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Abstract

Recent large-scale hierarchical classifica-
tion tasks typically have tens of thousand-
s of classes as well as a large number of
samples, for which the dominant solution
is the top-down method due to computa-
tional complexity. However, the top-down
method suffers from accuracy deficiency,
that is, its accuracy is generally lower than
that of the flat approach of 1-vs-Rest. In
this paper, we employ meta-classification
technique to enhance the classifying pro-
cedure of the top-down method. We an-
alyze the proposed method on the aspect
of accuracy, and then test it with two real-
world large-scale data sets. Our method
both maintains the efficiency of the con-
ventional top-down method and provides
competitive classification accuracies.

1 Introduction

Test categorization, as a key technology of data
mining, has received intensive study for decades.
Recently, real-world applications have raised
some large-scale tasks that typically have tens of t-
housands of classes, where many established tech-
niques such as the 1-vs-Rest multiclass classifica-
tion fail due to computational complexity. Mean-
while, those large-scale tasks usually employ hi-
erarchies to organize the huge number of class-
es that they have, which provides a clue to solve
them. Such kind of tasks include categorizing
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patent documents into the taxonomy of Interna-
tional Patent Classification (IPC) (Fall et al., 2003;
Fujii et al., 2007) and categorizing web pages into
the directories of Open Directory Project (ODP) or
Yahoo! (Labrou and Finin, 1999; Liu et al., 2005).

The existing approaches to hierarchical classifi-
cation mainly fall into two categories. One cate-
gory aims at raising classification accuracy, which
generally takes hierarchies as additional clue for
classifying a sample besides its content. Such re-
searches include hierarchical support vector ma-
chines (SVM) (Cai and Hofmann, 2004; Tsochan-
taridis et al., 2005), hierarchical Rocchio-like clas-
sifiers (Labrou and Finin, 1999), min-max mod-
ular network (Lu and Ito, 2002; Lu and Wang,
2009) and ensemble classifications (Punera and
Ghosh, 2008).

The other category aims at reducing computa-
tional complexity. The main approach in this cat-
egory is an ensemble classification method called
top-down method (Bennett and Nguyen, 2009; Ce-
ci and Malerba, 2007a; Koller and Sahami, 1997;
Liu et al., 2005; Montejo-Ráez and Ureña-López,
2006; Sun and Lim, 2001; Xue et al., 2008; Yang
et al., 2003). Top-down method builds a tree of
classifiers which is isomorphic with the hierarchy
of classes.

Top-down method classifies a test sample as fol-
lows. The sample is filtered down the tree of clas-
sifiers from the root node. For each parent node
that the sample reaches, those child nodes whose
confidence values predicted by the base-classifiers
exceed a predefined threshold are invoked to carry
the sample on. When the sample reaches the bot-
tom leaf nodes eventually, the predictions can be
made (Liu et al., 2005; Montejo-Ráez and Ureña-
López, 2006; Yang et al., 2003). As this classify-
ing process employs the threshold strategy of com-
paring the scores with thresholds, which is named
score-cut (S-cut) in the context of flat multiclass
classification (Yang, 2001), we call this kind of
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conventional top-down method the S-CUT Top-
Down method (ScutTD) so as to distinguish it
from the later variant top-down methods in this pa-
per.

ScutTD is far more efficient than the normal
flat approach of 1-vs-Rest in handling the classi-
fication tasks that has a large number of classes.
The computational complexity of 1-vs-Rest is lin-
ear to the number of classes, while that of ScutTD
is approximately logarithmic (Ceci and Maler-
ba, 2007a; Liu et al., 2005; Wang and Lu, 2010;
Yang et al., 2003). As an practical example, in an
classification experiment on 492 617 training doc-
uments, 275 364 test documents and 132 199 cate-
gories of Yahoo!, ScutTD costs only 2.1 hours on
training and 0.12 hours on classifying, while 1-vs-
Rest costs 310 hours on training and 54 hours on
classifying (Liu et al., 2005).

