
The MIPS Info Sheet

MIPS Instructions

Arithmetic/Logic

In the instructions below, Src2 can either be a reg-
ister or an immediate value (integer). Many of these
instructions have an unsigned version, obtained by ap-
pending u to the opcode (e.g. addu).

abs Rdest, Rsrc Absolute Value
Put the absolute value of the integer from register Rsrc
in register Rdest.

add Rdest, Rsrc1, Src2 Addition (with overflow)
Put the sum of the integers from register Rsrc1 and
Src2 (or Imm) into register Rdest.

and Rdest, Rsrc1, Src2 AND
Put the logical AND of the integers from register
Rsrc1 and Src2 (or Imm) into register Rdest.

div Rdest, Rsrc1, Src2 Divide (with overflow)
Put the quotient of the integers from register Rsrc1

and Src2 into register Rdest.

mul Rdest, Rsrc1, Src2Multiply (without overflow)
Put the product of the integers from register Rsrc1

and Src2 into register Rdest.

neg Rdest, Rsrc Negate Value (with overflow)
Put the negative of the integer from register Rsrc into
register Rdest.

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from register
Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT
Put the bitwise logical negation of the integer from
register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR
Put the logical OR of the integers from register Rsrc1
and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrc1, Src2 Remainder
Put the remainder from dividing the integer in register
Rsrc1 by the integer in Src2 into register Rdest.

rol Rdest, Rsrc1, Src2 Rotate Left
Rotate the contents of register Rsrc1 left (right) by
the distance indicated by Src2 and put the result in
register Rdest.

sll Rdest, Rsrc1, Src2 Shift Left Logical
sra Rdest, Rsrc1, Src2 Shift Right Arithmetic
srl Rdest, Rsrc1, Src2 Shift Right Logical
Shift the contents of register Rsrc1 left (right) by the
distance indicated by Src2 (Rsrc2) and put the result
in register Rdest.

sub Rdest, Rsrc1, Src2 Subtract (with overflow)
Put the difference of the integers from register Rsrc1

and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR
Put the logical XOR of the integers from register
Rsrc1 and Src2 (or Imm) into register Rdest.

Comparison Instructions

In all instructions below, Src2 can either be a regis-
ter or an immediate value (a 16 bit integer). Most
instructions also have an unsigned version (append u).

seq Rdest, Rsrc1, Src2 Set Equal
Set register Rdest to 1 if register Rsrc1 equals Src2

and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal
Set register Rdest to 1 if register Rsrc1 is greater than
or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than
Set register Rdest to 1 if register Rsrc1 is greater than
Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal
Set register Rdest to 1 if register Rsrc1 is less than or
equal to Src2 and to 0 otherwise.

slt Rdest, Rsrc1, Src2 Set Less Than
Set register Rdest to 1 if register Rsrc1 is less than
Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrc1, Src2 Set Not Equal
Set register Rdest to 1 if register Rsrc1 is not equal
to Src2 and to 0 otherwise.

Branch and Jump Instructions

In all instructions below, Src2 can either be a register
or an immediate value (integer).

b label Branch instruction
Unconditionally branch to the instruction at the label.

beq Rsrc1, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if
the contents of register Rsrc1 equals Src2.

bge Rsrc1, Src2, label Branch on Greater Than
Equal
Conditionally branch to the instruction at the label if
the contents of register Rsrc1 are greater than or equal
to Src2.

bgt Rsrc1, Src2, label Branch on Greater Than
Conditionally branch to the instruction at the label if
the contents of register Rsrc1 are greater than Src2.

ble Rsrc1, Src2, label Branch on Less Than
Equal
Conditionally branch to the instruction at the label if

1

the contents of register Rsrc1 are less than or equal to
Src2.

blt Rsrc1, Src2, label Branch on Less Than
Conditionally branch to the instruction at the label if
the contents of register Rsrc1 are less than Src2.

bne Rsrc1, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if
the contents of register Rsrc1 are not equal to Src2.

jal label Jump and Link
Unconditionally jump to the instruction at the label
Save the address of the next instruction in register 31.

jr Rsrc Jump Register
Unconditionally jump to the instruction whose address
is in register Rsrc.

Load/Store/Move Instructions

move Rdest, Rsrc Move
Move the contents of Rsrc to Rdest.

li Rdest, imm Load Immediate
Move the immediate value imm into register Rdest.

la Rdest, address Load Address
Load computed address, not the contents of the loca-
tion, into register Rdest.

lb Rdest, address Load Byte
Load the byte at address into register Rdest.

lh Rdest, address Load Halfword
Load the 16-bit quantity (halfword) at address into
register Rdest.

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into regis-
ter Rdest.

sb Rsrc, address Store Byte
Store the low byte from register Rsrc at address.

sh Rsrc, address Store Halfword
Store the low halfword from register Rsrc at address.

sw Rsrc, address Store Word
Store the word from register Rsrc at address.

SPIM System Calls

Service $2 Arguments Result

print int 1 $4 = integer
print string 4 $4 = string
read int 5 integer (in $2)
read string 8 $4 = buffer,

$5 = length
sbrk 9 $4 = amount address (in $2)
exit 10

MIPS Assembler Directives

.align n

Align data on a n-byte boundary.

.asciiz str

Store string in memory and null-terminate it.

.data

The following data items should be stored in the
data segment.

.space n

Allocate n bytes of space in the current segment
(which must be the data segment in SPIM).

.text

The next items are put in the user text segment.

.word w1, ..., wn

Store the n 32-bit quantities in successive memory
words.

2

