation errors. The original
training set and test set (TEST1) for the handwritten ZIP

Fig. 13. Inversions corresponding to the actual outputs of the handwrittepde recognition problem consist of 7291 and 2007 data,

digits “0"-"9,” respectively. These inversions are obtained by using th . : -
objective function of minimizing the sum of the pixels located in the shadof?SpeCtlvely' Fig. 11 shows ten handwritten numerals that

area of the first frame in Fig. 12. were segmented from the handwritten zip codes. The image
for each handwritten ZIP code data contains 16 pixel rows by
In order to compare the inversions obtained by the SE6 pixel columns, for a total 256 pixels. Since it is hard to learn
based inversion algorithm with these obtained by the iteratitee whole 7291 training data by using a conventional three-
inversion algorithm, ten random inversions for the actuéyer MLP, we randomly select 500 training data from the
outputs of the digit “0” are also computed by the iterative ineriginal training set as a reduced training set. The remaining
version algorithm. The starting points are generated randonfiy91 training data are considered as a new test set (TEST2).
according to a uniform distribution. The average CPU timéhe desired outputs are represented by the binary coding
for computing each of the inversions is about 0.02 s. Fig. 10ethod. A three-layer MLP with 256 input units, 30 hidden
illustrates the ten random inversions. Although the iteratiwgnits, and four output units is trained on the reduced training
inversion algorithm is much faster than the SP-based inversiget by the backpropagation algorithm [41].
algorithm, it is hard for the user to roughly outline the actual After training of the network, its generalization performance
inverse images of given outputs from the random inversionis examined on the ordinary test data. The correct recognition
From the simulation results mentioned above, we see thiates on TEST1 and TEST2 are 78.1 and 82.9%, respectively.
the proposed inversion method for generating test data pédthough the total number of the test data is much more
sesses the following two features in comparison with thban that of the training data, the generalization performance
method of generating test data randomly and the iteratioé the network cannot be judged only on the above correct
inversion algorithm. 1) Varioudesignatedhetwork inversions recognition rates because the test data are not distributed in the
corresponding to a given output can be obtained efficientiyhole input space and many generalization errors, especially
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Fig. 15. Two-class classification problem. (a) The desired input-output mapping. (b) The initial 40 random training inputs, which are represeratéd by
open boxes and filled triangles. The desired outputs for the open boxes and filled triangles should be zero and one, respectively. The big tadhgle (dash
denotes the desired decision boundary associated with output 0.8. This notation will be used in Figs. 16-19.

extrapolation errors, may not be detected. In the following, we In most of practical applications, we need to detect extrap-
demonstrate how to detect particular extrapolation errors imokation errors more completely. Therefore, various network
more systematic way by using network inversions. Selectimgversions for different given outputs should be obtained. From
the objective functions as minimizing and maximizing the suthis example, we can see that the proposed SP-based inversion
of the pixels located in the shadow areas depicted in Fig. alyorithm may provide us with an efficient tool for dealing
and solving the corresponding ALP problems, we obtain 3@@th this problem.
network inversions for the actual outputs of the handwritten _ .
digits “0"—"9” shown in Fig. 11. Here, the sigmoidal activationB- Generating Boundary Training Data
function is approximated over the interval-16, 16] with It has been observed that using training data located at
14 grid points shown in Fig. 3. The average CPU time fahe boundaries of decision regions gives better performance
computing each of these inversions is about 14 min. Fig. #@an using training data selected randomly [37], [12]. The
illustrates 20 inversions that are obtained by minimizing theaining data located at the boundaries of the decision regions
sum of 60 pixels located in the shadow area of the first franage called theboundary training dataln this example, we
in Fig. 12. The frames from left to right and from top todemonstrate how to generate the boundary training data by
bottom in Fig. 13 are the inversions for the actual outpuigverting trained networks with our inversion method and
of the handwritten digits “0"—"9,” respectively. illustrate the effectiveness of the boundary training data for
Examining each image of the 300 inversions, we see thaiproving the generalization performance of trained networks.
all of them are poor images and no one can be recognized-ollowing the similar way presented in [12], we use net-
as the handwritten digits from the viewpoint of human dework inversions as the boundary training data and retrain
cision. However, all of the 300 inversions are recognizettie network to improve its generalization performance. The
as proper handwritten digits by the network. For examplaetwork inversions which produce correct generalization are
the inversions from left to right and from top to bottom irused as “positive” retraining data, and the others are used as
Fig. 13 are recognized as proper handwritten digits “0"—"%negative” retraining data, i.e., counter-samples. The purpose
by the network, respectively. Clearly, these generalizations arthe “positive” retraining data is to consolidate the domain of
incorrect. Fig. 14 illustrates 30 particular images which at&e input space on which the network generalizes correctly. On
derived from the 300 inversions with reference to the similahe contrary, the “negative” retraining data are to narrow the
inversions. For example, the particular image in the first franmenge of each input variable to reduce the domain of the input
of Fig. 14 is derived from the inversion in the first frame ofpace on which the network produces incorrect generalization.
Fig. 13. Presenting the 30 particular images to the networkFor visualization of the decision boundary formed by the
and checking the corresponding actual outputs, we find thrdtwork, a simple two-class pattern recognition problem is
all the 30 particular images are also recognized as the projpreated. The problem is to classify two-dimensional inputs into
handwritten digits by the network. For example, the 1st imag&o classes. The desired input-output mapping is shown in
in Figs. 14 is recognized as proper handwritten “0” by thEig. 15(a). For the inputs inside a triangle region as shown in
network. If we examine the generalization performance of thiég. 15(b), the network should give rise to output 0.99, and
network by using the ordinary test data, we may never thirdtherwise the output should be 0.01. The initial 40 training
that the network will produce so poor generalization. data illustrated in Fig. 15(b) are generated randomly according
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Fig. 16. (a) The input-output mapping formed by the network which is trained on the 40 random training data. (b) The inversions (small open circles)
and the actual decision boundary (close curve) associated with output 0.8.
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Fig. 17. The process of improving the generalization performance of the network by retraining the network with the network inversions as the boundary
training data. (a), (c), (e), and (g) represent the retraining inputs for the first, the second, the third, and fourth retraining, respectigilyf)(kand (h)