However, ScutTD has a well-known deficien-
cy of classification accuracy, that is, its perfor-
mance is generally worse than the flat 1-vs-Rest
approach (Bennett and Nguyen, 2009; Ceci and
Malerba, 2007a; Wang and Lu, 2010; Xue et al.,
2008). As a persuasive evidence, in the 2009 PAS-
CAL challenge on large-scale hierarchical text 1,
flat methods rank highest, hybrid methods rank
next and top-down methods rank lowest.

The main reason for the accuracy deficiency of
ScutTD is that its classifying procedure actually
consists of cascaded decisions about which child
nodes should be invoked from a parent node. Each
of these decisions is made upon the score of lo-
cal base-classifiers only, and not changeable after
that. Thus a wrong decision inevitably leads to a
group of wrong predictions. This problem is usu-
ally called error propagation (Wang and Lu, 2010;
Xue et al., 2008). Sun et al. study a special case
of this problem, the wrong decision of rejecting a
child node at high layers, and call it the blocking
problem (Sun et al., 2004). Liu et al. compare this
classifying procedure to a Pachinko-machine (Liu
et al., 2005). As a solution, Ceci and Malerba has
proposed a bottom-up thresholding strategy (Ceci
and Malerba, 2007a)

In this paper, we propose a ‘global’ classify-
ing method for top-down method to reduce its er-
ror propagation. The idea is to treat combining
the predictions of the base-classifiers as a meta-
classification task, for which we name our method
Meta-classification Top-down method (MetaTD).

1http://lshtc.iit.demokritos.gr/

There is one point that needs to be clarified.
There are two kinds of hierarchical classification
tasks in real-world applications. One kind is
mandatory leaf-node classification where only the
leaf nodes are the validate labels or classes (Du-
mais and Chen, 2000; Freitas and de Carvalho,
2007; Silla and Freitas, 2010). In contrast, the oth-
er is non-mandatory leaf-node classification corre-
spondingly, where both the internal nodes and the
leaf nodes are validate labels (Lewis et al., 2004;
Liu et al., 2005). In this paper, we handle the
first kind of hierarchical classification – mandato-
ry leaf-node classification.

The rest of paper is organized as follows. The
proposed MetaTD as well as the conventional S-
cutTD is formally presented in Sec. 2. We then
provide some ideas on the classification accuracy
of MetaTD in Sec. 3. After that we test MetaTD
with two real-world data sets in Sec. 4. Finally we
conclude this paper in Sec. 5.

2 Methods

In this section, we present the formal descriptions
of the proposed MetaTD. We first review the con-
ventional ScutTD. We then present MetaTD in de-
tail. After that an example is given to illustrate
MetaTD.

2.1 S-cut Top-down Method
Suppose H is a hierarchy of classes which records
all the relations of parent nodes and their children,

H = {(p, c)|p is a parent node,
c is one of its children}

where (p, c) is called a parent-child relation. Sup-
pose T ,D and E are the training, development and
test sets respectively.

Applying ScutTD consists of the following
three steps.

First, train base-classifiers. One classifier will
be trained for each parent-child relation (p, c) of
the hierarchy H , noted as fc, through the follow-
ing local training set,

Tpc = {(x, y)|x ∈ Tp,y = +1 if x ∈ Tc,

y = −1 otherwise} (1)

where T∗ is the subset of training samples that be-
long to the node ∗.

Second, find optimal thresholds for the base-
classifiers. The approaches to this step actually
have alternatives. Micro-F1 is taken as the crite-
rion optimization target which balances both pre-
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cision and recall, as follows (Bennett and Nguyen,
2009; Liu et al., 2005).

tc = argmax
t

F1(Dpc, fc, t)

= argmax
t

2P (Dpc, fc, t)R(Dpc, fc, t)

P (Dpc, fc, t) + R(Dpc, fc, t)
,

(2)

P (Dpc, fc, t) =
nr

|{x|(x, y) ∈ Dpc, fc(x) ≥ t}| ,

R(Dpc, fc, t) =
nr

|Dpc|
,

nr = |{x|(x, y) ∈ Dpc, fc(x) ≥ t, y = 1}|,

where tc and fc are the local threshold and base-
classifier, Dpc is the local development subset
which is similar with the Tpc defined by Eq. 1),
P and R are the precision and recall, and nr is the
number of correct predict labels.

