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Abstract

In this paper, we propose a support vector machine with automatic confidence (SVMAC)
for pattern classification. The main contributions of this work to learning machines are
twofold. One is that we develop an algorithm for calculating the label confidence value
of each training sample. Thus, the label confidence values of all of the training samples
can be considered in training support vector machines. The other one is that we propose a
method for incorporating the label confidence value of each training sample into learning
and derive the corresponding quadratic programming problems. To demonstrate the effec-
tiveness of the proposed SVMACs, a series of experiments are performed on three bench-
marking pattern classification problems and a challenging gender classification problem.
Experimental results show that the generalization performance of our SVMACs is superior
to that of traditional SVMs.
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1. Introduction

In the last several years, support vector machine (SVM) has become one of the most
promising learning machines because of its high generalization performance and wide
applicability for classification as well as for regression [1]. SVM maximizes its margin
of separation and obtains an optimal decision boundary determined by a set of particular
training samples called support vectors. Although SVM can find an optimal boundary, it
is known to us that the information of the SVM decision boundary is only contained in
the support vector training samples and is not considered in non-support vector training
samples [2].

To improve the generalization performance of traditional SVMs, it is very important
for us to consider the problems of how to search and utilize the information and distribution
of the whole training samples, how to encode human prior knowledge widely existing in
training samples [3], and how to incorporate prior knowledge into learning [4]. Recently
various learning machines for pattern classification have been proposed. For instance,
Jianget al [5] developed a perturbation-resampling procedure to obtain the confidence in-
terval estimates centered atk-fold cross-validated point for the prediction error and apply
them to model evaluation and feature selection. Liu [6] investigated the effects of confi-
dence transformation in combining multiple classifiers using various combination rules,
where classifier outputs are transformed to confidence measures. Fenget al [7] proposed
a scaled SVM, which is to employ not only the support vectors but also the means of the
classes to reduce the mean of the generalization error. Grafet al [8] presented a method for
combining human psychophysics and machine learning, in which human classification is
introduced. These methods, nevertheless, do not consider how to use the label confidence
of each training sample which may be regarded as human prior knowledge and how to
incorporate the label confidence value of each training sample into learning.

Inspired by the ideas from Fenget al [7] and Grafet al [8], we proposed a support
vector machine with confidence (SVMC) in our previous work [3]. We theoretically an-
alyzed the decision boundary of SVMCs and shown that the generalization performance
of SVMCs is superior to that of traditional SVMs. For SVMCs, however, the confidence
value of each training sample must be labeled by the user manually before training. When
the number of training samples is very large, much time for labeling these confidence val-
ues is required. Furthermore, we can not guarantee all these labeled confidence values
are reasonable because of subjectivity. To overcome these deficiencies of SVMCs and to
explore how to label rational confidence value of each training sample automatically, we
propose a support vector machine with automatic confidence (SVMAC). The flowchart
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of training SVMACs and SVMCs1 is illustrated in Fig. 1. The main difference between
SVMACs and SVMCs is that the confidence value of each training sample is calculated by
using an algorithm, instead of labeling the confidence value for each training sample by
the user manually. For training SVMACs, we use both the labels and the label confidence
values of all of the training samples.

 Input  Label
Sample :  X       Y

The confidence of those
training samples that can
not be discriminated well
is labeled automatically.

The confidence of those
training samples that can
not be discriminated well is
labeled manually by users.

Input  Label  Confidence
Sample : X        Y

SVMC Training Module

SVMAC Flow SVMC Flow

Figure 1: The flowchart of training SVMACs and SVMCs.

To evaluate the effectiveness of the proposed SVMAC, we apply SVMAC to gender
classification problem as a case study. Gender classification based on facial images is a
complicated and challenging two-class pattern classification problem, because the princi-
ple that the human brain can identify the gender from a facial image is still understood
little. Although we can determine the gender of each facial image, sometimes we have
not enough confidence for the real-life doubtless gender of some facial images. In other
words, the gender of each facial image in a given face database can be confirmed, but in

1http://bcmi.sjtu.edu.cn/ jizheng/
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reality we have some misgivings for identifying gender of some face images. From the
viewpoint of learning machines, these misgivings can be expressed as the label confidence
values of these facial images for discriminating the gender. Experimental results on a total
of 10788 facial images indicate that the generalization performance of our SVMACs is
superior to that of traditional SVMs andkNN, regardless of features used.

