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Abstract—This paper designs an experiment to analyze dif-
ferent EEG patterns while subjects are listening to different
language songs. In the process of experiment, the subjects listen
to multi-section songs. Every two songs have the same rhythm
and only the lyrics are different, one in Chinese and the other
in Japanese. The songs are sung by one singer and the Chinese
subject don’t know Japanese at all. At the same time we collect
the EEG signals which are supposed to have very subtle difference
corresponding to two kinds of songs. Then we use common spatial
pattern algorithm to extract features and define an average
energy function to represent them. After that we use support
vector machine to learn and classify the EEG data. We find
that the difference pattern mainly lay in low spectral band (0-
0.5Hz), and concentrate on the left frontal area of the cortical.
We achieve the highest classification accuracy of 97.30% and an
average classification accuracy of 87.15%.

I. INTRODUCTION

We get most of our knowledge through seeing and listening.
This paper devotes to the research of our response to the music
stimuli. We receive information by listening everyday, such as
speech, music, nature voice and so on. Our brain will response
differently to different sound. For example, when we listen to
native language and foreign languages, our brain will response
differently [1]. How our brain response to these and how to
measure it is still under study. In this paper, we try to use
EEG signals to analyze the different mental states when we
are listening to songs with different language lyrics.

Regions involved in language processing have been ob-
served in the inferior part of the left temporal lobe. According
to Pallier’s study [1], for each subject, the brain region where
activation due to native language was significantly stronger
than that due to foreign language. There was a large activation
of left-lateralized temporal and inferior frontal regions when
subjects listening to native sentences. It is anticipated that a
substantial increase in gamma-band activity would be observed
during visual word perception [2]. David and colleagues indi-
cated that verbal learning with a musical template strengthens
coherent oscillations in frontal cortical networks involved in
verbal encoding [3]. Lin and colleagues used MLPs to classify
four classes of EEG data when the subject was listening to four
kinds of music (joy, angry, sadness, pleasure), and achieved
the average classification accuracy of 69.69% [4]. We can

TABLE I
THE DISPLAY ORDER OF SONG SECTION

0 1st Section 2nd Section . . . 22nd Section

10s Chinese 10s Japanese 10s . . . Japanese 10s

song song song

see there exists differences in EEG when we are listening to
different languages songs.

The purpose of this study is to quantify the different patterns
of EEG signals using machine learning methods when the
subjects are listening to different language songs and we also
try to explain the difference and find more prior knowledge
from the physiological aspect. This paper designs a new
experiment which discovers the different patterns when people
are listening to different languages songs. We find that these
differences mainly lay in 0-3.5Hz and γ (26-50Hz) rhythm
and the place of these difference concentrate on the left frontal
region which is consistent with the result of fMRI [1]. We use
Common Spatial Pattern algorithm [5] [6] and support vector
machines (SVMs) to learn and classify the EEG data.

II. METHODS

A. Experiment Setup

In the experiment, we choose two kinds of songs (Chinese
lyrics and Japanese lyrics) to stimulate the subject and at
the same time we record the EEG signals using 64-channel
Neuro-scan device. All songs are sung by one singer and the
same song is sung in two versions, namely Chinese lyrics and
Japanese lyrics. The number of song sections is 22 which has
11 Chinese songs and 11 Japanese songs. The length of song
section ranges from 40 seconds to 80 seconds. The Chinese
subjects can’t understand Japanese at all and didn’t receive
professional music training before.

Table 1 is about the display order of songs. There are 10
seconds between two song sections for rest. During the process
of experiment, the subject sits in a comfortable chair and
the sound box will play the song. Then we record the EEG
signals through extended 10/20 system with Neuro-scan cap.
The experiment lasts for about 25 minutes.
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B. Data preprocessing

Firstly, we resample the data with rate of 100Hz; then
we divide the original signal to 22 sections according to the
number of songs; after that we divide each section to many
data samples every 4 seconds, namely 400 points for a sample
according to 100Hz sampling rate. Here we would like to
mention that we also try some other number of points per
sample and the classification results are showed in Fig. 2. But
when the number of points increases, the number of training
samples will decrease. As a result, the classification precision
will decrease. The experimental results show that 400 points
per second is a compromise between highest classification
precision and sample number; finally we divide the samples to
training data and testing data using the ratio of 3:1. We try to
make the training data scattered to cover the whole data which
is proved to be effective. We label Chinese songs as Class A,
and Japanese songs as Class B. We totally get 6 persons’ data
and each person’s experiment time is about 25 minutes.