Third, classify the test instances. The algorithm
of this step is presented in Fig. 1. With the trained
base-classifiers fc and the thresholds tc, the test set
E can be classified.

2.2 Meta-classification Top-down method
To describe the proposed MetaTD, we first intro-
duce the definition of meta-samples as follows,

M(u, l, f∗) = (Mx(ux, l, f∗),My(uy, l, f∗))

(3)

Mx(ux, l, f∗) = {(ni, fni(ux))|ni ∈ pl}

My(uy, l, f∗) =

{
+1, l ∈ uy

−1, l ̸∈ uy

where M is the meta-mapping that consists of
meta-input Mx and meta-output My, H is a hi-
erarchy, u = (ux, uy) is a base-sample where
ux is the input part and uy is the label set, l is
a leaf node (or a label), that is, a validate label
for base-samples, pl = (n0, n1, . . . , nk) is a path
from the root to l where n0 = root, nk = l,
(ni, ni+1) ∈ H , and f∗ are base-classifiers.

However, the above definition yields one meta-
sample for each class, which may cause a problem
of computational complexity on large-scale tasks.
Hence a method of selecting label candidates for
each base-sample is employed so that only a small
fraction of labels need to be delivered into meta-
classification. We note this selection method as
L(ux, f∗,H).

MetaTD is based on the above two settings, and
its workflow is described in Fig. 2.

Require: a test instance x
a hierarchy H={(p, c)|(p, c) is a parent-child }
base-classifiers {fc|(p, c) ∈ H}
thresholds {tc|(p, c) ∈ H}

Ensure: a predicted label set y
q ← [Root], y ← {}
while q is not empty do

p← pop out the first item of q
if p is a leaf node then

y ← y ∪ {p}
else

for all c, (p, c) ∈ H do
sc ← fc(x)
if sc ≥ tc then

append c into p
end if

end for
end if

end while
return y

Figure 1: ScutTD algorithm

The training phase consists of three steps as fol-
lows,

1. Train base-classifiers f∗ on a training data set
T , which is the same with ScutTD.

2. Construct a meta-training set with the base-
classifiers and a development set D,
MT = ∪u∈D{M(u, l, f∗,H)|l ∈ L(ux, f∗,H)}.

3. Train a meta-classifier g on MT .

The whole training phase requires the base-level
training set T and development set D, the descrip-
tion of the hierarchy H , and produces a set of
base-classifiers f∗ and a meta-classifier g.

The classifying phase also consists of three
steps as follows,

1. Construct a group of meta-samples from a
test base-sample ux (its label uy is unknown),
ME = {Mx(ux, l, f∗)|l ∈ L(ux, f∗,H)}.

2. Present these meta-samples to the meta-
classifier g,

g(ME) = {g(Mx(ux, l, f∗))|l ∈ L(ux, f∗,H)}
= {gux,l|l ∈ L(ux, f∗,H)}.

3. Interpret the predictions into base-level label-
s. The interpretation is generally simple and
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Figure 2: Workflows of meta-classification top-down method: (a) training phase; (b) classifying phase.

straightforward, and just outputs the labels
with large scores. The practical interpreta-
tion depends on the data sets, and will be de-
scribed in the section of experiments.

The remained problems now are how to imple-
ment meta-sample representations Mx(ux, l, f∗)
and selection of label candidates L(ux, f∗,H),
which are solved in the next two subsections.

2.2.1 Representations of Meta-samples
In this subsection, the meta-samples will be made
into real numerical vectors that are ready to be
used by meta-classifiers. We use sparse vector
to represent meta-samples through the following
steps:

First, encode the scores of the related base-
classifiers into a sparse vector. All the nodes ex-
cept the root are numbered with integers, which
serve as the dimensions of the sparse vector.