The remaining part of this paper is organized as follows. In Section 2, a method for
incorporating the label confidence value of each training sample into learning is described
and the corresponding quadratic programming problems are derived. In Section 3, a new
algorithm for calculating the label confidence value for each training sample is described
and an illustrative example is presented to demonstrate the performance of SVMACs. In
Section 4, experimental results on three benchmarking pattern classification problems are
described, and an application of SVMACs to gender classification is presented. Conclu-
sions and future work are outlined in Section 5.

2. Support Vector Machine with Confidence

In this section, we present how to incorporate the label confidence value of each train-
ing sample into training support vector machines and derive the corresponding quadratic
programming problem.

2.1. Traditional Support Vector Machine

The quadratic programming problems for the standard and soft margin forms of a
traditional SVM [2] can be, respectively, expressed as

min
w

1
2 ||w||

2 +C
∑

i ξi

s.t. ∀i, yi(wTxi + b) > 1− ξi ,

ξi > 0 (1)

and

min
w

1
2 ||w||

2 + D
∑

i ξ
2
i

s.t. ∀i, yi(wTxi + b) > 1− ξi ,

ξi > 0 (2)

wherew is an adjusable weight vector,C is the parameter which is used to control the size
of norm‖w‖, the parameterD is to keep kernel matrix positive,xi is thei-th sample vector,
yi is the label of sample vector (yi ∈ {−1,1}), b is the bias, andξi is to measure the cost of
generalization error on thei-th training sample.
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The difference between Eqs. (1) and (2) is that the modes of measuring the cost of gen-
eralization error are distinct. Specifically, in Eq. (1), the parameterC can determine the op-
timal choice for‖w‖2, and make‖ξ‖1 (the first-order norm ofξ, whereξ = (ξ1, · · · , ξi , · · · ))
minimal. In Eq. (2), the parameterD can generate the best‖w‖2, keep kernel matrix posi-
tive, and make‖ξ‖2 (the second-order norm ofξ) least.

2.2. Incorporation of Label Confidence into Learning

One way of incorporating confidence values into learning is to re-scale the soft margin
as follows,

min
w

1
2 ||w||

2 + D
∑

i ξ
2
i

s.t. ∀i, yi(wTxi + b) > t(πi) − ξi ,

ξi > 0 (3)

wheret(πi) is a monotonic function to scale the confidence value.
In this paper, we selectt(πi) as the following linear function,

t(πi) = h · πi ,
1
2
6 πi < 1, (4)

whereh is the scale parameter. The meaning of introducing this scale parameterh is to
map the confidence values of training samples into another subspace, where we seek an
optimal decision boundary maximizing the margin. Therefore, it is very important that we
need understand how the decision boundary is influenced by the scale parameterh. For a
two-class problem, the confidence value of each training sample should not be less than1

2
because each training sample has a determined label.

Many researchers reported that support vectors obtained by traditional support vector
machines tend to be those training samples that people can not discriminate well [8, 9].
Based on this fact, we proposed a support vector machine with confidence in our previous
work [10]. First, we divide the given training sample setT into two disjointed subsetsU
andV (T = U ∪ V), which are later treated in a different way in the training process.
Then, we put the training samples inU with confidenceπi less than 1, and the remaining
training samples inV with confidenceπi equal to 1. In essence,U contains the training
samples that tend to be support vectors after training. In the following, we denote the
number of training samples inU andV by nu andnv, respectively.

According to Eq. (3) for training subsetU and Eq. (1) for training subsetV, we can
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express the quadratic programming problem for soft margin form as follows:

min
w

1
2
||w||2 + D

nu∑
i=1

σ2
i +C

nv∑
j=1

ξ j , (5)

s.t. ∀1 6 i 6 nu,

yu
i (w

Tui + b) = t(πi) − σi ,

∀1 6 j 6 nv,

yv
j(w

Tv j + b) > 1− ξ j , ξ j > 0,

whereui is thei-th vector inU, v j is the j-th vector inV, yu
i is the label of thei-th vector

inU, yv
j is the label of thej-th vector inV, andξi in Eq. (3) is substituted byσi.