C. Common Spatial Pattern

Common spacial pattern (CSP) algorithm is the simplifica-
tion of Common Spatial Subspace Decomposition (CSSD) [7]
algorithm and is designed according to the theory of simul-
taneous diagonalization of the covariance matrices of two
classes [9]. The main idea is to use a linear transform to
project the multi-channel EEG data into low-dimensional
spatial subspace with a projection matrix. So the essence is
to compute a projection matrix of two classes’ data. After the
projection, one signal will have the maximum variant and the
other signal will have the smallest variant at the same direction
and the sum of the two variant will be 1. CSP is a supervised
learning method and is very effective on two-class problem,
because it use the class information to extract the feature which
has the biggest difference between two classes.

Suppose that Xa and Xb are N × T signal matrices. In
our experiment, Xa represents the EEG signal when subject
is listening to Chinese songs and is concatenated by all the
processed training sample of class A. Xb represents the EEG
signal when subject is listening to Japanese songs. Suppose
that N is the channel number and T is the number of all
training sample points of one class.

The estimation of covariant matrix can be expressed as

Ra = (Xa · XT
a )/(T − 1) (1)

Rb = (Xb · XT
b )/(T − 1) (2)

R = Ra + Rb = U0 · Σ · UT
0 (3)

Whitening transformation matrix P can be expressed as

P = Σ−1/2 · UT
0 (4)

By whitening them, we have

Sa = P · Ra · PT (5)

Sb = P · Rb · PT (6)
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Fig. 1. CSP projection of the original EEG signal. Before projection, we show
the data point of two channels which are completely mixed. After projection,
the points from class A (red points) have the maximum variant in the x axis
and the smallest variant in the y axis.

where
Sa + Sb = I (7)

By diagonalization, we have

Sa = U · Σa · UT (8)

Sb = U · Σb · UT (9)

where
Σa + Σb = I (10)

Finally we get the projection matrix as follows:

SF = UT · P (11)

where SF is the projection matrix and is called Spatial Filter.
Each row of SF matrix corresponds to a projection vector. In
the direction of first projection vector, the projection of the
data from Class A will have maximum variant and the Class
B will have the smallest variant. The sum of the two variants
is 1. This is the basic idea of the CSP algorithm.

After projection, we have

cov(SF · Xa) + cov(SF · Xb) = I (12)

where
cov(X) = (X · XT )/(T − 1) (13)

We can see from Fig. 1 that before projection two signals
were completely mixed, and after projection they distinguish
from each other according to the CSP algorithm.
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Fig. 2. The result of subject 2 with different sample lengths from 2 seconds
to 6 seconds.

D. Feature organization

Here we have the projection matrix SF and many pro-
cessed sample date T62×400; then we project each sample data
T62×400 using the first and last M rows of SF matrix SF 2M ,
we get a matrix K2M×400; finally we define an average energy
function to calculate the average energy of 400 points data and
get a 2M × 1 vector v which is the feature of this sample.

This feature organization process can be described as fol-
lows.

By projection, we have

K = SF 2M · T (14)

The feature for one sample is defined as

v = (v1, v2...v2M )T (15)

The average energy function is defined as

vi =
1

400

400∑

j=1

K2
ij (16)

After projection, we assume each sample data has the same
distribution of the whole data set of its class. Then in the
first projection direction, namely the first row of SF matrix,
the sample belong to Class A will have the biggest variant.
Here we use Average Energy Function which includes both
the variant and mean information of the sample data. This can
be seen from the following equation:

E(v2
i ) = var(vi) + E2(vi) (17)

E. SVM classification

We use LIBSVM [8] as classifiers and choose the RBF as
kernel to learn and classify the EEG data. SVM has two main
parameters, gamma and c, which need to be grid searched for
the best. Here we choose [0.001 0.01 0.05 0.1 1 10] as the

TABLE II
THIS TABLE SHOWS THE BEST RESULTS OF 6 SUBJECTS IN ALL SPECTRAL

BANDS. THE LENGTH OF EACH SAMPLE IS 4 SECONDS. WE TOTALLY GET

228 TRAINING SAMPLES AND 76 TESTING SAMPLES PER SUBJECT. IN

TRAINING SAMPLES, WE HAVE 116 SAMPLES OF CLASS A AND 112
SAMPLES OF CLASS B.

Subject Precision(%) Recall(%) F1(%)

S1 86.05 86.05 86.05

S2 96.54 96.51 96.52

S3 86.12 86.05 86.09

S4 87.34 87.38 87.36

S5 93.13 93.17 93.15

S6 82.77 82.70 82.73

Average 88.66 88.65 88.65

TABLE III
THE TEST ACCURACY OF 6 SUBJECTS IN DIFFERENT RANGE OF SPECTRAL.