Second, augment the representations with the
features about the global attributes of the root-to-
leaf paths in the hierarchy. The purpose of this step
is to raise classification accuracy, as these global
attributes may be helpful to decide whether a path
is true. The following three additional features are
used according to our pilot experiments,

1. the average score of nodes along a path;

2. the minimum score of nodes along a path;

3. the fraction of nodes whose scores exceed the
thresholds employed in ScutTD, named pass-
rate.

In the end, the values of meta features are trans-
ferred into a sensible interval in order to fit the
training of meta-classifiers (Liu, 2005; Liu et al.,

2004). Two types of transformation functions are
used according to our pilot experiments. For the
additional features, the following standard scaling
function is used,

zs =
s− µs

σs

where s is the value of an additional feature, µs

and σs are the corresponding mean and variance.
For the basic features, the following sigmoid

function is used,

zs =
1

1 + e−(s−µs)

where s is a score at a node n, and µs is the av-
erage score at node n. This function is a simpli-
fication of the Platt’ sigmoid fitting (Platt, 1999;
Cesa-Bianchi et al., 2006), and it is more robust
than the original one in the context of hierarchical
classification according to our pilot experiements.

2.2.2 Selection of Label Candidates
How should label candidates be selected? In fact,
the method of selecting label candidates is kind of
like a classification method as both of them take
in samples and give out the labels most likely to
be right. However, the method of selecting la-
bel candidates should output more labels than a
normal classifying method, in order to provide a
wider coverage on truly correct ones. To find such
a ‘loose’ classifying method, we refer to flat multi-
class classification where another threshold strat-
egy of Rank-cut (R-cut), besides the S-cut intro-
duced above, is also widely used (Montejo-Ráez
and Ureña-López, 2006; Yang, 2001). R-cut is to
accept the top r labels with the highest confident
scores, where r is a predefined integer.

Applying R-cut to the context of the top-down
method is straightforward. The top-r children are

1092



(a) (b)

Figure 3: An illustration of solving hierarchical
classification with MetaTD: (a) the class hierar-
chy; (b) the paths as meta-samples.

invoked from their parent node regardless of their
scores, and the rest procedure is the same with S-
cutTD (see Fig. 1). We name this method RcutTD,
and employ it to select label candidates in the pro-
posed MetaTD. Note that RcutTD has been dis-
cussed before and is considered improper for the
classifying procedure of the top-down method (Li-
u et al., 2005).

2.3 Illustration of Meta-classification
Top-down Method

In this subsection we illustrate MetaTD with an
example. Suppose a hierarchical classification
task has the hierarchy of classes shown by Fig. 3a,
where n0 is the root, and the leaf nodes n3, n4, n6

and n7 are validate labels.
Further suppose that a tree of base-classifiers

have been built through the top-down training.
Here comes a sample with n3 and n7 as its cor-
rect labels. Fig. 3b shows that each base-classifier
yields a relevant score si.

MetaTD converts each possible label (or leaf n-
ode) into a meta-sample – the target is whether
this leaf node is a correct label and the features
are the scores of the base-classifiers along the path
(Fig. 3b). For this example, the following four
meta-samples can be generated,

true n0 → (n1, s1) → (n3, s3)
false n0 → (n1, s1) → (n4, s4)
true n0 → (n2, s2) → (n5, s5) → (n7, s7)
false n0 → (n2, s2) → (n6, s6).

(4)
These meta-samples are then interpreted into

numerical sparse vectors. Suppose that n1 to n7

are numbered with integers 1–7, then the numeri-
cal sparse vectors can be generated (see Tab. 1).

With more meta-samples like above, a meta-
classifier can be trained. Later this meta-classifier

No. Basic Extension
1 1:s1

a 3:s3 8:a13
b 9:m13 10:p13

2 1:s1 4:s4 8:a14 9:m14 10:p14

3 2:s2 5:s5 7:s7 8:a257 9:m257 10:p257

4 2:s2 6:s6 8:a26 9:m26 10:p26

a dimension:value
b ai1i2...ik , mi1i2...ik , pi1i2...ik denote the average,

minimum, and pass-rate of si1 , si2 . . . sik respec-
tively.