Using the standard Lagrangian dual technique, we obtain the Lagrangian function of
Eq. (5) as follows:

L(w,b, ξ, λ, α, β) =
1
2
||w||2 + D

nu∑
i=1

σ2
i +C

nv∑
j=1

ξ j

−

nu∑
i=1

λi[y
u
i (w

Tui + b) − t(πi) + σi]

−

nv∑
j=1

α j[y
v
j(w

Tv j + b) − 1+ ξ j]

−

nv∑
j=1

β jξ j . (6)

At the saddle point, we get

∂L

∂σi
= 0 = 2Dσi − λi (7)

∂L

∂ξ j
= 0 = C − α j − β j (8)

∂L

∂w
= 0 = w −

nu∑
i=1

λiy
u
i ui −

nv∑
j=1

α jy
v
jv j , (9)

∂L

∂b
= 0 =

nu∑
i=1

λiy
u
i +

nv∑
j=1

α jy
v
j . (10)
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From Eqs. (7), (8), (9) and (10), we have

σi =
λi

2D
,

C = α j + β j ,

w =
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j ,

and

nu∑
i=1

λiy
u
i +

nv∑
j=1

α jy
v
j = 0,

and take the place ofσi andC. Thus, the following dual form is obtained

L(w,b, ξ, λ, α, β) =
1
2
||w||2 +

1
4D

nu∑
i=1

λ2
i +

nv∑
j=1

(α j + β j)ξ j

−

nu∑
i=1

λiy
u
i w

Tui −

nu∑
i=1

λiy
u
i b+

nu∑
i=1

t(πi)λi −
1

2D

nu∑
i=1

λ2
i

−

nv∑
j=1

α jy
v
jw

Tv j −

nv∑
j=1

α jy
v
jb+

nv∑
j=1

α j −

nv∑
j=1

α jξ j −

nv∑
j=1

β jξ j

=
1
2
||w||2 −

1
4D

nu∑
i=1

λ2
i +

nv∑
j=1

(α j + β j)ξ j

−

nu∑
i=1

λiy
u
i w

Tui − (
nu∑
i=1

λiy
u
i +

nv∑
j=1

α jy
v
j)b+

nu∑
i=1

t(πi)λi

−

nv∑
j=1

α jy
v
jw

Tv j +

nv∑
j=1

α j −

nv∑
j=1

(α j + β j)ξ j

=
1
2
||w||2 −

nu∑
i=1

λiy
u
i w

Tui −

nv∑
j=1

α jy
v
jw

Tv j

+

nu∑
i=1

t(πi)λi −
1

4D

nu∑
i=1

λ2
i +

nv∑
j=1

α j . (11)
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By substitutingw with

nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j ,

in above Lagrangian function (11), we have

L(w,b, ξ, λ, α, β) =
1
2

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

T(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

−

nu∑
i=1

λiy
u
i (

nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

Tui

−

nv∑
j=1

α jy
v
j(

nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

Tv j

+

nu∑
i=1

t(πi)λi −
1

4D

nu∑
i=1

λ2
i +

nv∑
j=1

α j

=
1
2

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

T(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

−
[
(

nu∑
i=1

λiy
u
i ui)

T
nu∑
i=1

λiy
u
i ui + (

nv∑
j=1

α jy
v
jv j)

T
nu∑
i=1

λiy
u
i ui

+(
nu∑
i=1

λiy
u
i ui)

T
nv∑
j=1

α jy
v
jv j + (

nv∑
j=1

α jy
v
jv j)

T
nv∑
j=1

α jy
v
jv j
]

+

nu∑
i=1

t(πi)λi −
1

4D

nu∑
i=1

λ2
i +

nv∑
j=1

α j

= −
1
2

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

T(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

+

nu∑
i=1

t(πi)λi −
1

4D

nu∑
i=1

λ2
i +

nv∑
j=1

α j . (12)
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Therefore, from Eq. (12), Eq. (5) can be rewritten by

max
λ,α

−
1
2

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

T

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

+

nu∑
i=1

t(πi)λi −
1

4D

nu∑
i=1

λ2
i +

nv∑
j=1

α j (13)

s.t. ∀1 6 i 6 nu, 0 6 λi < +∞,

∀1 6 j 6 nv, 0 6 α j 6 C,
nu∑
i=1

λiy
u
i +

nv∑
j=1

α jy
v
j = 0,

namely,

min
λ,α

1
2

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

T

(
nu∑
i=1

λiy
u
i ui +

nv∑
j=1

α jy
v
jv j)

−

nu∑
i=1

t(πi)λi +
1

4D

nu∑
i=1

λ2
i −

nv∑
j=1

α j (14)

s.t. ∀1 6 i 6 nu, 0 6 λi < +∞,

∀1 6 j 6 nv, 0 6 α j 6 C,
nu∑
i=1

λiy
u
i +

nv∑
j=1

α jy
v
j = 0.

