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Abstract. With the adoption of min-max-modular support vector machines
(SVMs) to solve large-scale patent classification problems, a novel, simple
method for incorporating prior knowledge into task decomposition is proposed
and investigated. Two kinds of prior knowledge described in patent texts are
considered: time information, and hierarchical structure information. Through
experiments using the NTCIR-5 Japanese patent database, patents are found to
have time-varying features that considerably affect classification. The experimen-
tal results demonstrate that applying min-max modular SVMs with the proposed
method gives performance superior to that of conventional SVMs in terms of
training time, generalization accuracy, and scalability.

1 Introduction

In the modern world, patents and patent applications are important factors in measur-
ing the levels and capabilities of scientific and technological progress of a country or
company. Automatic patent classification is a multi-class problem with the following
characteristics distinguishing it from traditional pattern classification problems:(1) It is
a very large-scale problem in terms of both the number of training samples and the
number of categories. (2) It is a typical hierarchical pattern classification problem. (3)
Training samples collected from different years have time-varying characteristics. (4)
The number of available training samples continuously increases. (5) It is a multi-label
problem.

Because of its great importance in patent analysis and patent mining, automatic
patent classification has received much attention in recent years [1,2,3,4,5,6]. Many
patent classifiers have been studied, such as the naive Bayes classifier, k-NN, support
vector machines (SVMs), neural networks, and decision rules. Fall et al. suggested that
SVMs are suitable patent classifiers capable of achieving the best performance among
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these classifiers [5,6]. SVMs suffer, however, from time and space complexities for
large-scale patent classification problems. To scale SVMs up to large-scale pattern clas-
sification problems, Lu et al. proposed a min-max modular support vector machine
(M3-SVM) [7]. The basic idea behind M3-SVMs is to apply the divide-and-conquer
strategy: decomposing a complex problem into a series of simple subproblems; learn-
ing all of the subproblems by using SVMs; and integrating the trained SVMs according
to the minimization and maximization principles [8].

In this paper, we adopt M3-SVMs for large-scale patent classification problems and
propose a novel method for incorporating prior knowledge into task decomposition. We
focus on two kinds of prior knowledge described in patent texts: time information, and
hierarchical structure information. To sufficiently utilize the time information, we ex-
plore the relationship between patent texts and classification performance. Examining
the NTCIR-5 Japanese patent database [9], which consists of more than two million
unexamined Japanese patent applications, we find that patent applications have time-
varying features, and that this time-dependence property considerably affects learning
and classification. we compare the proposed method with the existing task decompo-
sition approaches. The experimental results demonstrate that applying M3-SVMs with
the proposed task decomposition method achieves performance superior to that of con-
ventional SVMs, in terms of both training time and generalization accuracy.

The rest of the paper is organized as follows. The patent classification problem is
described in section 2. In section 3, the time-varying features of patent texts are an-
alyzed. Section 4 briefly introduces M3-SVMs, and section 5 proposes our effective
task decomposition strategy based on prior knowledge. The experiments and results are
presented in section 6, and our conclusions are given in section 7.

2 Problem Description

We address the task of Japanese patent classification on the NTCIR-5 patent database.
The NTCIR-5 database adopts the International Patent Classification (IPC) taxonomy,
which provides a common classification scheme for patents and inventions. The IPC is a
hierarchically structured system consisting of five levels: section, class, subclass, group,

Table 1. Number of patents in eight section categories, 1993-1999

Section 1993 1994 1995 1996 1997 1998 1999 Total
A 30,583 31,316 28,357 25,444 22,475 32,427 33,126 203,728
B 65,538 68,474 68,130 68,278 62,436 68,148 69,648 470,652
C 30,747 31,834 34,163 37,996 35,700 31,198 31,494 233,132
D 4,904 5,228 5,794 6,127 5,604 4,642 4,968 37,267
E 18,605 18,000 16,114 13,690 11,099 18,604 18,810 114,922
F 30,296 31,188 29,358 28,258 26,671 31,403 32,938 210,112
G 77,692 81,691 81,677 88,716 95,679 79,158 83,942 588,555
H 72,589 72,164 72,544 81,486 86,834 75,305 80,594 541,516

Total 330,954 339,895 336,137 349,995 346,498 340,885 355,520 2,399,884
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and subgroup. The top level is the section level, which contains eight categories labeled
from ‘A’ through ‘H’. The second level is the class level, which contains 120 categories
expressed by two digits after the section label, such as ‘A01’. The third level is the
subclass level, which has 615 categories represented by a capital letter following the
class label, such as ‘A01B’. The fourth and fifth levels are the group level and subgroup
level, respectively. In general, current research is mainly concentrated on the top three
levels, because the definitions of the group and subgroup levels are frequently changed.