Table 1: Representing meta-samples with sparse
vectors

can be applied to the meta-samples made from a
base-level test sample to pick out the right labels.
In this way, MetaTD fulfills the original base-level
classifying task.

3 Accuracy Analysis

The classification accuracy of top-down method-
s is actually not very clear or predictable. To our
best knowledge, no strict accuracy analyses on the
conventional ScutTD have been reported yet. Here
we just provide some general ideas about the com-
parison of accuracy between MetaTD and ScutTD.

First, whether pruning possible labels with R-
cutTD or not has minor impact on the overall clas-
sification result. The labels rejected by RcutTD
all have quite low scores on some parent-child re-
lations and are very likely to be filtered out by the
successive meta-classifier.

Second, ignoring the impact of selecting label
candidates, the conventional top-down method of
ScutTD can be actually seen as a weak meta-
classifier in the framework of MetaTD. Suppose
here is a meta-sample (a sparse vector),
(n1:z1, n2:z2, . . . , nk:pk, na:za, nm:zm, np:zp)

where ni and pi are a node number and its value,
and na,nm,np are the additional features. Then
ScutTD works like,

Output =

{
True if pi > ti for all i = 1 . . . k
False otherwise

where ti is the threshold of node ni. Clearly this
formula is a cascaded of binary decisions, which
is weaker than some common classifiers such as
weighted voting.

4 Experiments

In this section, after describing the experimental
settings, we present the performance comparisons
between MetaTD and baseline methods as well as
historical records on the entire data sets. We then
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Data No. Sample Feature Class
Train. Dev. Test No. Avg.a No. Avg. b

LSHTC 93k 34k 34k 381k 173 12k 1.0
NTCIR 2 762k 374k 359k 694k 108 49k 2.7

a average features per sample, that is, average u-
nique terms per document.

b average labels per sample.

Table 2: Statistical information of data sets

report the comparison with flat 1-vs-Rest approach
on several subsets.

4.1 Experimental Settings
4.1.1 Data Sets
Two real-world data sets, the data set of web pages
in the PASCAL2 Large-scale Hierarchical Tex-
t Classification challenge (LSHTC)2 and the data
set of patent documents from NII Test Collection
for IR Systems Project (NTCIR)3, are used in our
experiments.

The PASCAL2 Large-scale Hierarchical Text
Classification (LSHTC) challenge is held at 2009,
aimed at promoting the study of classification
methods for large hierarchies. The challenge at-
tracts 19 participants with a variety of approach-
es (Kosmopoulos et al., 2010).

International Patent Classification (IPC) is a
real-world taxonomy maintained by World Intel-
lectual Property Organization (WIPO) 4. The data
set that we use is provided by NTCIR which is
freely available for research purpose (Fall et al.,
2003; Fujii et al., 2007). This data set consists of
3 496 137 Japanese patent documents submitted to
Japan Patent Office from 1993 to 2002.

The statistics of two data sets and their hierar-
chies are presented in Tab. 2 and Fig. 4. Note that
LSHTC’s is a single-labeled task while NTCIR’s
is a multi-labeled ones.

4.1.2 Performance Measurement and
Baseline Methods
Different performance measurements and baseline
methods are adopted for the two data sets due
to their difference of single-label and multi-label.
NTCIR is multi-labeled, so the most commonly
used criterion for general multi-labeled classifica-
tions, micro-F1, is taken as the performance mea-
surement. ScutTD is taken as the baseline method.

2http://lshtc.iit.demokritos.gr/
3http://research.nii.ac.jp/ntcir/

index-en.html
4http://www.wipo.int/classifications/

ipc/en/
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Figure 4: Number of internal and leaf nodes at
each level of the hierarchy: (a) LSHTC; (b) NT-
CIR.