”ALL” REPRESENTS THAT ALL THE FEATURES IN DIFFERENT SPECTRAL

BANDS ARE USED. THE LENGTH OF EACH SAMPLE IS 4 SECONDS.

Subject 0-0.5Hz δ θ α β γ All

(%) (%) (%) (%) (%) (%) (%)

S1 82.43 72.97 66.22 71.62 71.62 71.62 82.43

S2 97.30 85.14 68.92 72.97 79.73 78.38 97.30

S3 83.78 75.68 74.32 81.08 87.84 91.89 89.19

S4 86.84 68.42 64.47 63.16 61.84 64.47 85.53

S5 90.79 73.68 63.16 75.00 69.74 68.42 90.79

S6 75.00 68.42 67.11 65.79 67.11 72.37 77.63

Average 86.02 74.05 67.37 71.60 72.98 74.52 87.15

candidate values of gamma and [1 10 50 100 300 500 1000]
as the candidate values of c. Then for each person’s data, we
use the Brute-force method to calculate the best parameters
which produce the highest classification precision.

III. RESULT AND DISCUSSION

The experiment results are showed in Tables II and III, and
Figs. 2 and 3.

In Table II, we choose the parameters which have the best
performance. From this table, we can see that EEG signal
differs from one person to another and the subject 2 achieved
the highest performance over most parameters. And these
results are achieved in all spectral bands. The Precision, Recall
and F1 here are the evaluation methods usually defined in text
classification.

Figure 2 illustrates the results of subject 2 with different
parameters including the number of features and sample
length. We can see from this figure that the number of features
is the most important parameter in this experiment. In this
experiment, we used the whole training set to compute the
projection matrix SF and then we project each sample with
SF . In the idea situation, for class A, v1 will be the biggest
and v2M be smallest feature. Only two features will distinguish
the data. But the actual situation is that mental state will
be different even when one is listening to the same song.
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Fig. 3. Scalp topographies of EEG energy proportion in 0-0.5Hz. The top-
left scalp represents the state when people are listening to Chinese songs and
the top-right scalp Japanese songs. The bottom scalp is the difference of two
scalps which is calculated by the absolute value of the difference between the
top-left scalp energy and the top-right scalp energy.

So increasing the number of features would increase the
information and are supposed to reduce the classification error.
We can see from Fig. 2 that when the number of features is
more than 20, we can achieve higher classification accuracy.

Table III is about the results of subjects in different spectral
bands. We use low-pass, band-pass, and high-pass FIR filters
to process the data. The length of sample is 4 seconds. Here
Walter’s definition of spectral bands, namely δ (0.5-3.5Hz),
θ (4-7Hz), α (8-13Hz), β (14-25Hz) and γ (26-50Hz), are
introduced. We find that we achieve the highest performance
in the lower spectral band (0-0.5Hz) due to the effect of the
Slow Cortical Potentials (SCP) [10] [11]. Here accuracy is
defined as the percentage of the right classified test samples.
For subject 2, we get the highest classification accuracy of
97.30%. We also find that classification accuracy improve a
little in β and γ rhythms, especially for subject 3 who achieved
the highest performance in γ rhythm. Finally, we combine all
the features in different spectral bands and obtain an average
improvement of 1.13% in accuracy.

Since we achieved higher performance in low spectral
band, we use the FIR band-pass filter (0-0.5Hz) to process
two classes EEG signals, separately, and then we use the
periodogram [12] to estimate the Power Spectral Density of
each channel. We plot the energy between 0 and 0.5Hz of each
channel in the scalp. The results are shown in Fig. 3. We find
that the typical different area is near the left frontal region of
the scalp, which is consistent with the result of fMIR [1].

IV. CONCLUSIONS

In this paper, we have designed a new experiment based
on different languages songs stimuli, namely Chinese songs
which can be understood by the native subjects and Japanese
songs which the subjects don’t understand at all. We recorded

the EEG signals using extended 10-20 Neuro-Scan system.
Finally, we totally collected six subjects’ EEG data for the
analysis.

From the analysis of the EEG data, we can see that when
people are listening to different languages songs, the brain will
produce different EEG signal patterns, which lay in 0-0.5Hz
and mainly in the left frontal region of the brain. We used
common spatial pattern to project the original data and define
an average energy function to represent the features. Then we
used SVM classifiers to classify the data. Finally, we achieved
the highest classification accuracy of 97.30% and an average
classification precision of 87.15% for two different languages
songs. The results of the experiment confirm in a different way
that native language and foreign language will cause different
reaction in left frontal brain region [1].
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