For simplicity of description, we can express Eq. (14) in a matrix form as follows:

min
W

1
2WTHW +GTW (15)

s.t. WTe= 0,

∀1 6 i 6 nnu,0 6 λi < +∞

∀1 6 j 6 nnv,0 6 α j 6 C
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wheree denotes the vector with each component equal to 1, andW, G andH are defined
as follows,

W =
[
λ1yu

1 · · · λnuy
u
nu
α1yv

1 · · · αnvy
v
nv

]T
, (16)

G =
[
−t(π1)yu

1 · · · −t(πnu)y
u
nu
−yv

1 · · · −yv
nv

]T
, (17)

H =
[
UTU + B UTV

VTU VTV

]
(18)

whereU =
[
u1 · · · unu

]
,V =

[
v1 · · · vnv

]
, andB = 1

2D Inu×nu.

3. Support Vector Machine with Automatic Confidence

In this section, we will answer the question of how to automatically calculate the con-
fidence values of training samples, and present an illustrative example to demonstrate the
generalization performance of our proposed SVMACs.

3.1. Algorithm for Labeling Confidence

Although we have shown that the generalization performance of SVMCs is superior
to that of traditional SVMs [3], SVMCs face the following three problems: a) we must
spend much time to manually label the confidence value for each of the training samples,
especially when the number of the training samples is large; b) we can not guarantee that
all the labeled confidence values are reasonable because people’s action on determining
the confidence values is very subjective; and c) it is hard for the user to determine the
label confidence values of training samples in some pattern classification problems such
as text categorization and patent classification. To deal with these problems, we introduce
a novel logical method for dividing the training sample set into two subsetsU andV,
and propose an algorithm for labeling the confidence (ALC) automatically. The ALC
algorithm is described in Algorithm 1.

In comparison with traditional SVMs, the main additional cost of training SVMACs
is to construct a decision boundaryγ for labeling the confidence value of each training
sample. If a traditional SVM is used to label the confidence value of each training sample,
the distances between support vector samples and the decision boundaryγ are smaller than
those between non-support vector samples and the decision boundaryγ for the training
samples with the same class label. Thus,∆ needn’t be calculated in the ALC algorithm 1.

As a matter of fact, the distance between a training sample and the decision boundary
γ suggests whether the sample can be discriminated well or not. Obviously, the training
sample which is far from the decision boundary can tend to be discriminated and should
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be appended intoV. Otherwise, it needs to be added toU. Therefore, the confidence
values calculated automatically by the ALC algorithm is consistent with the confidence
values labeled by the user manually.

Algorithm 1 ALC
Step 1: Train a pattern classifier such as SVM and multi-layer perceptron on a given

training sample setT = {(xi , yi)|1 6 i 6 N} and obtain a decision boundaryγ
Step 2: Calculate the distances between all of the samples inT and the decision

boundaryγ and form the distance setΩ = {di | the distance between thei-th sample andγ};
Step 3: Set a threshold value∆,

for all i from 1 toN
if di < ∆,

Add the sample (xi , yi) toU;
else

Add the sample (xi , yi) toV;
end if

end for
Step 4: The confidence values of the samples inV are set to 1.0 while the confidence

values of the samples inU are projected onto the confidence space [1
2,1) according to their

distances and a linear mapping principle;
Step 5: Train an SVMAC on these training samples with both labels and label confi-

dence values and obtain an SVMAC classifier

3.2. An Illustrative Example

Now we examine the performance of SVMACs by using an illustrative example [11].
According to the ALC algorithm and SVMACs defined in Eq. (5), we set the confidence
values of training samples inU less than 1. Those training samples are marked by small
circles (green) shown in Fig. 2, and the right figure in Fig. 3. From these figures, we can
see that the decision boundaries are changed if the confidence values of the support vector
training samples inU are assigned by using the ALC algorithm. Here a traditional SVM is
trained on the training sample set,T = {(xi , yi)|1 6 i 6 N}, to form the decision boundary
γ.

From Fig. 2, we can observe that the change of the decision boundaries of SVMACs
is negligible when the scale parameterh changes from 0.1 to 1 or from 2 to a very large
value. This phenomenon suggests that a small variation inh (h ∈ (0,1]) or a large variation
in h (h ∈ (2,108) is hardly to affect the performance of SVMACs. Figs. 2 (e) and (f)
show the decision boundaries of SVMACs, where the scale parameterh is set to 5.1 and
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108, respectively. Although these two decision boundaries of SVMACs are quite different
from those of SVMACs shown in Figs. 2 (a) and (b), they also moves from the side of
dense training samples (lower left area) to that of sparse training samples (the upper right
area). According to the discussions mentioned above, we can conclude that the movement
of the decision boundaries formed by SVMACs is reasonable, and is identical to that of
SVMCs [3]. Besides, because in Fig. 2 the different ranges of the scale parameterh, i.e.,
the range from 0.1 to 1.0 and the range from 2 to a large number, influence the position
of the SVMAC decision boundary greatly, in practical applications we need to adjust the
scale parameterh to obtain the best classification result.