LSHTC is single-labeled, so accuracy is taken
as the performance measurement. However, there
is a problem about baseline method as ScutTD is
not proper for single-labeled task. As a matter of
fact, single-labeled hierarchical classifications are
easier than multi-labeled ones, and it is natural to
activate the child node with the largest score dur-
ing top-down classification, like (Koller and Sa-
hami, 1997). This method happens to be RcutTD
with the parameter r=1. In addition to this base-
line method, the evaluation records of LSHTC are
also used for comparison.

4.1.3 Settings of MetaTD
The representation of meta-samples follows the
description in Sec. 2.2.1. RcutTD is employed to
select label candidates as described in Sec. 2.2.2.
We set the parameter r=2 due to a trade-off be-
tween classification accuracy and time cost ac-
cording to several pilot experiments.

The recent implement of SVM, Liblinear, is
adopted as the meta-classifier (Fan et al., 2008).

Meta-to-base interpreters are needed to transfer
the meta-level predictions into base-level labels.
LSHTC is single-labeled, so it’s natural to take the
label with the largest meta-level scores. NTCIR
is multi-labeled, and the strategy of S-cut in flat
multi-class classification is employed.

4.1.4 Other Settings
The bag-of-word model with the term weight of
TFIDF is adopted as the base-level sample repre-
sentation in this paper (Sebastiani, 2002). To han-
dle the Japanese text in the NTCIR’s data set, we
use the segment tool of Chasen 5 (Jin et al., 2010),
and remove the function words from the result.

The base-level classifier is SVMlight with linear
kernel. The default cost factor of SVMlight is used
on NTCIR, while the cost factors are tuned by the
development sets on LSHTC.

5http://chasen.naist.jp/hiki/ChaSen/
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LSHTC, 12 294 classes
Rank Method Acc. Group

1 Not reported 0.4676 alpaca
2 Committees of flat approaches 0.4632 jhuang

MetaTD 0.4513
3 Flattened Top-down method 0.4433 arthur.
4 Centroid-based classifier 0.4431 XipengQiu
5 Deep Classification 0.4317 Turing
6 Not reported 0.4270 Dyakonov

RcutTD 0.4262
7 Flattened Top-down method 0.4152 logicators

11 k-NN 0.4023 NakaCristo

Table 3: Classification accuracies on single-
labeled LSHTC as well as its challenge records

NTCIR, 49 187 classes
Method Micro-F1

ScutTD 0.272
MetaTD 0.426

Table 4: Classification accuracies on the multi-
labeled data set of NTCIR

The experiments are run on four 64-bit comput-
ers with multi-core 1.9GHz AMD CPUs. All the
experiments require actually up to 8G memory ac-
cording to our observation.

4.2 Performance on Entire Data Sets

In this subsection we compare MetaTD with base-
line methods on the entire data sets of LSHTC and
NTCIR from the aspects of accuracy and efficien-
cy.

4.2.1 Accuracy Comparisons

The experimental results on the single-labeled L-
SHTC as well as the challenge records are pre-
sented in Tab. 3. MetaTD turns out to be be-
tween the second and third place, while the base-
line method of RcutTD ranks between the sixth
and seventh place. The method at the second place
is a committee of two flat approaches – variants
of the OOZ algorithm (Madani and Huang, 2008)
and the passive-aggressive algorithm (Crammer et
al., 2006). The methods at both the third and sev-
enth places are both top-down methods enhanced
by flattening the original hierarchy. Deep classifi-
cation ranks at the fifth place (Xue et al., 2008). In
short, MetaTD outperforms the conventional and
several variant top-down methods.

The results on the multi-labeled NTCIR are pre-
sented in Tab. 4. MetaTD achieves a much higher
micro-F1 than the baseline method of ScutTD.

Method Training Classify.a

LSHTC, 12 294 classes
RcutTD Train base-classifiers 10h 0.108
MetaTD Train base-classifiers 17h 0.131

Prepare meta-train. set 1h
Meta-training 18s
NTCIR, 49 187 classes

Scut/MetaTD Train base-classifiers 261h
ScutTD Find optimal thresholds 4h 0.029
Meta-learning Prepare training set 12h 0.062

Meta-training 466s
a seconds per sample

Table 5: Time costs of training and classifying
with conventional top-down methods and MetaT-
D.