represent the inversions (small open circles) obtained from the corresponding trained networks and the actual decision boundaries formemobksthe net
after the first, the second, the third, and the fourth retraining, respectively.
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Fig. 17. (Continued) The process of improving the generalization performance of the network by retraining the network with the network inversions as
the boundary training data. (a), (c), (e), and (g) represent the retraining inputs for the first, the second, the third, and fourth retrainiivglyre@pect

(d), (f), and (h) represent the inversions (small open circles) obtained from the corresponding trained networks and the actual decision foouwediaries

by the networks after the first, the second, the third, and the fourth retraining, respectively.
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Fig. 18. (a) The input—output mapping formed by the network after the fourth retraining with 40 random and 56 boundary training data. (b) The
corresponding actual decision boundary.
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Fig. 19. (a) 200 random training inputs. (b) The input—output mapping formed by the network which is trained on 200 random training data. (c) The
corresponding actual decision boundary.

to a uniform distribution in the two-dimensional input spacehen stop the procedure. Otherwise, do the following steps.
A three-layer perceptron with two input, ten hidden, and one Step 5: Adding the test results to the training set, we
output units is used to learn this problem. Here, the decisiobtain an extended retraining set. The obtained inversions are
boundary is defined as a curve in the input space, on whiclassified into positive and negative data according to their
the corresponding outputs are about 0.8. desired outputs.
After the network is trained with the 40 random training Step 6: Retrain the network on the extended retraining set
data, we generate boundary training data, i.e., network imAd go back to Step 1).
versions, by inverting the trained network, and improve the In the above procedure, the reason for using IMIN'’s,
generalization performance by retraining the network with tHMAX’s, and INRP’s as the boundary training data is that
boundary training data according to the following procedurdMIN’s and IMAX’s can give rough estimates of the range
Step 1: Compute two IMIN’s, i.e.z" and 7", respec- of the decision boundary and INRP’s can outline the decision
tively, and two IMAX’s, i.e., z{"®* and z3'**, respectively, boundary in more detail. All of the network inversions are
associated with the given outpygi;, = 0.8. obtained by solving the corresponding ALP problems. The
Step 2: Generate ten reference points randomly and commethod described here is general and can be appligectass
pute the corresponding ten INRP’s associated with the givén > 2) pattern recognition problems.
outputys;; = 0.8. Repeating the above procedure four times, the generalization
Step 3: Examine the generalization performance of thperformance of the network is improved significantly. The
trained network by using the 14 inversions (i.e., two IMIN’sprocess of improvement is shown in Figs. 16-18. The final
two IMAX'’s, and ten INRP’s) and their corresponding outputgesult after the fourth retraining is shown in Fig. 18. Compar-
Step 4: If the decision boundary outlined by the inversioneng Fig. 18 with Fig 16, we see that much better generalization
is satisfactory to compare with the desired decision boundapgrformance is obtained. In order to compare the effectiveness
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of the boundary training data with that of random training

data, the network is trained on 200 random training datj]
Fig. 19 shows the corresponding training inputs, the actu ?
input—output mapping, and the decision boundary formed bi]
the trained network. Comparing Fig. 18 with Fig. 19, we seg,
that the boundary training data obtained by our inversion
algorithms is much superior to the random training data ir8l
the generalization performance of the trained networks. [9]

[10]

VIl. CONCLUSIONS
[11]

We have formulated the inverse problems for feedforward
neural networks as constrained optimization problems. B
have shown that the problems of inverting MLP’s and RB
networks can be formulated as separable programming prob-
lems, which can be solved by a modified simplex method,{
well-developed and efficient method for solving linear pro-
gramming problems. As a result, various network inversiogls
of large-scale MLP’s and RBF networks can be obtained eftfi-
ciently. We have presented three inversion algorithms based[v8]
NLP, SP, and LP techniques. Using the proposed inversion Pll7]
gorithms, we can obtain various designated network inversions
for a given output. We have shown that the proposed meth3dl
has the following three features: 1) The user can explicitly
express various functional and (or) side constraints on network
inversions and easily impose them on the corresponding cd#l
strained optimization problems. 2) Various designated netw
inversions for a given output can be obtained by setting
different objective and constraint functions. 3) Once the n 5—1]
work inversions for MLP’s have been found, the relationshi
between the network inversions and the network parameters
is also brought to light. We have compared the proposé%?]
inversion method with the iterative inversion algorithm angs)
analyzed the limitations of the iterative inversion algorithm.
We have also demonstrated the applications of the netwqsk
inversions obtained by the SP-based inversion algorithm to
examining and improving the generalization performance of
trained networks. The simulation results show that the netwofk!
inversions are useful for detecting generalization errors and
improving the generalization performance of trained networlﬁsé.ﬁl
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