The support vectors obtained by traditional SVMs can be regarded as the training sam-
ples closing to noise. Therefore, we should assign them with confidence values less than
1. By training the proposed SVMACs on all the training samples with proper confidence
values, we can obtain the decision boundaries shown in Fig. 2. From this figure, we can
see that if the support vectors obtained by the traditional SVMs are assigned with ap-
propriate confidence values, some of them may be turned into non-support vectors after
training SVMACs. The decision boundaries obtained by SVMACs can be regarded as a
fitting achieved by training a pattern classifier on the training sample set in which some
noise samples are removed. As a result, the decision boundaries obtained by SVMACs
are superior to those obtained by traditional SVMs. For example, since the training sam-
ples located in the lower left area in Fig. 2 are much denser and closer to the boundary
formed by traditional SVMs than the training samples located in the upper right area, the
movement of the decision boundary from the lower left corner to the upper right corner
caused by the proposed SVMACs no doubt yields a better separation than that of tradi-
tional SVMs.

From the angle of the label confidence, the decision boundaries formed by our SV-
MACs as shown in Fig. 2 are superior to those generated by traditional SVMs. However,
the decision boundaries produced by traditional SVMs and the proposed SVMACs are the
same as shown in Fig. 3, where only the non-support vector training samples inV are
assigned with confidence values less than 1 according to their distances to the original
decision boundaryγ and none of support vector training samples inU is assigned with
confidence value. From Fig. 3, we see that non-support vector training samples inV with
less than 1 confidence values don’t affect the decision boundary. In other words, after the
confidence values less than 1 are assigned to some non-support vector training samples by
using the ALC algorithm, the whole generalization performance of the proposed SVMACs
will not be decreased.
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(b) h = 1.0
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(c) h = 1.5
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(d) h = 2.0

0 2 4 6 8 10 12 14 16 18 20 22
0

1

2

3

4

5

6

7

8

9

10

 

 

Positive Sample
Negative Sample
Support Vector of SVM
Decision Boundary of SVM
Confidence<1 Sample of SVMAC
Support Vector of SVMAC
Decision Boundary of SVMAC

(e) h = 5.1
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(f) h = 108

Figure 2: Comparison of the decision boundaries formed by the proposed SVMACs with different values of
the scale parameterh. 13
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Figure 3: Comparison of the decision boundaries formed by traditional SVM (left) and our proposed SV-
MAC (rigfht), where we only assign the confidence values (less than 1) to non-support vector training sam-
ples inV for training SVMAC and do not consider any confidence values for support vector training samples
inU.

Table 1: Distribution of training and test data of the three benchmarking problems.

Data Set Training Test No. of Input
Positive Negative Positive Negative Dimensions

Arcene 44 56 44 56 2000
Dexter 150 150 150 150 4000
Gisette 3000 3000 500 500 4000

4. Benchmarking Problems and Application

To demonstrate the performance of the proposed SVMAC and compare it with tradi-
tional SVMs, we perform experiments on three benchmarking pattern classification prob-
lems and a challenging gender classification problem. ThekNN algorithm is used as a
baseline pattern classifier. Here, an optimalk is selected from the range of [5,50].

4.1. Benchmarking Problems

We select three benchmarking problems, namely Arcene, Dexter and Gisette, from
UCI Machine Learning Repository2. Table 1 shows the distributions of these data sets.

2http://archive.ics.uci.edu/ml/
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The Arcene’s task is to distinguish cancer versus normal patterns from mass-spectrometric
data, the Dexter data set is a text classification problem in a bag-of-word representation,
and the Gisette task is a handwritten digit recognition problem of separating the highly
confused digits ‘4’ and ‘9’.

The experiment results on these benchmarking problems are shown in Table 2. From
this table, we can see that our proposed SVMACs achieve the best classification accuracy
among three pattern classifiers. It should be noted that the parameterC in Eqs. (1) and
(14) is set to the same value.

Table 2: Comparison of classification accuracy of our SVMAC with that ofkNN and traditional SVM. Here
both SVMACs and traditional SVMs use a linear kernel.