No. Class. LSHTC NTCIR
Train. Dev. Test Train. Dev. Test

1k 7k 2k 2k 38k 16k 17k
5k 39k 12k 12k 155k 64k 68k

10k 76k 23k 23k 253k 102k 104k
15k –a – – 320k 129k 129k

a there is not enough classes in the original data
set.

Table 6: Numbers of classes and samples at the
subsets of LSHTC and NTCIR

4.2.2 Efficiency Comparisons
The training and classifying time costs of MetaTD
and baseline methods are presented in Tab. 5. In
the training phrase, training base-classifiers caus-
es most time cost. The additional cost of meta-
classification MetaTD is only 5%–10% of that
cost. Meta-training unexpectedly costs very lit-
tle time, while preparing meta-training sets costs
most additional time cost.

On the aspect of classifying, the time cost of
MetaTD is about twice as much as the convention-
al top-down methods. According to our observa-
tion, considerable time is spent on reading samples
and loading classifiers.

4.3 Comparison with Flat Approach of
1-vs-Rest on Subsets

In this subsection we compare the performance
of top-down methods with the flat approach of 1-
vs-Rest multiclass classification. Given the great
computational complexity of the flat approach,
several subsets are made from the entire data sets
of LSHTC and NTCIR through randomly picking
up classes and samples (see Tab. 6).

All the experimental settings here are consistent
with previous experiments on the entire data sets.
For the flat approach of 1-vs-Rest, the SVMlight is
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Figure 5: Performance comparison of flat 1-vs-Rest approach, conventional top-down methods and
MetaTD on subsets of various sizes: (a) through (c) for LSHTC; (d) through (f) for NTCIR.

taken as the base-classifier.
The experiment results are presented in Fig. 5.

On the aspect of classification accuracy, MetaTD
catches up with the 1-vs-Rest approach. In partic-
ular, MetaTD slightly outperforms 1-vs-Rest ap-
proach on both data sets when the number of class-
es exceeds 5 thousands.

On the aspect of computational complexity,
MetaTD is close to the conventional top-down
methods, and they all show a great superiority over
the 1-vs-Rest approach on both training and clas-
sifying as expected.

5 Conclusions

In this paper, we propose a meta-learning top-
down method (MetaTD) in order to reduce the er-
ror propagation of the conventional ScutTD while
remain its capability for large-scale hierarchical
classification. In the experiments, MetaTD outper-
forms ScutTD and catches up with the flat 1-vs-
Rest approach on classification accuracy. On the
aspect of computational complexity, MetaTD only
costs 5%-10% extra time in training and classify-
ing, so it is suitable for most applications where
ScutTD are being used.

References
P.N. Bennett and N. Nguyen. 2009. Refined expert-

s: improving classification in large taxonomies. In
Proc. of SIGIR’09, pages 11–18. ACM.

L. Cai and T. Hofmann. 2004. Hierarchical docu-
ment categorization with support vector machines.
In Proc. of ACM international conference on infor-
mation and knowledge management, pages 78–87.
ACM.

M. Ceci and D. Malerba. 2007a. Classifying web doc-
uments in a hierarchy of categories: a comprehen-
sive study. Journal of Intelligent Information Sys-
tems, 28(1):37–78.

M. Ceci and D. Malerba. 2007b. Classifying web doc-
uments in a hierarchy of categories: a comprehen-
sive study. Journal of Intelligent Information Sys-
tems, 28(1):37–78.

N. Cesa-Bianchi, C. Gentile, and L. Zaniboni. 2006.
Hierarchical classification: combining Bayes with
SVM. In Proc. of ICML’06, pages 177–184. ACM.

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz,
and Y. Singer. 2006. Online passive-aggressive al-
gorithms. Journal of Machine Learning Research,
7:551–585.

S. Dumais and H. Chen. 2000. Hierarchical classifi-
cation of Web content. In Proc. of SIGIR’00, pages
256–263. ACM.

1096
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