All of the unexamined Japanese patent applications published from 1993 through
1999 in the NTCIR-5 patent database were used in this study. Table 1 summarizes the
distribution of these patent applications. From the table, we can see that the total number
of patent applications in this period was nearly 2.4 million. A patent text consists of four
parts: Abstract, Claim, Description, and other descriptive information, such as Title and
IPC labels.

3 Time-Varying Features of Patents

While patent classification techniques such as feature extraction methods and classifi-
cation algorithms have been extensively studied, the time-varying features of patents
issued in different periods and their influence on classification have not been explored
yet. In this section, we address these issues.

One unique characteristic of patents is their time dependence. On the one hand, the
words used by people change over time. This is the evolution of language usage over
time: what people talk about, and what vocabulary they use. Many other data sets, such
as web logs (blogs) [10], have this same characteristic as patents. On the other hand,
technical directions also change with time. Therefore, we suspect that as the time inter-
val between the training data and test data decreases, the more similar their distribution
becomes.

3.1 Influence on Classification

To investigate how training data collected from different periods affect the generaliza-
tion performance of a patent classifier, we constructed seven training data sets and one
test data set by using the NTCIR-5 patent database. The training data sets consisted of
all of the patent applications published in each year from 1993 to 1998, while the test
data set consisted of all of the patent applications of 1999. Two popular classification
methods, SVMs and the k-NN algorithm, were used as classifiers. We used SVMlight

to train the SVMs with a linear kernel. Figure 1 shows the experimental results. The
changing tendency of classification performance seen in the figure demonstrates that as
the time interval between the training data and test data decreases, the more the classi-
fication performance of the patent classifier improves.

3.2 Variations of Different Words

To explain classification performance tendency observed in Figure 1, we performed a
simple analysis of different words and their frequencies in the training data and test
data. To facilitate description, we give some definitions of terminology used below.
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Word only in test (WOT): a word that appears only in the test data set.
Sum of WOT frequencies (SWF): the total frequency of all WOTs.
Average frequency of WOTs (AFW): the average frequency of all WOTs.

We counted the number of different WOTs and found an interesting phenomenon,
illustrated in Figure 2. As the time interval between the training data and test data
decreases, the number of WOTs decreases, and the value of the SWF also decreases.
In other words, the number of common words increases over time. This confirms the
time-varying feature of patent text.
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Fig. 1. Changing tendency of classification performance with different time intervals between the
training data and test data: (a) SVMs with a linear kernel; and (b) kNN algorithm

3.3 Variations of Word Frequency

The average frequency of words appearing only in the test set is about 3.6, while the
average word frequency in each training data set is about 925. This means that the
words only appearing in the test set are keywords, such as special field-specific words.
We found that the average percentage of words appearing only in the test set is 52%,
much larger than their frequency of 0.21%. This indicates that these words are domain-
dependent words. We also found that when the time interval between the training set and
the test set is smaller, the frequency of words appearing only in the test set decreases,
as listed in Table 2. This indicates that more recent training data sets contain common
words that do not appear in their previous years’ data sets. In other words, the habits of
using words change with time.

These time-varying features of patents are used in our proposed task decomposition
method as a kind of prior knowledge, as explained in section 5. The importance of
incorporating this knowledge is demonstrated by our experiments.