Data Set
Method Arcene Dexter Gisette
kNN 79.0 66.0 96.3
SVM 83.0 79.7 97.0
SVMAC 84.0 82.3 97.2

4.2. Gender Classification

In the last several years, various feature extraction and pattern classification methods
have been developed for gender classification [12, 13, 14, 15]. Support vector machine is
the most common used pattern classifier in gender classification [16, 13, 15]. To demon-
strate the effectiveness our proposed SVMAC, we apply it to solving the gender classi-
fication problem. In this study, we use multi-view facial images from the CAS-PEAL
face database [17] and frontal facial images from both the FERET3 face database and the
BCMI4 face database.

4.2.1. Experimental Setup
A total of 10788 different-pose facial images from the CAS-PEAL, the FERET, and

the BCMI face databases are organized into 11 groups. The distributions of these training
and test data are shown in Table 3. A total of 8751 facial images are selected randomly

3http://www.frvt.org/FERET/default.htm
4BCMI face database is set up and packed up by the Center for Brain-Like Computing and Machine

Intelligence, Shanghai Jiao Tong University, Shanghai, China.
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Table 3: Description of training and test data from three face databases for gender classification.

Data Set Description Training Test

Male Female Male Female
PD00 311 311 284 134
PD15 296 296 220 127
PD30 296 296 220 127
PM00 310 310 285 134

CAS-PEAL (C) PM15 295 295 221 127
PM30 295 295 221 127
PU00 311 311 284 134
PU15 296 296 220 127
PU30 296 296 220 127

FERET (F) PM00 282 282 307 121
BCMI (B) PM00 361 361 168 155

from the CAS-PEAL face database. These facial images belong to 9 different poses (See
Fig. 4) including looking down pose, looking middle pose, and looking up pose with 0
degree, 15 degree, and 30 degree, respectively. For simplicity of description, the CAS-
PEAL, the FERET, and the BCMI face databases are represented by “C”, “F”, and “B”
in front of pose description names, respectively. For example, “C-PU30” denotes the
facial images belonging to the group of looking up pose with 30 degree from the CAS-
PEAL face database. In training phase, we performed 5-cross validation to find the best
parameters for both SVMACs and traditional SVMs. The parametersh andD are selected
from {h|h = n

5,1 6 n 6 8} and{D|D = 2i ,−106 i 6 10}, respectively. All experiments are
performed on a Pentium fourfold CPU (2.83GHz) PC with 8GB RAM.

4.2.2. Feature Extraction
Before training, the original facial images are preprocessed by locating eye positions,

geometric normalization, and cropping to obtain its face area. We use five feature selection
methods, namely gray, Gabor, local binary pattern (LBP) [18] [19], multi-resolution local
binary pattern (MLBP) [14], and local Gabor binary pattern (LGBP) [20]. The numbers
of dimensions corresponding to these five kinds of features are 20m, 40m, 59m, 3× 59m,
40m, respectively. Here,m is the number of subregions, into which each facial image is
divided.
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Table 4: Gender classification accuracy (%) in mean (odd row) and standard deviation (even row) achieved
by kNN, SVMs, and SVMACs, where SVMs and SVMACs use a RBF kernel, the number of window blocks
is set tom= K × K, andK is ranged from 5 to 10.

Description Method LGBP-CCL LGBP-LDA MLBP LBP Gabor Gray
KNN 93.4 99.7 93.3 92.4 73.6 76.9

