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Background: Spectral Clustering

Spectral clustering: nonlinear feature reduction.
The distribution of real data does not always obey uniform or
gaussian.
Spectral clustering can preserve the local neighborhood
information.
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Background: Spectral Clustering

Spectral clustering demonstrates a splendid performance on
many challenge data sets.
Objective function:

y = arg min
yT Dy=1

n∑
i,j

wij‖yi − yj‖22 ,

where wij is the similarity between data sample xi and xj (a.k.a.
affinity graph).
Shortcomings of spectral clustering

Out-of-sample extension is not straightforward
Cubic time complexity
Sensitive to the affinity graph
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Background: Locality Preserving Projections

Locality Preserving Projections (LPP) [HN04] is the linear
approximation of Laplacian Eigenmap.
Locality Preserving Projections conducts dimensionality reduction
by solving the optimization problem:

a = arg min
aT XDXa=1

n∑
i,j

wij‖aT xi − aT xj‖22 ,

The superiority of LPP
Explicit projection for out-of-sample extension
Complexity is reduced
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Motivation

The performance of spectral clustering methods highly depends
on the robustness of the affinity graph.

Some weighting methods like k−NN heat kernel will be corrupted
by noises.

Our goal:
Learn a robust affinity graph by optimization efficiently.
Optimize the linear projection and affinity graph simultaneously.
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Related Works

Dominant Neighbors [PP07] reduces the noise of the affinity
matrix by maximal cliques.
Consensus k-NNs [PK13] builds affinity graph by consensus
information.
ClustRF-Strct [ZLG14] constructs an affinity graph via the
clustering random forests.
CAN and PCAN [NWH14] learn data similarity and cluster
structure simultaneously.
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AdaAM: Assumption

Assumption 1: The affinity matrix W is a positive semidefinite
matrix. Hence we have,

W = PPT .

This assumption also appeared in [CC11]
Assumption 2: The ideal affinity matrix W is a low rank matrix (1
for the sample in the same class and 0 for the others).

= x

W P P
T
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AdaAM: Diagram

A glance of our algorithm

= x

+

P low rank   Δ

k-NN Wprojection A

projection A

x=Metric
sparsification

sparsification
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AdaAM: Intermediate Affinity Matrix ∆

Let ∆ be the intermediate affinity matrix, and assume ∆ = PPT .
Compute P by solving optimization problem

min
PT P=I

tr(X T (D∆ − PPT )X )

⇒ min
PT P=I

tr(X T D∆X ) + tr(X T (−PPT )X )

similar to spectral clustering
When X is normalized with zero mean, we have D∆ = 0. The
above problem is equivalent to

P = arg max
PT P=I

tr(PT XX T P)
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AdaAM: Final Adaptive Affinity Matrix

With the intermediate affinity matrix ∆, we can solve the following
problem for a linear projection A:

A = arg min
AT A=I

tr(AT X T (L + L∆)XA)

L + L∆ is the combination of the Laplacian of k -NN heat kernel
and the intermediate affinity matrix.
With the linear projection A, we can rewrite the affinity
optimization problem and update matrix P ( D∆ = 0 still holds).

P = arg max
PT P=I

tr(PT XAAT X T P)
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Experiments

We evaluate the proposed approach on five image data sets
UMIST, COIL20, USPS, MNIST, ExYaleB

We impose the same parameter selection criteria on all the
algorithms in our experiments.

the size of neighborhood k = Round(log2(n/c))
projected dimension is the same as the number of classes

We denote 10 times of k -Means as a round and select the
clustering result with the minimal within-cluster sum as the result
of each round of k -Means.
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Accuracy

100 rounds k -Means to each algorithms for the evaluation of the
performance.

Table: Clustering accuracy on image data sets(%)

AdaAM k -NN Cons-kNN DN ClustRF-Bi PCAN-kMeans PCAN

Avg Max Avg Max Avg Max Avg Max Avg Max Avg Max

UMIST 66.06 75.65 58.16 65.39 60.27 69.22 59.15 66.96 64.63 74.44 53.79 56.52 55.30

COIL20 74.72 87.29 71.89 81.18 75.53 84.31 71.95 82.01 76.50 85.07 72.28 83.75 81.74

USPS 69.36 69.61 68.25 68.35 68.21 68.34 68.08 68.31 58.74 65.90 64.04 67.95 64.20

MNIST 60.84 61.34 48.13 48.27 47.88 48.00 49.72 49.76 51.93 52.03 58.93 58.98 59.83

ExYaleB 54.36 57.87 24.17 26.76 25.63 28.75 24.21 27.42 23.10 26.43 25.74 27.63 25.89
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Accuracy

10 rounds k -Means for the experiment of the sensitivity to the
neighborhood size
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(e) COIL20

Figure: Comparison between different with different of neighborhood
size k
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Accuracy
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(a) USPS
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(b) ExYaleB

Figure: Comparison between different with different of neighborhood size k

Requires more information from the pairwise similarity.
For small k , sometimes does not perform well.
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Time Consumption
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Figure: Time consumption of six approaches with different number of data
instances
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Conclusion & Future Work

Conclusion

We present a novel affinity learning approach for unsupervised
metric learning.
The affinity matrix is learned from the same framework of spectral
clustering.
The affinity learning can be reduced to a singular value
decomposition problem.
We employ the low rank trick to make our approach more efficient.

Future Work

A better way to learn the parameter of sparsification
A better way to fuse low rank ∆ and k -NN W .
More applications
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