4 Min-Max Modular SVM

In this section, we briefly introduce M3-SVMs [8]. The working procedure of M3-
SVMs includes three main steps: task decomposition, SVM training, and module
combination.
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Fig. 2. Statistics of different words and their frequencies: (a) number of different words appearing
only in the test set; and (b) sum of frequencies for words appearing only in the test set

Table 2. Changing tendency of the AFW with time

Year 93 94 95 96 97 98
AFW 4.0 3.9 3.7 3.5 3.4 3.2

4.1 Task Decomposition

Before training M3-SVMs, a K-class problem should be divided into K(K−1)/2 two-
class subproblems by a one-versus-one strategy. Let Tij be the given training data set
for a two-class classification problem:

Tij = {(X(i)
l , +1)}Li

l=1 ∪ {(X(j)
l , −1)}Lj

l=1 (1)

for i = 1, · · · , K and j = i + 1, · · · , K,

where X
(i)
l ∈ Xi and X

(j)
l ∈ Xj are the training inputs belonging to classes Ci and

Cj , respectively, Xi is the set of training inputs belonging to class Ci, Li denotes the
number of data in Xi,

Assume that Xi is partitioned into Ni subsets in the form

Xij = {X(ij)
l }L

(j)
i

l=1 (2)

for j = 1, · · · , Ni and i = 1, · · · , K,

where 1 ≤ Ni ≤ Li and ∪Ni
j=1Xij = Xi.

After partitioning Xi into Ni subsets, every two-class subproblem Tij defined by Eq.
(1) can be further divided into Ni ×Nj relatively smaller and more balanced two-class
subproblems, as follows:

T (u, v)
ij = {(X(iu)

l , +1)}L
(u)
i

l=1∪{(X
(jv)
l , −1)}L

(v)
j

l=1 (3)

for u = 1, · · · , Ni, v = 1, · · · , Nj ,

i = 1, · · · , K, and j = i + 1, · · · , K,
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where X
(iu)
l ∈ Xiu and X

(jv)
l ∈ Xjv are the training inputs belonging to classes Ci and

Cj , respectively,
∑Ni

u=1 L
(u)
i = Li, and

∑Nj

v=1 L
(v)
j = Lj .

4.2 SVM Training

In the learning phase, each of the two-class subproblems can be treated as a completely
independent, non-communicating problem. Therefore, all the two-class subproblems
defined by Eq. (3) can be efficiently learned in a serial or massively parallel way.

From Eqs. (1) and (3), we see that a K-class problem is divided into

K−1∑

i=1

K∑

j=i+1

Ni × Nj (4)

two-class subproblems. The number of training data for each of the two-class subprob-
lems is about

�Li/Ni� + �Lj/Nj�, (5)

Since �Li/Ni� + �Lj/Nj� is independent of the number of classes K , the size of each
of the two-class subproblems is much smaller than the original K-class problem for
reasonable Ni and Nj .

4.3 Module Combination

After every individual SVM is successfully trained on the corresponding two-class sub-
problem, all of the trained SVMs are integrated into an M3-SVM with MIN and MAX
units according to two combination principles: the minimization principle, and the max-
imization principle [8]. The function of the MIN unit is to find a minimum value from
its multiple inputs, while the function of the MAX unit is to find a maximum value from
its multiple inputs.

5 Incorporating Prior Knowledge

“When everything fails, ask for additional domain knowledge” is the current motto of
machine learning. Various previous works have demonstrated that incorporating prior
knowledge can considerably improve the performance of learning systems [11]. In this
section, we present a novel method for incorporating prior knowledge into task decom-
position of M3-SVMs. We explore two kind of prior knowledge: time information, and
hierarchical structure information.

We consider the problem of classifying the eight section-level categories in the NT-
CIR patent database. Suppose that all of the patent texts from 1993 to 1997 are used
as training data (S5), and the rest, from 1998 to 1999, is used as testing data. From
Table 1, we see that the numbers of training and test data are 2,044,364 and 696,405,
respectively. If we apply a one-versus-one strategy, the original eight-class patent clas-
sification problem is divided into 28 two-class subproblems. According to Eq. 2, among
these 28 two-class subproblems, the largest is TG, H, which has 811,072 training data.
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Although the number of training data in TG, H is much smaller than in the original
problem, this problem is still large scale and difficult to solve.

One of the most important advantages of M3-SVMs over traditional SVMs is that
a large-scale, two-class subproblem can be further divided into a series of two-class
subproblems according to Eq. 3. Since each subset defined by Eq 2 represents a lo-
cal distribution of the entire training data set in the feature space, after training all of
the two-class subproblems, the combined results represent the local distribution more
accurately. Therefore, the most important factor is that each subset must represent the
corresponding local distribution. In order to divide classes into subsets representing lo-
cal distributions, we use prior knowledge of the time and hierarchical structure, because
we have verified that patents close to each other in time are also close to each other in
the distribution of the feature space.