1.6 0.4 10.8 5.8 12.8 3.5

C-PD00 SVM 96.7 99.6 95.5 94.2 90.6 92.5
11.4 0.4 2.9 10.2 16.3 4.9

SVMAC 97.4 99.9 96.4 95.3 92.6 93.8
4.8 0.2 1.1 4.4 15.1 4.3

KNN 94.2 99.8 89.4 90.3 81.0 83.5
4.1 0.1 19.3 2.6 16.0 1.0

C-PD15 SVM 97.4 99.7 94.9 93.5 88.7 91.3
7.5 0.1 1.1 3.0 26.0 1.1

SVMAC 97.7 99.8 95.6 94.6 90.5 92.6
7.3 0.1 0.9 2.1 17.2 2.0

KNN 91.3 99.7 89.8 88.1 75.6 76.6
2.6 0.7 6.1 14.1 30.6 9.3

C-PD30 SVM 96.4 99.8 92.7 92.2 89.9 89.4
6.2 0.4 2.0 3.2 13.1 1.5

SVMAC 96.8 100.0 93.3 93.2 90.4 90.6
4.8 0.0 2.1 1.9 8.4 2.5

KNN 94.7 99.6 90.3 89.2 71.5 77.5
9.3 0.6 6.9 15.6 29.1 4.7

C-PM00 SVM 97.3 100.0 96.1 94.5 91.6 94.6
10.6 0.0 2.7 10.4 26.3 6.0

SVMAC 97.5 100.0 96.6 95.5 92.7 95.4
10.8 0.0 3.3 8.5 16.7 3.6

KNN 95.0 99.8 91.4 91.7 81.3 85.3
6.1 0.3 5.5 10.5 21.6 4.9

C-PM15 SVM 97.1 99.7 95.1 94.2 92.7 94.5
2.9 0.3 0.9 14.6 30.2 7.4

SVMAC 97.3 99.9 95.7 94.7 93.2 95.0
2.7 0.2 2.5 15.3 23.4 6.9
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Table 4: (Continued) Gender classification accuracy (%) in mean (odd row) and standard deviation (even
row) achieved bykNN, SVMs, and SVMACs, where SVMs and SVMACs use a RBF kernel, the number of
window blocks is set tom= K × K, andK is ranged from 5 to 10.

Description Method LGBP-CCL LGBP-LDA MLBP LBP Gabor Gray
KNN 91.3 99.6 88.1 87.9 79.5 79.5

5.0 0.9 28.1 7.3 24.1 8.7

C-PM30 SVM 96.3 99.7 93.7 92.4 91.9 92.1
6.8 0.5 9.1 15.3 17.4 1.5

SVMAC 96.9 100.0 95.1 93.2 93.1 92.6
2.8 0.0 6.0 11.3 8.3 2.0

KNN 92.7 99.8 90.1 88.7 69.9 74.4
13.3 0.6 4.8 6.5 13.9 12.2

C-PU00 SVM 96.7 99.9 95.4 94.5 90.2 89.0
5.4 0.1 4.2 4.7 33.2 28.4

SVMAC 97.6 100.0 96.3 95.3 91.6 92.0
5.6 0.0 2.4 4.8 18.4 17.9

KNN 94.9 99.7 88.5 89.5 77.5 80.9
13.7 0.5 38.2 5.3 38.4 1.3

C-PU15 SVM 97.6 99.9 96.0 95.6 92.6 89.3
1.3 0.1 4.2 1.8 8.9 16.5

SVMAC 98.3 100.0 96.6 96.0 93.1 90.2
2.5 0.0 0.8 2.5 6.5 18.8

KNN 93.9 99.8 88.3 87.4 76.9 81.5
3.0 0.4 10.0 2.5 30.4 13.0

C-PU30 SVM 96.9 99.9 94.0 92.8 89.0 88.2
8.6 0.2 4.0 5.1 21.1 9.1

SVMAC 97.0 100.0 95.0 93.6 90.2 89.6
6.3 0.0 1.2 5.5 13.0 5.9

KNN 89.9 96.2 87.3 84.4 73.9 72.5
4.8 3.2 9.8 9.4 0.6 3.7

F-PM00 SVM 94.6 98.8 93.7 92.3 90.4 89.5
11.6 2.3 1.3 9.0 9.8 3.7

SVMAC 95.1 99.1 93.8 93.1 91.6 91.2
8.8 0.6 1.0 3.9 15.1 4.6

KNN 91.5 98.9 91.0 90.4 86.0 89.8
16.6 0.8 15.1 11.4 23.2 6.1

B-PM00 SVM 97.3 99.4 96.3 96.2 93.4 95.4
8.3 1.4 2.0 3.2 10.2 2.1

SVMAC 98.1 99.7 97.2 97.3 95.1 95.7
0.7 0.2 0.9 0.9 6.1 1.2
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POSE PD00 POSE PD30POSE PD15

POSE PM00 POSE PM30POSE PM15

POSE PU00 POSE PU30POSE PU15

Figure 4: Nine different-pose facial images from the CAS-PEAL face database.

POSE PM00

Figure 5: Examples from the FERET face database (left two) and the BCMI face database (right two).

4.2.3. Experimental Results
In this application study, the confidence value of each training sample is calculated

automatically by using the ALC algorithm described in Section 3.1. For example, we see
that the 2nd and the 10-th facial images shown in Fig. 7 are non-support vector training
samples. Although their confidence values labeled manually are less than 1, this labeling
results will not affect the whole classification accuracy according to the analysis described
in Section 2. The 4-th sample is a support vector training sample, but its label confidence
value is assigned to 1 manually. Thus, this indicates that we can not guarantee all the
confidence values labeled manually because of subjectivity. The confidence values of
other samples labeled manually are almost consistent with these calculated by the ALC
algorithm. Consequently, the manual and automatic label confidence values are equivalent
approximately in most situations.