On the other hand, patent applications classified by human experts into the same
category are naturally close to each other semantically, and therefore, they should be
close to each other in the feature space. According to this observation, we first divide
patent texts in the same section category into a series of subsets by year. For example,
all of the training data belonging to ‘A’ in S5 are divided into five subsets by year. That
is, the five subsets consist of 30,583, 31,316, 28,357, 25,444, and 22,475 patents.

6 Experiments and Results

To evaluate the effectiveness of applying M3-SVMs with our proposed task decompo-
sition method for large-scale patent classification, we carried out experiments on the
NTCIR-5 Japanese patent database.
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Fig. 3. Performance comparison of four different classifiers: (a) macro F1, and (b) micro F1

6.1 Experimental Settings

We adopted a hierarchical text classification model and focused on the problem of clas-
sifying the eight categories at the section level. Note that a patent has one main category
label and can also have several compensatory labels. In the experiments, we simplified
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the multi-label problem to a unique-label problem by only considering the main label
of every patent.

Four classification methods were used in the experiments: conventional SVMs, and
M3-SVMs with three different task decomposition strategies. All of the experiments
were performed on a Lenovo cluster system consisting of three fat nodes and thirty thin
nodes. Each fat node had 32 GB of RAM and two 3.2-GHz quad-core CPUs, while
each thin node had 8 GB of RAM and two 2.0-GHz quad-core CPUs. Experiments with
the conventional SVMs were performed on the fat nodes, while experiments with the
M3-SVMs were done on the thin nodes. We also used the following settings:

1) SVMs with a linear kernel were trained by SVMlight [12]. These SVMs acted as a
baseline algorithm and component classifiers for the M3-SVMs.

2) We used all of the patents from 1998 to 1999 as test data and constructed five differ-
ent training data sets. The training data sets contained all of the patent applications
published in the following time periods: 1997, from 1996 to 1997, from 1995 to
1997, from 1994 to 1997, and from 1993 to 1997.

3) We selected 5000 features by using the χavg algorithm [12]. We had previously
varied the number of features from 2500 to 160,000 and found that 5000 was the
smallest number giving nearly top performance.

4) For a random decomposition strategy, we set the subset size to 2000 by considering
both the accuracy and the time cost of our experiments.

5) We introduced task decomposition methods based on two different kinds of prior
knowledge. The first method used only time information, and the classifiers were
called YR-M3-SVMs. The second method used both time information and hierar-
chical structure information, and the classifiers were called YC-M3-SVMs.

6.2 Results

Figure 3 shows the classification performance of the SVMs and M3-SVMs. From this
figure, we can see that the two task decomposition methods based on prior knowl-
edge outperformed the random strategy. The YC-M3-SVMs achieved the best accuracy,
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Fig. 4. Performance variation with changes in the training parameter, C: (a) macro F1, and (b)
micro F1
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superior to that with the traditional SVMs. These results show that applying prior
knowledge improved the performance of the M3-SVMs.

Another interesting phenomenon can be observed in Figure 3. When the number of
training data was increased, the performance of the M3-SVMs became better and better,
surpassing that of the conventional SVMs, which dropped.

The training time for the M3-SVMs could be reduced to 10% of that for the tradi-
tional SVMs, which is much faster. Though the response time of the M3-SVMs was
longer than that of the SVMs, they could classify one patent within 2 ms.

Another interesting factor is parameter tuning. Figure 4 shows the relationship be-
tween the classification performance and the value of the penalty parameter C. We can
see that the M3-SVMs were very robust with respect to C, because two-class subprob-
lems are simple and almost linearly separable. In contrast, C was an important parame-
ter for the traditional SVMs, which could achieve their best performance only when C
was sufficiently large. As a result, using SVMs should be very time consuming.

7 Conclusions

In this paper, we have described the time-varying features of patent texts and have pro-
posed a novel method for incorporating prior knowledge into task decomposition for
M3-SVMs The results of our experiments on the NTCIR-5 patent database demon-
strated that applying our method with M3-SVMs enabled them to easily incorporate
time and hierarchical structure information into learning. This resulted in performance
superior to that of random task decomposition and traditional SVMs, which do not con-
sider any prior knowledge during learning. The lower time cost of our parallel system
is important for training on large data sets. The conclusions that we obtained here can
be generalized to other data sets with the same characteristics as those of patent data.
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