19



0.70

0.80

0.90

1.00

G
en

d
er

 C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

C−PD00

C−PD15

C−PD30

C−PM00

C−PM15

C−PM30

C−PU00

C−PU15

C−PU30

F−PM00

B−PM00

MLBP + KNN
MLBP + SVM

MLBP + SVMAC

(a)

0.70

0.80

0.90

1.00

G
en

d
er

 C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy
 

 

C−PD00

C−PD15

C−PD30

C−PM00

C−PM15

C−PM30

C−PU00

C−PU15

C−PU30

F−PM00

B−PM00

LBP + KNN
LBP + SVM

LBP + SVMAC

(b)

0.65

0.75

0.85

0.95

G
en

d
er

 C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

C−PD00

C−PD15

C−PD30

C−PM00

C−PM15

C−PM30

C−PU00

C−PU15

C−PU30

F−PM00

B−PM00

Gabor + KNN
Gabor + SVM

Gabor + SVMAC

(c)

0.65

0.75

0.85

0.95

G
en

d
er

 C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

 

 

C−PD00

C−PD15

C−PD30

C−PM00

C−PM15

C−PM30

C−PU00

C−PU15

C−PU30

F−PM00

B−PM00

Gray + KNN
Gray + SVM

Gray + SVMAC

(d)

Figure 6: Comparison of gender classification accuracy inkNN, SVMs, and SVMACs: (a) MLBP feature;
(b) LBP feature; (c) Gabor feature; and (d) Gray feature. Here both SVMs and SVMACs use a RBF kernel,
andm= 9× 9 blocks for each facial image are selected.
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From Table 4, and Fig. 6, we conclude the following three observations: a) the average
classification accuracy achieved by SVMACs is higher than that of traditional SVMs and
kNN [21]; b) the corresponding standard deviation brought by SVMACs is lower than that
of traditional SVMs andkNN in most cases; and c) the maximum improvement achieved
by SVMACs on classification accuracy reaches 3.0%. We can also see that SVMACs
achieve a largest improvement on classification accuracy when the Gabor and Gray fea-
tures are used. This demonstrates that SVMACs can control more influence of noise data
by introducing the label confidence value for each training sample. The reason is that there
are more noises in the Gabor and Gray features than those in the LGBP, MLBP, and LBP
features.

In addition, we observe that the classification accuracy is also dependent on the distri-
butions of training samples. Generally speaking, there are two kinds of sample distributes
as illustrated in Fig. 2. One is dense and the other is sparse. In this situation, If the
confidence values less than 1 are set for the support vector samples, the decision bound-
ary obtained by SVMACs will favor the sparse samples in comparison with traditional
SVMs. Consequently, from both experimental results and theoretical analysis, we see that
SVMCs separate the data samples more reasonably by modifying the confidence values
of the support vector training samples. In a word, SVMACs can improve gender classifi-
cation accuracy, regardless of the high-dimension features (LGBP, MLBP, and LBP) and
low-dimension features (Gabor and Gray).

5. Conclusions and Future Work

We have proposed a novel support vector machine classifier with automatic confidence
and introduced a simple algorithm for calculating the label confidence value of each train-
ing sample. We have derived the quadratic programming problem for this new SVM and
discussed its generalization performance through an illustrative example. The most impor-
tant advantage of the proposed SVMs over traditional SVMs is that some explicit human
prior knowledge estimated by our confidence labeling algorithm on training samples can
be incorporated into learning. By using a gender classification task based on facial images,
we have shown that the manual confidence and automatic confidence are quite consistent
in most cases. Experimental results on three benchmaring problems and a gender clas-
sification task indicate that the proposed SVMs can improve generalization performance,
especially when the input features have much noise.

As future work, we would like to study the bound for the improvement on classifica-
tion accuracy theoretically and apply SVMACs to other real-world pattern classification
problems such as text classification and age estimation.
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Male
M:  0.50
A:  0.63

Male
M:  0.80
A:  0.64

Female
M:  0.60
A:  1.00

Female
M:  1.00
A:  0.83

Male
M:  0.50
A:  0.78

Male
M:  0.70
A:  0.81

Female
M:  0.90
A:  1.00

Female
M:  0.60
A:  0.69

Male
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M:  0.80
A:  0.81

Male
M:  0.80
A:  0.58

Female
M:  0.70
A:  0.85

Figure 7: Examples of facial images and their confidence values. Here “M” and “A” denote the confidence
values labeled manually and calculated automatically, respectively. These facial images are numbered from
1 to 12 from left to right and from upper to lower.
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